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Abstract

The interest in developing new continuous distributions a remain important in statistical anal-

ysis. This topic is also important in survival analysis and has been used in many applications

in fields like biological sciences, economics, engineering, physics, social sciences, among oth-

ers. One reason is that the time of life or survival time is a random variable which can take

constant, decreasing, increasing, upside-down bathtub (unimodal) and bathtub-shaped hazard

rate functions. These new models can be defined by adding parameters to an existing distri-

bution and considering the compounding approach, among other techniques. In this thesis, we

consider these methods to propose four new continuous distributions, namely the exponentiated

generalized power Weibull, Nadarajah-Haghighi Lindley, Weibull Nadarajah-Haghighi and logis-

tic Nadarajah-Haghighi distributions. We provide a comprehensive mathematical and statistical

treatment of these distributions and illustrate their flexibility through applications to real data

sets. They are useful alternatives to other classical lifetime models.

Keywords: Exponential distribution. Generalized Weibull distribution. Lindley distribution.

Nadarajah-Haghighi distribution. Lifetime data. Survival function.



Resumo

A geração de novas distribuições contínuas constitui uma importante área de pesquisa em Es-

tatística. Este tópico é, também, importante na área de análise de sobrevivência e tem aplicações

em outros campos do conhecimento, tais como, ciências biológicas, economia, engenheria, física,

ciências sociais, entre outras. Uma das razões para generalizar uma distribuição conhecida é

que a função de risco em forma generalizada é mais flexível podendo assumir padrão constante,

crescente, decrescente, banheira invertida (unimodal) e forma de banheira. Estes novos modelos

podem ser definidos adicionando parâmetros usando como base uma distribuição já existente ou

fazendo composição de duas ou mais distribuições, entre outras técnicas. Nesta tese, conside-

ramos esses métodos para propor quatro novas distribuições contínuas: as distribuições expo-

nentiated generalized power Weibull, Nadarajah-Haghighi Lindley, Weibull Nadarajah-Haghighi

e logistic Nadarajah-Haghighi. Estudamos importantes propriedades matemáticas e estatísticas

dessas distribuições e evidenciamos a flexibilidade delas por meio de aplicações usando conjun-

tos de dados reais. As quatro novas distribuições constituem uma alternativa competitiva para

outras distribuições clássicas para descrever dados de sobrevivência.

Palavras-chave: Dados de sobrevivência. Distribuição exponencial. Distribuição Lindley. Dis-

tribuição Nadarajah-Haghighi. Distribuição Weibull. Função de sobrevida.
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Chapter 1

Introduction

The interest in developing new probability distributions remains important in statistical

analysis. According to Lee et al. (2013) since 1980 the methodologies of generating new dis-

tributions have been focusing in adding parameters or combining existing distributions. The

authors discussed five generating methods developed since then: (1) methods of generating

skewed distributions, (2) the beta-generated method, (3) the method of adding parameters, (4)

the transformed-transformer (T -X) method, and (5) the composite method. Tahir and Nadara-

jah (2015) wrote a survey with 312 reference papers on different distributions or G-classes of

distributions, most of these introduced in the recent years.

This topic is also important in survival analysis and has been used in many applications

in fields like biological sciences, economics, engineering, physics, social sciences, among others.

One reason is that generalizing a known distribution might allow to the resulting model to

accommodate non-monotone forms for the hazard rate function (hrf). Lai (2013) pointed out that

the time of life or failure can have different interpretations depending on the area of applications.

So, we can obtain more flexible distributions for modeling this kind of random variables.

Many recent distributions have been introduced by using power transformation method. Let

G(x) be the baseline cumulative distribution function (cdf) of a random variable X. We can

obtain a new distribution by exponentiating the cdf of X as follows

F (x) = G(x)α,

where α > 0 is an additional shape parameter. From such power transformation, we can define
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the exponentiated exponential (EE) (Gupta et al., 1998), exponentiated Weibull (EW) (Mud-

holkar and Srivastava, 1993), the exponentiated Nadarajah-Haghighi (ENH)

(Lemonte, 2013), among several others distributions.

Another technique that has been considered is the compounding approach. They allow for

greater flexibility of the tails and are motivated for engineering and biological applications. Be-

sides, compounding families might be suitable for complementary risk problems based in the

presence of latent risks. Adamidis and Loukas (1998) pionnered this method by introducing the

exponential geometric distribution as the minimum of N independent and identical by exponen-

tial random variables, where N has geometric distribution. Since then, many other composed

distributions have been proposed by taking the minimum of two distributions. For a continuous

and other discrete distribution, see for example, the exponential Poisson (Kus, 2007), Weibull

geometric (Barreto-Souza et al., 2011) and Pareto Poisson-Lindley (Asgharzadeh et al., 2013).

Cordeiro et al. (2014a) studied the exponential-Weibull lifetime distribution as the minimum

between the exponential and Weibull random variables. Asgharzadeh et al. (2016) introduced

the Weibull Lindley (WL) distribution by taking the minimum between the Lindley and Weibull

random variables. In this approach, we have a composition by taking the minimum of two

continuous independent random variables. It might be useful in engineering for modeling systems

composed of two independent components in series.

In this thesis, we consider the adding parameters, composition and T-X methods to propose

four new probability distributions, namely the exponentiated generalized power Weibull (EGPW),

Nadarajah-Haghighi Lindley (NHL),Weibull Nadarajah-Haghighi (WNH) and logistic Nadarajah-

Haghighi (LNH) distributions. In Chapter 2, we provide a comprehensive mathematical and

statistical treatment of the EGPW distribution and illustrate the flexibility of the new model

by means of applications to real data sets. This model is a useful extension of the Weibull

distribution based on the Nadarajah Haghighi (NH) model with a power parameter, such as the

ENH model. Its failure rate function takes the most common types of hazard functions and the

model also includes as special cases some important distributions discussed in the literature.

The NHL distribution is introduced in Chapter 3. This new model is based on compounding
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the Lindley and Nadarajah Haghighi distributions. We study general mathematical properties

of this distribution, such as mean residual life, ordinary and incomplete moments, moment

generating function, mean deviations, Bonferroni and Lorenz curves and entropy. The method

of maximum likelihood is used for estimating the model parameters and the observed information

matrix is derived. We provide a applications to a real data set to ilustrate empirically its flexibility

and potentiality as an useful alternative for other classical lifetime models.

In Chapter 4, we introduce the four-parameter WNH distribution, that is obtained by consid-

ering the Nadarajah-Haghighi distribution as baseline model in the generated Weibull-G family

proposed by Bourguignon et al. (2014). The density function of the new distribution can be

expressed as a linear combination of exponentiated Nadarajah-Haghighi densities, which is why

some structural properties of the new model can be easily derived from the properties of those

latter. The maximum likelihood method is presented to estimate the model parameters. A

simulation study is performed. The usefulness of the new distribution is illustrated using two

applications to real data.

