Getting published

Eduardo G. Yukihara
Co-Editor-in-Chief for Radiation Measurements

Presented by: Eduardo G. Yukihara
Date: 2022-10-10
Who am I?

Professional
- PhD in Physics from the Nuclear Physics Department, University of São Paulo (2001)
- Postdoctoral Fellow at Oklahoma State University’s Physics Department (2001 – 2004)
- Assistant, Associate and Full Professor at Oklahoma State University’s Physics Department (2004 – 2018)
- Head of the Dosimetry Group, Paul Scherrer Institute (since 2016)
- Head of the Radiation Metrology Section, Paul Scherrer Institute (since 2018)

Editorial
- Reviewer for innumerous journals
- Member of Editorial Board of Radiation Measurements (Elsevier), 2012 – 2018
- Associate Editor for Radiation Measurements (Elsevier), 2018 – 2021
- Handling Editor for Physics Open (Elsevier), 2019 – present
- Co-Editor-in-Chief for Radiation Measurements (Elsevier), 2021 - present
Disclaimer

- The content of this presentation is the author’s opinion only and not an official statement from Elsevier or from the author’s institution.
Why publish?

- To communicate?
- To build a reputation?
- To get a job or be promoted?

As clear as possible to be understandable
- As detailed as possible to be reproducible
- Then you need to publish good work

You publish
You are a good researcher

- Let the research drive the publications, and not the other way around
- Focus on excellence
Objective

- To help you prepare manuscripts more efficiently
- To get published more easily!
This presentation

• Manuscript preparation
• The submission process
• What to do after acceptance?
Manuscript preparation
Where to start?

My own process, distilled over several years of experience…

1. **Write the abstract**
2. Make an outline with only headings and figures/tables
3. **Write the main points to be made (bullet points)**
4. Write the “materials and methods” section
5. Write the “results”
6. **Make an outline of the paragraphs in the introduction**
7. Write the introduction
8. Write the conclusion
9. **Revise the manuscript**
10. Prepare the submission files

Discuss the manuscript with your advisor after each major step (in bold)
1. Write the abstract

An example from the Medical Physics journal...

Abstract

An abstract must accompany every article.

For Research Articles (500 words max) and Technical Notes (300 words max), a structured abstract is required that consists of 5 parts:

1. Background
2. Purpose
3. Methods
4. Results
5. Conclusions
1. Write the abstract

1. (Background): Why are you doing it?
2. Purpose: What is the objective of it? \rightarrow Statement of purpose
3. Methods: How did you do it?
4. Results: What did you get it?
5. Conclusions: What is the conclusion and why is that relevant?
Statement of purpose

“The objective of this work is…”

• First sentence of abstract
• Last paragraph of the introduction
Example of writing the abstract (structured abstract)

Purpose: The objective of this study is...

Methods: To achieve that, we prepared samples of... and investigated them using...

Results: The samples exhibit emission bands centered at...

Conclusions: The results demonstrate... This is important for...
Example of writing the abstract (simple abstract)

The objective of this study is… To achieve that, we prepared samples of… and investigated them using… The samples exhibit emission bands centered at… The results demonstrate… This is important for…

Although the abstract is a single paragraph, the structure is still there!
• Start by writing a structured abstract (one paragraph per item).
• Then collapse it to a single paragraph.
Why writing the abstract first? (Everyone says it should be the last thing…)

Because it forces you to:
• Define the purpose of the paper
• Think about the “blueprint” of the paper:
 – Results to include
 – Main conclusion
 – Relevance
• Discuss the “blueprint” with the co-authors
2. Make an outline with only headings and figures/tables

1. INTRODUCTION
2. MATERIALS AND METHODS
3. RESULTS AND DISCUSSION
4. CONCLUSIONS
2. Make an outline with only headings and figures/tables

1. INTRODUCTION
2. MATERIALS AND METHODS
3. RESULTS AND DISCUSSION
 3.1. Material structural properties
 3.2. Basic luminescence properties
 3.3. Dosimetric characteristics
4. CONCLUSIONS
2. Make an outline with only headings and figures/tables

1. INTRODUCTION
2. MATERIALS AND METHODS
 2.1. Samples
 2.2. Irradiations
 2.3. Readout equipment
3. RESULTS AND DISCUSSION
 3.1. Material structural properties
 3.2. Basic luminescence properties
 3.3. Dosimetric characteristics
4. CONCLUSIONS
Why writing such outline?

