Ata da 3ª Reunião Extraordinária do Colegiado do Curso de Engenharia de Materiais realizada em 10 de julho de 2017.

Ao 10º dia do mês de julho de 2017, às 13:30h, reuniu-se na sala de reuniões do DEMEC o Colegiado do curso de Engenharia de Materiais do Departamento de Engenharia Mecânica sob a presidência do Professor Kleber Gonçalves Bezerra Alves coordenador do curso de Engenharia de Materiais, estavam presentes os professores: Carlos Augusto do Nascimento Oliveira, Oscar Olimpio de Araújo Filho, Severino Leopoldino Urtiga Filho, Magda Rosangela Santos Vieira, Paulo Marcelo Pedrosa de Almeida, Nadège Sophie Bouchonneau da Silva e Tiago Felipe de Abreu Santos. Foi iniciada a reunião, passando a tratar da seguinte pauta: 1. Equivalência da disciplina ME102 - TERMODINAMICA.

Nesse item o professor Kleber Gonçalves Bezerra Alves apresentou a proposta de incluir o componente curricular ME593- TERMODINÂMICA, do curso de Engenharia Naval, como sendo equivalente a disciplina ME102- TERMODINÂMICA, do curso de Engenharia de Materiais. Após apreciação pelo Colegiado do curso, a proposta foi posta em votação e aprovada por unanimidade.

Nada mais havendo a tratar, o professor Kleber Gonçalves Bezerra Alves encerrou a reunião às 14:00h, e lavrou a presente ata, que, após lida e aprovada, será assinada por quem de direito.

Em 10 de julho de 2017

[Assinaturas]

Carlos Augusto do N. Oliveira
Vice Coordenador Engenharia de Materiais
Siape: 2013095
DEMEC/CTG/EEP - UFPE

Magda Vieira

Kleber Gonçalves Bezerra Alves
Coord. do Curso Eng. Materiais
Siape-1810494
DEMEC/CTG/EEP - UFPE
PROGRAMA DE COMPONENTE CURRICULAR

TIPO DE COMPONENTE (Marque um X na opção)

<table>
<thead>
<tr>
<th>X</th>
<th>Disciplina</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Atividade complementar</td>
</tr>
<tr>
<td></td>
<td>Monografia</td>
</tr>
</tbody>
</table>

Prática de Ensino
Módulo
Trabalho de Graduação

STATUS DO COMPONENTE (Marque um X na opção)

<table>
<thead>
<tr>
<th>X</th>
<th>Opcional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eleutivo</td>
</tr>
</tbody>
</table>

DADOS DO COMPONENTE

<table>
<thead>
<tr>
<th>Código</th>
<th>Nome</th>
<th>Carga Horária Semanal</th>
<th>Nº. de Créditos</th>
<th>C. H. Global</th>
<th>Período</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME593</td>
<td>Termodinâmica</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pré-requisitos</th>
<th>Co-Requisitos</th>
<th>Requisitos</th>
</tr>
</thead>
<tbody>
<tr>
<td>QF001, FI108</td>
<td>ME262</td>
<td>C.H.</td>
</tr>
</tbody>
</table>

EMENTA

CONTÉUDO PROGRAMÁTICO
- Apresentação da disciplina. Introdução à Termodinâmica.
- Sistemas e volumes de controle; propriedades de um sistema, estado e equilíbrio, processos e ciclos.
- Energia, transferência de energia e análise geral da energia: introdução, formas de energia, transferência de energia por meio de calor, transferência de energia por meio de trabalho.
- Formas mecânicas de trabalho. A Primeira Lei da Termodinâmica.
- Eficiência de conversão de energia. Energia e Meio Ambiente
- Propriedades das substâncias puras. Substância Pura. Fases de uma substância pura. Processos de mudança de fase de substâncias puras. Diagramas de Propriedade para os processos de mudança de fase.
- Tabelas de propriedades. Equação do estado do gás ideal. Fator de compressibilidade-Uma medida desvio do comportamento do gás ideal.
- Energia interna, entalpia e calores específicos dos gases ideais, sólidos e líquidos.
- Análise da massa e da energia dos volumes de controle. Conservação da massa. Trabalho de escoamento e a energia de um fluido em escoamento.
- Balanço de energia de processos em regime permanente. Alguns dispositivos de engenharia com escoamento em regime permanente.
- Balanço de energia de processos em regime transiente. Exercícios de revisão.
- A máquina térmica de Carnot. A bomba de calor e o refrigerador de Carnot.
• Entropia: o princípio do aumento da entropia.
• Variação da entropia de substâncias puras. Processos isoentrópicos. Diagramas de propriedades que contêm a entropia. As relações T ds.
• Variação da entropia de líquidos e sólidos. Variação da entropia dos gases ideais. Trabalho reversível no escoamento em regime permanente.
• Minimizando o trabalho do compressor. Eficiências isentrópicas de dispositivos com escoamento em regime permanente. Balanço de entropia.
• Variação da exergia de um sistema. Transferência de exergia por calor, trabalho e fluxo de massa.
• Ciclos de potência a vapor e combinados. O ciclo a vapor de Carnot. Ciclo de Rankine: O ciclo ideal para os ciclos de potência a vapor.
• Desvios entre os ciclos reais de potência a vapor e os idealizados. Como aumentar a eficiência do ciclo de Rankine?
• O ciclo de Rankine ideal com reaquecimento. Ciclo de Rankine regenerativo ideal. Análise de Segunda Lei para os ciclos de potência a vapor.
• Cogeração. Ciclos combinados gás-vapor.
• Ciclos de Potência a vapor e combinados. O ciclo de vapor de Carnot.
• Ciclo Rankine: O ciclo ideal para os ciclos de potência a vapor. Análise de energia do ciclo de Rankine Ideal.
• Desvios entre os ciclos reais de potência a vapor e os idealizados.
• Como aumentar a eficiência do ciclo Rankine: diminuindo a Pressão no condensador; Superaquecendo o vapor a temperaturas mais altas; aumentando a pressão na caldeira.
• O ciclo de Rankine ideal com reaquecimento. Ciclo de Rankine regenerativo ideal: aquecedores de água de alimentação abertos e fechados.
• Análise de Segunda Lei para os ciclos de potência a vapor. Cogeração. Ciclos combinados gás-vapor.