Chapter 5 introduces the new three-parameter model LNH. It is obtained by inserting the

Nadarajah-Haghighi distribution in the logistic-X family pionnered by Tahir et al. (2016a). As

in the previous model, given that the density function of the new distribution can be expressed

as a linear combination of exponentiated Nadarajah-Haghighi densities, several properties of the

new distribution can be derived from the known properties of the exponentiated baseline model.

In addition, we present explicit expressions for some statistical quantities. A simulation study

is carried out to verify the precision of the estimates and we illustrate the usefulness of the new

distribution by means of two applications to real data. Finally, in Chapter 6, we present some

concluding remarks and outline some future research lines.
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Chapter 2

A new Nadarajah-Haghighi
generalization

Resumo

Neste Capitulo, introduzimos um novo modelo chamado distribuição exponentiated generalized

power Weibull, que constitui uma útil generalização das distribuições exponencial, Weibull,

Nadarajah-Haghighi, entre várias outras. O modelo proposto é flexível em modelar as qua-

tro formas mais comuns da função de taxa de risco: crescente, decrescente, unimodal e de ba-

nheira. Além disso, é um modelo bastante competitivo frente a outras distribuições amplamente

utilizadas, como as distribuições Weibull, exponencial, Weibull exponencializada, entre outras.

Algumas propriedades matemáticas são estudadas. Consideramos a estimação dos parâmetros

do novo modelo pelo método de máxima verossimilhança e realizamos uma simulação de Monte

Carlo com o objetivo de avaliar essas estimativas. Também ilustramos empiricamente a utilidade

da nova distribuição por meio de uma aplicação a dados reais.

Palavras-chave: Dados de tempo de vida. Distribuição exponencial. Distribuição Nadarajah-

Haghighi. Distribuição Weibull potencia generalizada. Função de sobrevida.

Abstract

In this Chapter, we propose a new lifetime model called the exponentiated generalized power

Weibull distribution, which is a useful generalization of the Weibull and Nadarajah-Haghighi
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distributions, among others. The model is flexible in modeling the most common types of ha-

zard rate functions. It is a very competitive model to the well-known Weibull, exponentiated

exponential and exponentiated Weibull distributions, among others. Some of its mathematical

properties are investigated. We discuss estimation of the model parameters by maximum likeli-

hood. Simulation studies are performed and we provide one application to real data to ilustrate

empirically the flexibility of the proposed distribution.

Keywords: Exponential distribution. Generalized power Weibull distribution. Lifetime data.

Nadarajah-Haghighi distribution. Survival function.

2.1 Introduction

There has been an increased interest in defining new continuous distributions by adding

shape parameters to an existing baseline model. One of the most widely-accepted methods on

this parameter induction is the exponentiated-G (exp-G) class. Let G(y) and g(y) be the baseline

cumulative distribution function (cdf) and the probability density function (pdf) of a random

variable Y , respectively. We obtain the exp-G cdf by raising G(y) to a positive exponent, which

adds an extra power shape parameter to the baseline model. Thus, a random variable Y has an

exp-G distribution if its cdf is given by

F (y) = G(y)β,

for y ∈ D ⊆ R and β > 0 represents the additional parameter. The corresponding pdf is given

by

f(y) = β g(x)G(y)β−1.

Tahir and Nadarajah (2015) traced this approach back to the first half of the nineteenth

century and found twenty-eight different exp-G models published in the recent literature. Most of

these models are motivated by their usefulness in exploring tail properties and also for improving

the goodness-of-fit in comparison with their baselines. Another current reason for introducing

exp-G distributions is their applications in lifetime data analysis.
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Thus, the classical lifetime distributions have been received great attention as baselines on

the exp-G class, among other generated families. Using the exponential lifetime model as base-

line, Gupta et al. (1998) pioneered the exponentiated exponential (EE) distribution. Gupta and

Kundu (2001), Zheng (2002), Gupta and Kundu (2007), Abdel-Hamid and AL-Hussaini (2009)

and Nadarajah (2011) provided several properties and applications of the EE distribution.

The exponentiated Weibull (EW) distribution was introduced by Mudholkar and Srivas-

tava (1993). The mathematical properties of the EW distribution has been studied extensively

by Mudholkar and Hutson (1996), Nassar and Eissa (2003), Nadarajah and Gupta (2005)

and Nadarajah and Kotz (2006), among several other. These authors also showed that in prac-

tical situations the EW distribution can provide better fits than the traditional lifetime models,

including exponential and Weibull distributions.

Another model that has been considered for modeling lifetime data is the Nadarajah-Haghighi

(NH) distribution. Introduced by Nadarajah and Haghighi (2011), the NH model is a general-

ization of the exponential distribution with cdf given by (for z > 0)

G(z) = 1− exp{1− (1 + λz)α}, (2.1)

where λ and α are the scale and shape parameters, respectively. If Z has the cdf (2.1), we write

Z ∼ NH(α, λ). The pdf of Z is given by

g(z) = αλ(1 + λz)α−1 exp{1− (1 + λz)α}. (2.2)

The motivations for studying the NH model are: the relationship between the pdf (2.2) and its

hrf, the ability (or inability) to model data with mode fixed at zero and the fact that it can be

interpreted as a truncated Weibull distribution. Further details and general properties can be

found in Nadarajah and Haghighi (2011). The exponentiated Nadarajah-Haghighi (ENH) was

proposed by Lemonte (2013).

The exponential, NH and Weibull distributions are all special cases of the generalized power

Weibull (GPW) distribution, proposed by Bagdonavicius and Nikulin (2002) in the context of

accelerated failure time models. They presented the cdf, pdf and hrf for this distribution, which
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are given by (for t > 0)

G(t) = 1− exp{1− (1 + λtγ)α}, (2.3)

g(t) = αλγtγ−1(1 + λtγ)α−1 exp{1− (1 + λtγ)α} (2.4)

and

h(t) = αλγtγ−1(1 + λtγ)α−1,

respectively. Lai (2013) described the GPW among the Weibull generalizations that are often

required to prescribe the nonmonotonic nature of the empirical hazard rates.

Nikulin and Haghighi (2006) introduced a chi-square statistic for testing the validity of GPW

distribution and presented an application to censored survival times of cancer patients. Nikulin

and Haghighi (2009) presented shape analysis for the GPW pdf and hrf. They also obtained a

series representation for the sth moment of the GPW distribution, but only for integer values of

s/γ. They do not provide a general expression for the GPW ordinary moments. We also note

that there is a lack of studies exploring other structural properties of the GPW distribution,

such as incomplete moments, skewness, mean deviations Bonferroni and Lorenz curves and Rényi

entropy.