A few of the questions to answer:
- Do we have enough data?
- Is the data quality good?
- Does the data support the conclusions?
- Is there superfluous material?
- Do all authors agree?

Advantages
- Identify problems early in the process
- Avoid writing things that will be cut
- Avoid conflict

Much more efficient!
3. Write the main points to be made (bullet points)

3.3. Dosimetric characteristics

What do you want to communicate?
- Room fluorescence light erases the signal X times faster than red light
- Red light can still erase part of the signal
- Red light should be used to handle the dosimeters, but exposure should be minimized.
A few things to consider at this point…

- Where to publish
- Who the co-authors will be

- Writing for the proper style and format can save you time
- Choice may influence scope and focus of the manuscripts

- Define responsibilities
- Avoid conflict later in the process
- Read Guidelines
- Use CRediT author statement
International Committee of Medical Journal Editors (ICMJE): Authorship

The ICMJE recommends that authorship be based on the following 4 criteria:

1. Substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work; AND
2. Drafting the work or revising it critically for important intellectual content; AND
3. Final approval of the version to be published; AND
4. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

• In addition to being accountable for the parts of the work he or she has done, an author should be able to identify which co-authors are responsible for specific other parts of the work. In addition, authors should have confidence in the integrity of the contributions of their co-authors.
• All those designated as authors should meet all four criteria for authorship, and all who meet the four criteria should be identified as authors.

30 September 2022
CRediT author statement

- recognizing individual author contributions
- reducing authorship disputes
- facilitating collaboration

https://www.elsevier.com/authors/policies-and-guidelines/credit-author-statement

Sample CRediT author statement

Zhang San: Conceptualization, Methodology, Software
Priya Singh: Data curation, Writing- Original draft preparation.
Wang Wu: Visualization, Investigation.
Jan Jansen: Supervision.
Ajay Kumar: Software, Validation.
Sun Qi: Writing- Reviewing and Editing,

https://www.elsevier.com/authors/policies-and-guidelines/credit-author-statement

30 September 2022
4. Write the “Materials and methods” section

• Sufficient details for the study to be reproducible
• For equipment, mention manufacturer and model: e.g. “Risoe TL/OSL reader (DTU Nutech, Denmark)”
• Describe the tools:
 – Analogy with carpentry: what tools were used (model?), what type of wood was used, is there any new tool developed for the job, etc.
• Describe the procedures (in general)

For specific procedures
• Some authors describe how the tools are used in the “Materials and Methods” (preferable for long procedures)
• Some authors prefer to write that together with the results (my personal favorite, preferable for short procedures)
5. Write the “Results” (or “Results and discussion”)

- What does the data show? (What should the reader see in the graph?)
- What does the data mean? (Why are you showing this?)
- How does the data compare with the literature? (“Results and Discussion”)

DO NOT
- Write “previous knowledge” (what the reader needs to know in advance should be in the introduction)
- Present equipment or experimental procedure not mentioned in the “Materials and Methods”
6. Make an outline of the paragraphs in the introduction

- What constitutes a paragraph?
- How does people tend to read a text?
- Start with a sentence outline
Section “Results and Discussion” *versus* two sections (“Results”, “Discussion”)

• Does the topic require a long discussion on the interpretation of the data?
• Would this discussion distract from the results presentation?
6. Write the introduction and complete the manuscript
Conclusions

- Re-state the conclusions of the work
- Answer the “So what?” question: what is the relevance of the work?