BIBLIOGRAFIA BÁSICA
Princípios de Termodinâmica para Engenharia, Moran, M. J.; Shapiro, H. N.
Fundamentos da Termodinâmica, Van Wylen, G. J.; Sonntag, R.; Borgnakke, C.
Termodinâmica, Çengel, Y. A.; Boles, M. A.

BIBLIOGRAFIA COMPLEMENTAR
Termodinâmica, Ieno, G.; Negro, L.
Termodinâmica, Oliveira, M. J.
Engineering Thermodynamics, Rajput, R K.
Fundamentos de Termodinâmica Aplicada: Análise Energética e Exergética, Oliveira P. P.
An Introduction to Thermodynamics, Rao, Y. V. C.

DEPARTAMENTO A QUE PERTENCE O COMPONENTE
Departamento de Engenharia Mecânica

HOMOLOGADO PELO COLEGIADO DE CURSO
Engenharia Naval

ASSINATURA DO CHEFE DO DEPARTAMENTO

ASSINATURA DO COORDENADOR DO CURSO OU ÁREA
PROGRAMA DE COMPONENTE CURRICULAR

TIPO DE COMPONENTE (Marque um X na opção)

- [x] Disciplina
- [] Atividade complementar
- [] Monografia
- [] Estágio
- [] Prática de ensino
- [] Módulo

STATUS DO COMPONENTE (Marque um X na opção)

- [x] OBRIGATÓRIO
- [] ELETIVO
- [] OPTATIVO

DADOS DO COMPONENTE

<table>
<thead>
<tr>
<th>Código</th>
<th>Nome</th>
<th>Carga Horária Semanal</th>
<th>Nº. de Créditos</th>
<th>C. H. Global</th>
<th>Período</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME102</td>
<td>Termodinâmica 1</td>
<td></td>
<td>4</td>
<td>60</td>
<td>5º</td>
</tr>
</tbody>
</table>

Pré-requisitos

- F1108-Física Geral 3, QF001-Química Geral 1

Co- Requisitos

Requisitos C.H.

EMENTA

CONTEÚDO PROGRAMÁTICO

- Apresentação, conceitos fundamentais.
- Propriedades de uma substância pura/ Exercícios.
- Uso de tabelas Termodinâmicas.
- Superfícies Termodinâmicas/ uso de tabelas.
- Trabalho e calor.
- 1ª Lei da Termodinâmica para ciclo e mudança de estado.
- Energia interna, entalpia/ Exercícios. Calores específicos.
- 1ª Lei para volume de controle/ Regime permanente.
- 2ª Lei para regime uniformes.
- 2ª Lei da Termodinâmica/ Rendimento.
- Ciclo de Carnot/ Irreversibilidade.
- Entropia: Desigualdade de Clausius/ propriedade Termodinâmica.
- Entropia uma substância pura.
- Entropia: Processos reversíveis e irreversíveis. Trabalho perdido
- Processos Polítropicos.
- 2ª Lei para volume de controle/ Regime permanente.
- Regime uniforme.
- Princípios do aumento de Entropia/ Eficiência.

BIBLIOGRAFIA BÁSICA

BIBLIOGRAFIA COMPLEMENTÁR

DEPARTAMENTO A QUE PERTENCE A DISCIPLINA

Engenharia Mecânica

HOMOLOGADO PELO COLEGiado DE CURSO

Engenharia de Materiais

ASSINATURA DO CHEFE DO DEPARTAMENTO

ASSINATURA DO COORDENADOR DO CURSO OU ÁREA