In this Chapter, we use the concept of exponentiated distributions for introducing a new four-

parameter Weibull-type family, so-called the exponentiated generalized power Weibull (EGPW)

distribution. The proposed distribution is obtained considering the GPW model as baseline in

the exp-G family. Thus, the EGPW cdf and pdf are given by (for t > 0)

F (t) = [1− exp{1− (1 + λtγ)α}]β, (2.5)

and

f(t) = αβλγtγ−1
(1 + λtγ)α−1 exp{1− (1 + λtγ)α}

[1− exp{1− (1 + λtγ)α}]1−β
, (2.6)

respectively. Here, λ is the scale parameter and γ, α and β are shape parameters. Henceforth,

we denote by T a random variable having cdf (2.5), say T ∼ EGPW(α, β, λ, γ). Identifiability is

a property which a model must satisfy in order for precise inference to be possible, which refers
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to whether the parameters unknown in the model can be uniquely estimated. Equation (2.5) is

clearly identifiable.

The hrf of T is given by

h(t) =αβλγtγ−1(1 + λtγ)α−1

× exp{1− (1 + λtγ)α} [1− exp{1− (1 + λtγ)α}]β−1

1− [1− exp{1− (1 + λtγ)α}]β
. (2.7)

By inverting (2.5), we obtain an explicit expression for the quantile function (qf), of the

EGPW distribution, say Q(u), as

Q(u) = λ−1/γ
{[

1− log(1− u1/β)
]1/α

− 1

}1/γ

, u ∈ (0, 1). (2.8)

Its median follows by setting u = 1/2. The simulation of the EGPW random variable is straight-

forward. If U ∼U (0,1), then the random variable T = Q(U) follows the EGPW distribution

given by (2.6).

Some motivations for introducing the EGPW distribution are:

• The new distribution is quite flexible because it contains several well-known lifetime dis-

tributions as special models, see Table 2.1. This feature is also suitable for testing the

goodness of fit for these distributions.

Table 2.1: Some special models of the EGPW distribution.

α β λ γ Distribution
1 1 - 1 Exponential
1 - - 1 Exponentiated exponential
1 1 - 2 Rayleigh
1 - - 2 Burr type X
1 1 - - Weibull
1 - - - Exponentiated Weibull
- 1 - 1 Nadarajah-Haghighi
- - - 1 Exponentiated Nadarajah-Haghighi
- 1 - - Generalized Power Weibull

• The current distribution can also be derived from a power transform on an ENH random
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variable. Let Y ∼ENH(α, β, λ), the cdf of Y is given by

FY (y) = [1− exp{1− (1 + λy)α}]β, y > 0,

where α > 0, β > 0 and λ > 0. Now, consider the transform T = Y 1/γ , where γ > 0.

Thus, the cdf of T has the form F (t) = FY (tγ) given by (2.5). A similar approach was

considered by Gomes et al. (2008). They proposed a new method of estimation for the

generalized gamma distribution through the power transformation W = Xc, where X is a

generalized gamma random variable and W has the gamma distribution.

• Once several structural properties on the GPW distribution have not been studied, they

shall be obtained from those on the EGPW distribution.

• By pioneering a GPW generalization on the exp-G family, it is also possible to obtain

several properties on other generated families based on linear combinations from those of

the EGPW distribution. For example, for the beta-G family (Eugene et al., 2002) the

density function can be expressed as a mixture of exp-G pdfs for any baseline. Similar

results can also be demonstrated for the Kumaraswamy-G introduced by Cordeiro and

Castro (2011), the McDonald-G by Alexander et al. (2012) and the gamma-G by Zografos

and Balakrishnan (2009), among several others generated families of distributions.

• Let β > 0 be an integer. Thus, F (t) given in (2.5) represents the cdf of the maximum value

on a β-variate random sample from the GPW distribution, say: T = max{T1, . . . , Tβ}.

In other words, the EGPW distribution can be used to model the maximum lifetime of a

random sample from the GPW distribution with size β. Further, as part of the exp-G fam-

ily, the EGPW distribution has the following physical interpretation. Consider a parallel

system consisting of β = n components, which means that the system works if at least one

of the n-components works. If the lifetime distributions of the components are independent

and identically distributed GPW random variables, then the lifetime distribution of the

system becomes the EGPW cdf with power parameter β = n.
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• The EGPW may provide consistently ‘better fits’ than other Weibull generalizations, in-

cluding its special models. This fact is well-demonstrated by fitting the proposed distri-

bution for a data sets in Section 2.11. The applications also illustrate that the EGPW

distribution can also be very competitive to other widely known lifetime models.

The Chapter is outlined as follows. Some mathematical properties of the new distribution are

provided in Sections 2.3-2.8. They include ordinary and incomplete moments, mean deviations

about the mean and the median, Bonferroni and Lorenz curves and Rényi entropy. In Section 2.9,

we present the maximum likelihood method to estimate the model parameters. In Section 2.10,

a simulation study evaluates the performance of the maximum likelihood estimators (MLEs).

Applications for two real data sets are presented in Section 2.11. Section 2.12 presents some

concluding remarks.

2.2 Density and hazard shapes

Note that the pdf (2.6) can be expressed in terms of the cdf and pdf given in (2.3) and

(2.4), respectively, in the form f(t) = βG(t)β−1g(t). Thus, the multiplicative factor βG(t)β−1 is

greater (smaller) than one for β > 1, (β < 1) and for larger values of t, and the opposite occurs

for smaller values of t. The inclusion of the new shape parameter β, provides greater flexibility

in terms of skewness and kurtosis in the new distribution. The pdf (2.6) can takes various forms

depending on the values of the α, β and γ shape parameters. It is easy to verify that

lim
t→0

f(t) =


∞ if β < 1,

αλγ if β = 1,

0 if β > 1,

and

lim
t→∞

f(t) = 0.

Seting z = (1 + λtγ)α we can rewrite the EGPW pdf as

ψ(z) = αβλ1/γγ z(α−1)/α(z1/α − 1)(γ−1)/γe1−z(1− e1−z)β−1.
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Differentiating twice logψ(z) with respect to z, we arrive that

d2 logψ(z)

dz2
= −

[
α− 1

αz2
+

(β − 1)e1−z

(1− e1−z)2
+

(γ − 1)z[2(1−α)/α]

α2γ(z1/α − 1)

]
.

Note that z = (1+λtγ)α implies that z > 1. Thus, we can verify that for t > 0, α < 1, β < 1 and

γ < 1, [d2 logψ(z)/dz2] > 0. It implies that the EGPW pdf is log-convex. Further, for t > 0,

α > 1, β > 1 and γ > 1, [d2 logψ(z)/dz2] < 0. It implies that the EGPW pdf is log-concave.

Figure 2.1 displays plots of the pdf (2.5) for some parameter values. It illustrates the flexibility

of the EGPW density, which allows modeling skewed and asymmetrical data.

Analogously, the EGPW hrf can be rewritten as

φ(z) = αβλ1/γγ z(α−1)/α(z1/α − 1)(γ−1)/γ
e1−z(1− e1−z)−1

(1− e1−z)−b − 1
.

The critical point are obtained from the equation

d log φ(z)

dz
=
α− 1

αz
+

(γ − 1)z(1−α)/α

αγ (z1/α − 1)
+

βe1−z

(1− e1−z)[1− (1− e1−z)]
− e1−z

1− e1−z
− 1 = 0.