My opinion
- There is no need to re-state the purpose or motivation of the work
Acknowledgements

- Anyone who helped, but who does not qualify for authorship
- Funding received
A few tips…

- Use a reference manager software (e.g. Mendeley, EndNote)
- Think about collaboration (e.g. GoogleDocs, Overleaf)
7. Finalize the manuscript

- Check figures
- Check for grammar
- Check for clarity
- …
Improve graphs

Too much empty space
Symbols too small
Font too small
Improve graphs

OSL signal (normalized)

Light exposure time (min)

25W red bulb (2.5 - 3.0 mW/cm²)
Room fluorescent light (0.25 - 0.35 mW/cm²)

red bulb
room light
Use of “I” and “we”

9. “I,” “we,” and impersonal constructions

(1) The old taboo against using the first person in formal prose has long been deplored by the best authorities and ignored by some of the best writers. “We” may be used naturally by two or more authors in referring to themselves; “we” may also be used to refer to a single author and the author’s associates. A single author should also use “we” in the common construction that politely includes the reader: “We have already seen... .” But never use “we” as a mere substitute for “I,” as in, for example, “In our opinion...,” which attempts modesty and achieves the reverse; either write “my” or resort to a genuinely impersonal construction.

(2) The passive is often the most natural way to give prominence to the essential facts:

Air was admitted to the chamber.

Who cares who turned the valve?) But avoid the passive; it makes the syntax inelegant or obscure. A long sentence with the structure

The values of ... have been calculated.

clumsy and anticlimactic; begin instead with I [We] have calculated...

(3) “The author(s)” may be used as a substitute for “I [we],” but use another construction if you have mentioned any other authors very recently, or write “the present author(s).”

(4) Special standards for usage apply in two sections of paper: (i) Since the abstract may appear in abstract journals in the company of abstracts by many different authors, avoid the use of “I” or “we” in the abstract; use “the author(s)” or passives instead, if that can be done without sacrificing clarity and brevity. (ii) Even those who prefer impersonal language in the main text may well switch to “I” or “we” in the acknowledgments, which are, by nature, personal.
Present the results according to the GUM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1.29434</td>
</tr>
<tr>
<td>b</td>
<td>98.34 ± 3.23</td>
</tr>
<tr>
<td>c</td>
<td>48.24 ± 1</td>
</tr>
<tr>
<td>d</td>
<td>348.34 ± 7.39</td>
</tr>
<tr>
<td>e</td>
<td>38.4 ± 3.2 mW</td>
</tr>
</tbody>
</table>

- No uncertainties
- Too many significant figures
- Too few significant figures
- Units apply to both quantity and uncertainty
Present the results according to the GUM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1.29434</td>
<td>a</td>
<td>1.29 ± 0.23</td>
</tr>
<tr>
<td>b</td>
<td>98.34 ± 3.23</td>
<td>b</td>
<td>98.3 ± 3.2</td>
</tr>
<tr>
<td>c</td>
<td>48.24 ± 1</td>
<td>c</td>
<td>48.2 ± 1.4</td>
</tr>
<tr>
<td>d</td>
<td>348.34 ± 7.39</td>
<td>d</td>
<td>348 ± 7</td>
</tr>
<tr>
<td>e</td>
<td>38.4 ± 3.2 mW</td>
<td>e</td>
<td>(38.4 ± 3.2) mW</td>
</tr>
</tbody>
</table>

Do you trust the results? Look at the tables!
The submission process
How to choose the right journal?

1. Scope
2. Respect
3. Open Access?
4. Impact factor?
Why it is important to choose the journal with the right scope

Rejection Rate (Radiation Measurements)

- Standard Reject Rate
- Desk Reject Rate

>60% rejected due to wrong scope
Scope (e.g. Radiation Measurements)

Radiation Measurements provides a forum for the presentation of the latest developments in the broad field of ionizing radiation detection and measurement. The journal publishes original papers on both fundamental and applied research.