For z > 1 and α = β = γ = 1, [d log φ(z)/dz] = 0, and failure rate function is constant. For

α < 1, γ < 1 and β < 1, d log φ(z)/dz < 0 and the hrf is decreasing. There may be more than

one root to (2.7).

Figure 2.2 provides plots of the hrf (2.7) for some parameter values, revealing that the EGPW

distribution can have decreasing, increasing, upside-down bathtub and bathtub-shaped hazard

functions. This feature makes the new distribution very attractive to model lifetime data. For

example, according to Nadarajah et al. (2011) most empirical life systems have bathtub shapes

for their hrfs.

2.3 Moments

From equation (2.8), and after some algebra, we can write

µ′s = IE(T s) = βλ−s/γIs(α, β, γ),

where Is(α, β, γ) =
∫ 1
0 {[1−log(1−u)]1/α−1}s/γuβ−1du is an integral to be evaluated numerically.



27

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

γ = 0.8

x

f(
x
)

α = 0.5, β = 0.5 

α = 0.8, β = 1.5 

α = 1.5, β = 0.5 

α = 1.5, β = 1.5 

α = 1.5, β = 5.0 

α = 1.5, β = 15  

0 1 2 3 4

0
.0

0
.5

1
.0

1
.5

γ = 1.2

x

f(
x
)

α = 0.5, β = 0.5 

α = 0.8, β = 1.5 

α = 1.5, β = 0.5 

α = 1.5, β = 1.5 

α = 1.5, β = 5.0 

α = 1.5, β = 15  

0.0 0.5 1.0 1.5 2.0

0
.0

0
.5

1
.0

1
.5

γ = 0.5

x

f(
x
)

α = 0.5, β = 0.5 

α = 0.8, β = 1.5 

α = 1.5, β = 0.5 

α = 1.5, β = 1.5 

α = 1.5, β = 5.0 

α = 1.5, β = 15  

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

γ = 5.0

x

f(
x
)

α = 0.5, β = 0.5 

α = 0.8, β = 1.5 

α = 1.5, β = 0.5 

α = 1.5, β = 1.5 

α = 1.5, β = 5.0 

α = 1.5, β = 15  

Figure 2.1: Plots of the EGPW density for λ = 1.
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Figure 2.2: Plots of the EGPW hrf for λ = 1.
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Using the binomial expansion since 0 < e1−(1+λt
γ)α < 1, the denominator of (2.6) can be

expressed as

[1− exp{1− (1 + λtγ)α}]β−1 =
∞∑
j=0

(−1)j
(
β − 1

j

)
ej[1−(1+λt

γ)α].

We can rewrite µ′s as

µ′s = αβλγ

∞∑
j=0

(−1)j
(
β − 1

j

)
ej+1

∫ ∞
0

ts+γ−1(1 + λtγ)α−1e−(j+1)(1+λtγ)αdt. (2.9)

We consider the integral

J =

∫ ∞
0

ts+γ−1(1 + λtγ)α−1 e−(j+1)(1+λtγ)αdt.

Setting u = (j + 1)(1 + λtγ)α, we have

t =

{
λ−1

[(
u

j + 1

)1/α

− 1

]}1/γ

.

Hence, after some algebra, we obtain

J =

(
1

λ

)s/γ ∫ ∞
j+1

[(
u

j + 1

)1/α

− 1

]s/γ
e−u

αλγ(j + 1)
du. (2.10)

The most general case of the binomial theorem is the power series identity

(x+ a)ν =
∞∑
k=0

(
ν

k

)
xk aν−k, (2.11)

where
(
ν
k

)
is a binomial coefficient and ν is a real number. This power series converges for

ν ≥ 0 an integer, or |x/a| < 1. This general form is from Graham (1994). By using (2.11) in

equation (2.10), since
∣∣[u/(j + 1)]1/α

∣∣ < 1, it follows from (2.9) that

µ′s = βλ−s/γ
∞∑

i,j=0

(−1)i+j ej+1

(j + 1)[s−γ(i−α)]/αγ

(
β − 1

j

)(
s/γ

i

)
Γ

(
s− γ(i− α)

αγ
, j + 1

)
, (2.12)

where Γ(a, x) =
∫∞
x za−1 e−zdz denotes the complementary incomplete gamma function, which

is defined for all real numbers except the negative integers.
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2.4 Incomplete moments

The sth incomplete moment of T is defined by ms(y) =
∫ y
0 t

sf(t)dt. Using a suitable substi-

tution of variable and (2.8), it follows that

ms(y) = βλ−s/γ
∫ 1−e1−(1+λyγ )α

0
{[1− log(1− u)]1/α − 1}s/γuβ−1du.

Substituting the upper limit of the integral in (2.9) for y, setting u = (j + 1)(1 + λtγ)α and

using (2.11), we have

ms(y) = βλ−s/γ
∞∑

i,j=0

(−1)i+j ej+1

(j + 1)[s−γ(i−α)]/αγ

(
β − 1

j

)(
s/γ

i

)∫ (j+1)(1+λyγ)α

j+1
u(s−γi)/(αγ)e−udu.

Hence, an alternative expression for ms(y) takes the form

ms(y) = βλ−s/γ
∞∑

i,j=0

(−1)i+j ej+1

(j + 1)[s−γ(i−α)]/αγ

(
β − 1

j

)(
s/γ

i

)
[
Γ

(
s− γ(i− α)

αγ
, j + 1

)
− Γ

(
s− γ(i− α)

αγ
, (j + 1)(1 + λ yγ)α

)]
.

2.5 Skewness

The central moments (µs) and cumulants (κs) of T can be expressed recursively from equation

(2.12) as

µs =

s∑
k=0

(−1)k
(
s

k

)
µ′k1 µ

′
s−k and κs = µ′s −

s−1∑
k=1

(
s− 1

k − 1

)
κk µ

′
s−k,

respectively, where κ1 = µ′1. Thus, κ2 = µ′2 − µ′21 , κ3 = µ′3 − 3µ′2µ
′
1 + 2µ′31 , etc. The skewness

γ1 = κ3/κ
3/2
2 and kurtosis γ2 = κ4/κ

2
2 can be determined from the third and fourth standardized

cumulants.

The MacGillivray’s skewness function of T is given by

ρ(u) = ρ(u;α, β, γ) =
ρ(1)(u;α, β, γ)

ρ(2)(u;α, β, )
=
Q(1− u) +Q(u)− 2Q(1/2)

Q(1− u)−Q(u)
,
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where u ∈ (0, 1), Q(·) is the qf defined in (2.8),

ρ(1)(u;α, β, γ) =

{[
1− log(1− (1− u)1/β)

]1/α
− 1

}1/γ

+

{[
1− log(1− u1/β)

]1/α
− 1

}1/γ

− 2

{[
1 + β−1 log(2)− log(21/β − 1)

]1/α
− 1

}1/γ

and

ρ(2)(u;α, β, γ) =

{[
1− log(1− (1− u)1/β)

]1/α
− 1

}1/γ

−
{[

1− log(1− u1/β)
]1/α
− 1

}1/γ

.