The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal.

Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.

Review articles are periodically solicited by the Editors.

The journal aims to publish papers containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. Please note that rejected papers will not be considered when resubmitted in any form, or to an alternative Editor.
Scope (e.g. Radiation Measurements)

Radiation Measurements provides a forum for the presentation of the latest developments in the broad field of ionizing radiation detection and measurement. The journal publishes original papers on both fundamental and applied research.

The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal.

Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.

Review articles are periodically solicited by the Editors.

The journal aims to publish papers containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. Please note that rejected papers will not be considered when resubmitted in any form, or to an alternative Editor.
Scope (e.g. Radiation Measurements)

Radiation Measurements provides a forum for the presentation of the latest developments in the broad field of ionizing radiation detection and measurement. The journal publishes original papers on both fundamental and applied research.

The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal.

Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.

Review articles are periodically solicited by the Editors.

The journal aims to publish papers containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. Please note that rejected papers will not be considered when resubmitted in any form, or to an alternative Editor.
Scope (e.g. Radiation Measurements)

Radiation Measurements provides a forum for the presentation of the latest developments in the broad field of ionizing radiation detection and measurement. The journal publishes original papers on both fundamental and applied research.

The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal.

Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.

Review articles are periodically solicited by the Editors.

The journal aims to publish papers containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. Please note that rejected papers will not be considered when resubmitted in any form, or to an alternative Editor.
Scope (e.g. Radiation Measurements)

Radiation Measurements provides a forum for the presentation of the latest developments in the broad field of ionizing radiation detection and measurement. The journal publishes original papers on both fundamental and applied research.

The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal.

Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.

Review articles are periodically solicited by the Editors.

The journal aims to publish papers containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. Please note that rejected papers will not be considered when resubmitted in any form, or to an alternative Editor.
Scope (e.g. Radiation Measurements)

Radiation Measurements provides a forum for the presentation of the latest developments in the broad field of ionizing radiation detection and measurement. The journal publishes original papers on both fundamental and applied research.

The journal seeks to publish papers that present advances in the following areas: spontaneous and stimulated luminescence (including scintillating materials, thermoluminescence, and optically stimulated luminescence); electron spin resonance of natural and synthetic materials; the physics, design and performance of radiation measurements (including computational modelling such as electronic transport simulations); the novel basic aspects of radiation measurement in medical physics. Studies of energy-transfer phenomena, track physics and microdosimetry are also of interest to the journal.

Applications relevant to the journal, particularly where they present novel detection techniques, novel analytical approaches or novel materials, include: personal dosimetry (including dosimetric quantities, active/electronic and passive monitoring techniques for photon, neutron and charged-particle exposures); environmental dosimetry (including methodological advances and predictive models related to radon, but generally excluding local survey results of radon where the main aim is to establish the radiation risk to populations); cosmic and high-energy radiation measurements (including dosimetry, space radiation effects, and single event upsets); dosimetry-based archaeological and Quaternary dating; dosimetry-based approaches to thermochronometry; accident and retrospective dosimetry (including activation detectors), and dosimetry and measurements related to medical applications.

Review articles are periodically solicited by the Editors.

The journal aims to publish papers containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. Please note that rejected papers will not be considered when resubmitted in any form, or to an alternative Editor.
Scope

- Look at your own list of references

REFERENCES

Respect

- Unprofessional reviews
- Processing time
- Clear communication
Open Access

- Some funding agencies require publication as Open Access
- Requirement may influence the choice of journal
Impact factor

• The impact factor (IF): yearly mean number of citations of articles published in the last two years in a given journal

• Measures immediacy

• It says something collectively about the articles in a journal

Not a measure of the work quality or impact of an article
Impact factor

• How many citations do you expect to receive in the next two years?
• Which one has more impact?
 – 200 citations in the first 2 years?
 – 200 citations in 20 years?
• Field of research is much more determinant of the “impact” of your work
The San Francisco Declaration on Research Assessment (DORA)

- There is a pressing need to improve the ways in which the output of scientific research is evaluated by funding agencies, academic institutions, and other parties.