It is based on quantiles and illustrates the effects of the shape parameters α, β and γ on the

skewness, see MacGillivray (1986). Plots of ρ(u) for some parameter values are displayed in

Figure 2.3. These plots reveal that when the parameters β and γ increase, the function ρ(u) is

close to zero. The closer ρ(u) is to the horizontal line ρ(u) = 0, the density is more symmetrical.

The quantity ρ(u) does not depend on the parameter λ since it is a scale parameter.

2.6 Mean deviations

The mean deviations about the mean (δ1 = IE(|T − µ′1|)) and about the median (δ2 =

IE(|T −M |)) of T can be expressed as

δ1 = 2µ′1F (µ′1)− 2m1(µ
′
1) and δ2 = µ′1 − 2m1(M),

respectively, where µ′1 = IE(T ), M = Median(T ) = Q(0.5) is the median, F (µ′1) is easily

determined from (2.5) and m1(y) =
∫ y
0 t f(t)dt is the first incomplete moment. Hence, we can

write

m1(y) = βλ−1/γ
∫ 1−e1−(1+λyγ )α

0
{[1− log(1− u)]1/α − 1}1/γuβ−1du.
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Figure 2.3: The MacGillivray’s skewness of the EGPW distribution.
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Alternatively, we can determine m1(y) as

m1(y) = βλ−1/γ
∞∑

i,j=0

(−1)i+j ej+1

(j + 1)[1−γ(i−α)]/αγ

(
β − 1

j

)(
1/γ

i

)
[
Γ

(
1− γ(i− α)

αγ
, j + 1

)
−Γ

(
1− γ(i− α)

αγ
, (j + 1)(1 + λ yγ)α

)]
.

2.7 Bonferroni and Lorenz curves

Applications of the previous results to the Bonferroni and Lorenz curves are important in

several fields such as economics, demography, insurance and medicine. They are defined, for a

given probability π, by B(π) = m1(q)/(πµ
′
1) and L(π) = m1(q)/µ

′
1, respectively, where q = Q(π)

follows from (2.8). The Gini concentration (CG) is defined as the area between the curve L(π)

and the straight line. Hence,

CG = 1− 2

∫ 1

0
L(π)du.

An alternative expression is CG = (2δ−µ′1)/µ′1, where δ = IE[TF (T )] =
∫∞
−∞ tF (t)f(t)dt. Setting

u = F (t), and after some algebra, the quantity δ can be expressed as

δ =βλ−1/γ
∫ 1

0
u2β−1{[1− log(1− u)]1/α − 1}1/γdu.

This integral can be easily evaluated numerically in software such as R and Ox, among others.

An alternative expression for δ takes the form

δ =βλ−1/γ
∞∑

i,j=0

(−1)i+j ej+1

(j + 1)[1−γ(i−α)]/αγ

(
2β − 1

j

)(
1/γ

i

)

× Γ

(
1− γ(i− α)

αγ
, j + 1

)
.

For γ = 1 we can prove that this expression reduces to that one obtained by Lemonte (2013).

2.8 Entropy

The entropy of a random variable is a measure of variation of the uncertainty. Entropy

measure has been used in many applications in fields like physics, engineering, and economics.
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Several measures of entropy have been studied in the literature. However, we consider the most

popular entropy measure: Rényi entropy (Renyi, 1961). The Rényi entropy of a random variable

with pdf f(x) is defined by

IR = IR(δ) =
1

1− δ
log

[∫ ∞
−∞

f δ(x)dx

]
,

for δ > 0 and δ 6= 1. The Rényi entropy of T , setting u = (1 + λtγ)α, can be expressed as

IR = M +
1

1− δ
log

(∫ ∞
1

uα
−1(α−1)(δ−1)(u1/α − 1)γ

−1(γ−1)(δ−1)eδ(1−u)

[1− e1−u]δ(1−β)
du

)
,

where M = − log(αγλγ) + δ
1−δ log(β). The above integral can be evaluated numerically. By

expanding the denominator using the binomial expansion, we have

IR = M +
1

1− δ
log

 ∞∑
j=0

(−1)jeδ+j
(
δ(β − 1)

j

)

×
(∫ ∞

1
uα

−1(α−1)(δ−1)(u1/α − 1)γ
−1(γ−1)(δ−1)e−u(δ+j)du

)]
.

Again, by using the binomial expansion, IR can by expressed as

IR = M +
1

1− δ
log

 ∞∑
j,k=0

(−1)j+keδ+j

(j + δ)[δ(γα−1)+1]/γα

×
(
δ(β − 1)

j

)( (γ−1)(δ−1)
γ

k

)
Γ

(
δ(γα− 1) + 1

γα
, j + δ

)]
.

For γ = 1, the last expression reduces to

IR = − log(αλ) +
δ

1− δ
log(β) +

1

1− δ

× log

 ∞∑
j=0

(−1)jeδ+j

(j + δ)[δ(α−1)+1]/α

(
δ(β − 1)

j

)
Γ

(
δ(α− 1) + 1

α
, j + δ

) ,
which agrees with the result by Lemonte (2013).

2.9 Maximum likelihood estimation

This section addresses the estimation of the unknown parameters of the EGPW distribution

by the maximum likelihood method. Let t1, . . . , tn be a observed sample of size n from the
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EGPW(α, β, λ, γ) distribution. Let θ = (α, β, λ, γ)T be the parameter vector of interest. The

log-likelihood function for θ based on this sample is

`(θ) = n+ n log (αβ λ γ) + (γ − 1)
n∑
i=1

log (ti)−
n∑
i=1

(1 + λ tγi )
α (2.13)

+ (α− 1)
n∑
i=1

log (1 + λ tγi ) + (β − 1)
n∑
i=1

log
[
1− e1−(1+λ tγi )

α]
.

The components of the score vector U(θ) = [Uα(θ), Uβ(θ), Uλ(θ), Uγ(θ)]> are given by

Uα(θ) =
n

α
+

n∑
i=1

log (1 + λ tγi )−
n∑
i=1

(1 + λ tγi )
α

log (1 + λ tγi )

+ (β − 1)

n∑
i=1

(1 + λ tγi )
α

log (1 + λ tγi ) e1−(1+λ tγi )
α

1− e1−(1+λ tγi )
α ,

Uβ(θ) =
n

β
+

n∑
i=1

log
[
1− e1−(1+λ tγi )

α]
,

Uλ(θ) =
n

λ
+ (α− 1)

n∑
i=1

tγi (1 + λ tγi )
−1 − α

n∑
i=1

tγi (1 + λ tγi )
α−1

+ α (β − 1)
n∑
i=1

tγi (1 + λ tγi )
α−1

e1−(1+λ tγi )
α

1− e1−(1+λ tγi )
α ,

and

Uγ(θ) =
n

γ
+

n∑
i=1

log(ti)− αλ
n∑
i=1

tγi log(ti) (1 + λ tγi )
α−1

+ λ(α− 1)
n∑
i=1

tγi log(ti) (1 + λ tγi )
−1

+ λα (β − 1)

n∑
i=1

tγi log(ti) (1 + λ tγi )
α−1

e1−(1+λ tγi )
α

1− e1−(1+λ tγi )
α .