- To address this issue, a group of editors and publishers of scholarly journals met during the Annual Meeting of The American Society for Cell Biology (ASCB) in San Francisco, CA, on December 16, 2012.

- The group developed a set of recommendations, referred to as the San Francisco Declaration on Research Assessment.

- The Journal Impact Factor, as calculated by Thomson Reuters*, was originally created as a tool to help librarians identify journals to purchase, not as a measure of the scientific quality of research in an article.

https://sfdora.org/read/
The San Francisco Declaration on Research Assessment (DORA)

A number of themes run through these recommendations:

• the need to eliminate the use of journal-based metrics, such as Journal Impact Factors, in funding, appointment, and promotion considerations;

• the need to assess research on its own merits rather than on the basis of the journal in which the research is published; and

• the need to capitalize on the opportunities provided by online publication (such as relaxing unnecessary limits on the number of words, figures, and references in articles, and exploring new indicators of significance and impact).
The San Francisco Declaration on Research Assessment (DORA)

General Recommendation

• 1. Do not use journal-based metrics, such as Journal Impact Factors, as a surrogate measure of the quality of individual research articles, to assess an individual scientist’s contributions, or in hiring, promotion, or funding decisions.
Thank you for your attention

eduardo.yukihara@psi.ch
Sentence outlining
Recommendation: read a book on technical writing!

- E.g. The Writing System, a step-by-step guide for business and technical writers, by Daniel O. Graham and Judith H. Graham
Sentence outline

1. Outline major and minor points. (Do not outline facts.)
2. Evaluate points to eliminate irrelevancies and redundancies
3. Group points as major and minor
4. Organize points in a sequence
Example of sentence outline

Purpose statement: *This memo announces to employees changes in the cafeteria’s hours and services. Please cooperate by adjusting your lunch breaks accordingly.*

1. At present we have 216 union member employees.
2. The changes allow us to keep costs down and increase service during peak demands.
3. The vending machines outside the locker rooms are available all the time.
4. We expanded the cafeteria’s dining area.
5. All employees have access to the cafeteria.
6. Some employees bring lunch and eat outside instead.
7. We shortened the cafeteria’s hours.
8. At present the cafeteria is understaffed.
9. The cafeteria was too crowded during the peak lunch hour.
10. We plan to increase the cafeteria staff.
11. We regret any inconvenience caused by the shortened hours
12. We augmented service two ways to handle increased volume
Example of sentence outline

Purpose statement: *This memo announces to employees changes in the cafeteria’s hours and services. Please cooperate by adjusting your lunch breaks accordingly.*

1. At present we have 216 union member employees. Simple fact
2. The changes allow us to keep costs down and increase service during peak demands.
3. The vending machines outside the locker rooms are available all the time. Irrelevant
4. We expanded the cafeteria’s dining area.
5. All employees have access to the cafeteria. Irrelevant
6. Some employees bring lunch and eat outside instead. Irrelevant
7. We shortened the cafeteria’s hours.
8. At present the cafeteria is understaffed. Redundant to point 10
9. The cafeteria was too crowded during the peak lunch hour. Redundant to point 12
10. We plan to increase the cafeteria staff.
11. We regret any inconvenience caused by the shortened hours
12. We augmented service two ways to handle increased volume
Example of sentence outline

Purpose statement: *This memo announces to employees changes in the cafeteria’s hours and services. Please cooperate by adjusting your lunch breaks accordingly.*

1. We shortened the cafeteria’s hours.
2. We augmented service two ways to handle increased volume
 a. We expanded the cafeteria’s dining area.
 b. We plan to increase the cafeteria staff.
3. The changes allow us to keep costs down and increase service during peak demands.
4. We regret any inconvenience caused by the shortened hours

Do not write the draft until the sequence of points work!