Setting the above equations to zero, U(θ) = 0, and solving them simultaneously yields the

MLEs of the four parameters. These equations can not be solved analytically. We have to use

iterative techniques such as the quasi-Newton BFGS and Newton-Raphson algorithms, see Press
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et al. (2007). The initial values for the parameters are important but are not hard to obtain

from fitting special EGPW sub-models. Note that, for fixed α, λ and γ, the MLE of β is given

by

β̂(α̂, λ̂, γ̂) = − n∑n
i=1 log[1− e

1−
(
1+λ̂tγ̂i

)α̂
]

.

Thus, it is easily observed that fixed on t1, . . . , tn,

• β̂ → 0 when α̂→ 0 and/or λ̂→ 0

• β̂ →∞ when α̂→ 0 and/or λ̂→∞

• β̂ → 0 when γ̂ →∞ and ti < 1, for some i ≤ n

• β̂ →∞ when γ̂ →∞ and ti < 1, ∀i ≤ n.

This behavior anticipates that estimates for smaller α and/or λ may require improved estimation

procedures.

By replacing β by β̂ in equation (2.13) and letting θp = (α, λ, γ), the profile log-likelihood

function for θp can be expressed as

`(θp) = n log(n) + n log (αλγ) + (γ − 1)
n∑
i=1

log (ti)−
n∑
i=1

(1 + λ tγi )
α

+ (α− 1)
n∑
i=1

log (1 + λ tγi )−
n∑
i=1

log
[
1− e1−(1+λ tγi )

α]
− n log

{
−

n∑
i=1

log
[
1− e1−(1+λ tγi )

α]}
. (2.14)

We assume that the standard regularity conditions for `p = `(θp) hold: i) The parameter space,

say Θ, is open and `p has a global maximum in Θ; ii) For almost all samples t1, · · · , tn, the fourth-

order log-likelihood derivatives with respect to the model parameters exist and are continuous

in an open subset of Θ that contains the true parameter vector; iii) The expected information

matrix is positive definite and finite. These regularity conditions are not restrictive and hold for

the models cited in this thesis.
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The corresponding score vector of (2.14), U(θp), has the components

Uα(θp) =
n

α
+

n∑
i=1

log (1 + λ tγi )−
n∑
i=1

(1 + λ tγi )
α

log (1 + λ tγi )

− n
n∑
i=1

(1 + λ tγi )
α

log (1 + λ tγi ) e1−(1+λ tγi )
α

1− e1−(1+λ tγi )
α

{
n∑
i=1

log
[
1− e1−(1+λ tγi )

α]}−1

−
n∑
i=1

(1 + λ tγi )
α

log (1 + λ tγi ) e1−(1+λ tγi )
α

1− e1−(1+λ tγi )
α ,

Uλ(θp) =
n

λ
+ (α− 1)

n∑
i=1

tγi (1 + λ tγi )
−1 − α

n∑
i=1

tγi (1 + λ tγi )
α−1

− nα
n∑
i=1

tγi (1 + λ tγi )
α−1

e1−(1+λ tγi )
α

1− e1−(1+λ tγi )
α

{
n∑
i=1

log
[
1− e1−(1+λ tγi )

α]}−1

− α
n∑
i=1

tγi (1 + λ tγi )
α−1

e1−(1+λ tγi )
α

1− e1−(1+λ tγi )
α ,

and

Uγ(θp) =
n

γ
+

n∑
i=1

log(ti) + λ(α− 1)
n∑
i=1

tγi log(ti)

1 + λtγi
− αλ

n∑
i=1

tγi log(ti) (1 + λtγi )
α−1

− nαλ
n∑
i=1

tγi log(ti) (1 + λtγi )
α−1

e1−(1+λtγi )
α

1− e1−(1+λ tγi )
α

{
n∑
i=1

log
[
1− e1−(1+λ tγi )

α]}−1

− αλ
n∑
i=1

tγi log(ti) (1 + λtγi )
α−1

e1−(1+λtγi )
α

1− e1−(1+λ tγi )
α

Solving the equations in U(θp) = 0 simultaneously yields the MLEs of α, λ and γ. The MLE

of β is just β̂(α̂, λ̂, γ̂). The maximization of the profile log-likelihood might be simpler since it

involves only three parameters. Lemonte (2013) noted a similar result for the ENH model but

mentioned that some of the properties that hold for a genuine likelihood do not hold for its profile

version.

For interval estimation of the components of θ, we can adopt the observed information matrix

J(θ) given by

J(θ) = −∂
2 `(θ)

∂θ ∂θT
=


Jαα Jαβ Jαλ Jαγ
. Jββ Jβλ Jβγ
. . Jλλ Jλγ
. . . Jγγ

 ,

whose elements can be obteined from the authors upon request.
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Under the standard regularity conditions cited before, the multivariate normal N4(0,J(θ̂)
−1

)

distribution can be used to construct approximate confidence intervals for the model parameters.

2.10 Simulation study

In this section, a Monte Carlo simulation experiment is performed in order to examine the

accuracy of the MLEs of the model parameters. The simulations are carried out by generating

observations from the EGPW distribution, using the inverse transformation method for different

parameter combinations. The number of observations is set at n= 100, 300 and 500 and the

number of replications at 10, 000. For maximizing the log-likelihood function, we use the Optim

function with analytical derivatives in R. From the results of the simulations given in Table 2.2,

we can verify that the root mean squared errors (RMSEs) of the MLEs of α, β, λ and γ decay

toward zero as the sample size increases, as expected. As the sample size n increases, the mean

estimates of the parameters tend to be closer to the true parameter values.

Table 2.2: Mean estimates and RMSEs of the EGPW distribution for some parameter values.
Mean estimates RMSEs

n α β λ γ α̂ β̂ λ̂ γ̂ α̂ β̂ λ̂ γ̂

100 0.3 4.0 3.0 1.6 0.355 4.041 3.061 2.140 0.313 1.988 2.084 1.376
1.7 0.8 0.1 0.2 1.670 0.795 0.105 0.253 0.833 0.434 0.109 0.117
3.0 2.0 5.0 0.6 3.848 2.212 5.512 0.627 2.027 1.104 3.112 0.157
3.5 0.9 0.2 0.1 2.729 0.781 0.284 0.166 1.674 0.493 0.276 0.128
7.0 1.5 5.0 0.2 7.296 1.643 5.215 0.199 1.717 0.504 1.644 0.027
7.5 1.3 4.0 0.5 8.034 1.436 4.786 0.510 2.488 0.589 2.386 0.100

300 0.3 4.0 3.0 1.6 0.316 4.035 2.990 1.843 0.145 1.515 1.534 0.807
1.7 0.8 0.1 0.2 1.630 0.762 0.094 0.235 0.657 0.271 0.052 0.086
3.0 2.0 5.0 0.6 3.454 2.096 5.083 0.603 1.277 0.573 2.189 0.086
3.5 0.9 0.2 0.1 3.155 0.858 0.233 0.117 1.063 0.278 0.111 0.050
7.0 1.5 5.0 0.2 7.093 1.556 5.121 0.199 1.130 0.285 1.141 0.018
7.5 1.3 4.0 0.5 7.774 1.337 4.431 0.507 1.753 0.303 1.645 0.066

500 0.3 4.0 3.0 1.6 0.308 4.005 2.990 1.766 0.105 1.296 1.344 0.613
1.7 0.8 0.1 0.2 1.639 0.766 0.093 0.226 0.572 0.226 0.041 0.069
3.0 2.0 5.0 0.6 3.322 2.062 5.030 0.600 0.991 0.429 1.902 0.068
3.5 0.9 0.2 0.1 3.301 0.883 0.219 0.107 0.789 0.204 0.073 0.025
7.0 1.5 5.0 0.2 7.090 1.530 5.090 0.200 0.938 0.218 0.964 0.015
7.5 1.3 4.0 0.5 7.724 1.323 4.272 0.504 1.462 0.231 1.327 0.053
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2.11 Application

In this section, we present an application to illustrate the flexibility of the EGPW distribution,

that indicates the potentiality of the new distribution for modeling positive data. The data set

has size 101 and represents the stress-rupture life of kevlar 49/epoxy strands which are subjected

to constant sustained pressure at the 90% stress level until all had failed such that we obtain

complete data with exact failure times. This data set was studied by Andrews and Herzberg

(1985). Table 2.3 gives a descriptive summary of the samples. Note that the data set present

positive skewness that is a feature that can be well modeled by our proposed distribution.

Table 2.3: Descriptive statistics for the stress-rupture data.
Statistics Real data sets

Stress-rupture data
Mean 1.0248
Median 0.8000
Mode 0.5000
Variance 1.2529
Skewness 3.0017
Kurtosis 13.7089
Maximum 7.8900
Minimum 0.0100
n 101

We fit the EGPW distribution (2.6) to this data set and also present a comparative study

with the fits of some nested and non-nested models. One of these models is the Kumaraswamy

Weibull (Kw-W) distribution, whose pdf is given by

g(t) =
a b c βc tc−1 exp {−(βt)c} [1− exp {−(βt)c}]a−1

{1− [1− exp {−(βt)c}]a}1−b
, t > 0,

where a > 0, b > 0, c > 0 and β > 0. Another model is the EW distribution, whose pdf is given

by

g(t) = αβ λ tα−1 exp (−λ tα) [1− exp (−λ tα)]β−1, t > 0,

where α > 0 and β > 0 are shape parameters and λ > 0 is a scale parameter. This distribution

is quite flexible because its hrf presents the classic five forms (constant, decreasing, increasing,
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upside-down bathtub and bathtub-shaped). The Weibull model arises from the EW model when

β = 1.

The ENH distribution can also have the same shapes for the hrf and therefore can be an

interesting alternative to the EW distribution in modeling positive data.

Xie et al. (2002) proposed a modified Weibul density (MW) given by

g(t) = λβ

(
t

α

)1−β
exp

{(
t

α

)β
+ λα

(
1− exp

{
t

α

}β)}
, t > 0,

where λ > 0, β > 0 and α > 0. For α = 1, it becomes the Chen distribution (Chen, 2000). The

MW and Chen distributions can have increasing or bathtub-shaped failure rate. An extension

of the Weibull model proposed by Bebbington et al. (2007) has pdf in the form

g(t) =

(
α+

β

t2

)
exp

(
αt− β

t

)
exp

{
− exp

(
αt− β

t

)}
, t > 0,

where α > 0 and β > 0. We shall use the same terminology by Lemonte (2013) for this

distribution, i.e., denote the flexible Weibull (FW) density. The FW model can have increasing

or modified bathtub-shaped failure rate.

We use the simulated-annealing (SANN), BFGS and Nelder-Mead methods for maximizing

the log-likelihood function of the models in the application. The MLEs and goodness-of-fit

statistics are evaluated using the AdequacyModel script in R software. Tables 2.4 list the MLEs

and the corresponding standard errors in parentheses of the unknown parameters for the fitted

models to stress-rupture failure times. In applications there is qualitative information about the

failure rate shape, which can help for selecting some models. Thus, a device called the total time

on test (TTT) plot (Aarset, 1987) is useful. The TTT plot is obtained by plotting

T
( r
n

)
=

[
r∑
i=1

yi:n + (n− r) yr:n

]/
n∑
i=1

yi:n,

against r/n, where r = 1, . . . , n and yi:n (i = 1, . . . , n) are the order statistics of the sample.

From the figures in Table 2.4, we note that with the parameters estimated using the EGPW

model for the data set, it is evident decreasing-increasing-decreasing shape in hrf. This fact is in

agreement with the TTT plot based on this data set. Figure 2.4 provides plots of the TTT plot

and hrf for the fitted models for the stress-rupture times data sets.
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Table 2.4: The MLEs of the model parameters for the stress-rupture data and the corresponding
standard errors in parentheses.

Distributions Estimates
EGPW(α, β, λ, γ) 0.1349 0.1022 0.0415 6.6681

(0.0171) (0.0104) (0.0154) (0.0136)
Kw-W(a, b, c, β) 0.7029 0.2175 1.0118 4.3625

(0.1620) (0.1038) (0.0027) (2.1072)
GPW(α, λ, γ) 1.2659 0.7182 0.8696

(0.4483) (0.3485) (0.1039)
EW(β, λ, γ) 0.8488 1.0419 0.8171

(0.2981) (0.2511) (0.3157)
MW(α, β, λ ) 0.0027 0.2259 7.0190

(0.0008) (0.0076) (1.5244)
ENH(α, β, λ) 1.0732 0.7762 0.8426

(0.2760) (0.3582) (0.1238)
NH(α, λ) 0.8898 1.1810

(0.1853) (0.4270)
Chen(β, λ) 0.5410 0.5303

(0.0585) (0.0321)
Weibull(α, λ) 0.9919 0.9259

(0.1121) (0.0726)
FW(α, β) 0.3287 0.0838

(0.0246) (0.0133)

Chen and Balakrishnan (1995) constructed the Cramér-von Mises and Anderson-Darling

corrected statistics. We adopt these statistics, where we have a random sample x1, . . . , xn with

empirical distribution function Fn(x), and require to test if the sample comes from a special

distribution. The Cramér-von Mises (W ∗) and Anderson-Darling (A∗) statistics are given by

W ∗ =

{
n

∫ +∞

−∞
{Fn(x)− F (x; θ̂n)}2dF (x; θ̂n)

}(
1 +

0.5

n

)
= W 2

(
1 +

0.5

n

)
and

A∗ =

{
n

∫ +∞

−∞

{Fn(x)− F (x; θ̂n)}2

{F (x; θ̂n)[1− F (x; θ̂n)]}
dF (x; θ̂n)

}(
1 +

0.75

n
+

2.25

n2

)
= A2

(
1 +

0.75

n
+

2.25

n2

)
,

respectively, where Fn(x) is the empirical distribution function, F (x; θ̂n) is the postulated distri-

bution function evaluated at the MLE θ̂n of θ. Note that the statistics W ∗ and A∗ are given by
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Figure 2.4: The TTT plot and EGPW hrf for the stress-rupture failure times data.

the differences of Fn(x) and F (x; θ̂n). Thus, the lower are these statistics, we have more evidence

that F (x; θ̂n) generates the sample. The details to evaluate the statistics W ∗ and A∗ are given

by Chen and Balakrishnan (1995).

The Kolmogorov-Smirnov (KS), A∗ and W ∗ statistics for these models are given in Table 2.5

for the data sets. We emphasize that the EGPW model fits the stress-rupture failure data better

than the other models according to all these statistics. These goodness-of-fit statistics indicate

that the EGPW distribution provides a good fit in the application.

More information is provided by the histogram of the data with the fitted EGPW density

function for the data set, which is displayed in Figure 2.5. Clearly the new distribution provides

a closer fit to the histogram. The estimated and empirical cumulative function of the most

competitive models are shown in Figure 2.5. From this plot, note that the EGPW model fits

adequately and hence can be used to model these data. Finally, we can conclude that in the

application presented the EGPW distribution is quite competitive to other well-known and widely

used distributions, such as the Kw-W, EW and Weibull models.
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Table 2.5: Goodness-of-fit statistics for the models fitted to the stress-rupture failure times data.
Statistics

Distributions W∗ A∗ KS
EGPW 0.0722 0.4672 0.0699
Kw-W 0.1400 0.8478 0.1017
GPW 0.1730 0.9930 0.0833
EW 0.1686 0.9736 0.0875
MW 0.0980 0.7596 0.1292
ENH 0.1670 0.9667 0.0837
NH 0.2053 1.1434 0.0819
Chen 0.1207 0.8756 0.0973
Weibull 0.1987 1.1115 0.0900
FW 1.1130 5.9971 0.3054

2.12 Concluding remarks

In this Chapter, we introduce the exponentiated generalized power Weibull (EGPW) model

to generalize the Weibull distribution. It has an exponentiated parameter and its hazard rate

function allows constant, decreasing, increasing, upside-down bathtub or bathtub-shaped shapes.

The new distribution contains several well-known lifetime distributions as special models. It

can also be derived from a power transform on an exponentiated Nadarajah-Haghighi random

variable. Since several structural properties on the generalized power Weibull (GPW) distribution

have not been studied, they can be obtained from those on the EGPW distribution. It can also

be useful to obtain the properties of other generated families under the GPW baseline. We

give a physical motivation for introducing the EGPW distribution if β is an integer. We obtain

some structural properties of the EGPW distribution, perform the estimation of parameters by

maximum likelihood and prove empirically the flexibility of the new model in an application to

real data. The new distribution yields a good adjustment in this application. We note that the

EGPW distribution is quite competitive with other lifetime models and can be used effectively

to provide better fits than the other usual lifetime distributions.
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Figure 2.5: Histogram and estimated densities of the EGPW, GPW and MW model for the
stress-rupture failure times data.
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Figure 2.6: Estimated and empirical cdfs for EGPW, GPW and MWmodels for the stress-rupture
failure times data.
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Chapter 3

The Nadarajah-Haghighi Lindley
distribution

Resumo

Neste capítulo, uma nova distribuição contínua é proposta baseada na composição entre as dis-

tribuições Lindley e Nadarajah-Haghighi, a qual pode ser utilizada em aplicações em engen-

haria, bem como em outras áreas do conhecimento. A distribuição proposta é competitiva com

os demais modelos utilizados em análise de sobrevivência, tais como as distribuições Weibull,

Weibull exponencializada, Nadarajah-Haghighi exponencializada e outras. Algumas das suas

propriedades matemáticas são estudadas, incluindo a função de vida média residual, momen-

tos, função geradora de momentos, desvios médios e curvas de Lorenz e Bonferroni. É também

discutida a estimação dos parâmetros do modelo via máxima verossimilhança. Um estudo de

simulação é realizado e apresentamos uma aplicação a dados reais para ilustrar empiricamente

a utilidade da nova distribuição proposta, na cual se obteve um bom ajuste para o conjunto de

dados utilizado, sendo uma alternativa útil aos modelos clássicos de análise de sobrevivência.

Palavras-chave: Distribuição exponencial. Dados de tempo de vida distribuição Lindley. Dis-

tribuição Nadarajah-Haghighi. Método de composição.
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Abstract

In this Chapter, we propose a new continuous distribution based on compounding the Lindley

and Nadarajah Haghighi distributions, which may be useful in engineering applications and other

areas. The introduced distribution is a very competitive model to other lifetime models, such as

the Weibull, exponentiated Weibull and exponentiated Nadarajah-Haghighi distributions, among

others. Some of its properties are investigated including mean residual life, moments, generating

function, mean deviations, Bonferroni and Lorenz curves. We discuss the estimation of the

model parameters by maximum likelihood. A simulation study is performed and we provide two

applications to real data for illustrative purposes. We show that the proposed distribution yields

a good adjustment for both data sets, and it can be a useful alternative for other classical lifetime

models.

Keywords: Compounding approach. Exponential distribution. Lifetime data. Lindley distribu-

tion. Nadarajah-Haghighi distribution.

3.1 Introduction

The Lindley distribution was introduced by Lindley (1958) in the context of fiducial and

Bayesian inference. This distribution is a mixture of exponential and length-biased exponential

distributions. Let Y be a Lindley random variable with parameter γ > 0 having pdf given by

g(y) =
γ2

1 + γ
(1 + y) e−γy, y > 0,

where the mixing proportion is γ/(1 + γ). The survival function of Y is

G(y) =
1 + γ + γy

1 + γ
e−γy.

Various statistical properties of this distribution are discussed in details by Ghitany et al.

(2008b). The authors also showed that the Lindley distribution is quite competitive with the ex-

ponential distribution. Gupta and Singh (2013) studied the parameter estimation of the Lindley

distribution with hybrid censored data. Krishna and Kumar (2011) considered the estimation of



47

the model parameters for progressively type II right censored sample and Mazucheli and Achcar

(2011) applied this distribution to competing risks in lifetime data.

In distribution theory context, some generalizations are obtained based on transformations

of the Lindley distribution. We refer the reader to Nadarajah and Bakouch (2011) for the gener-

alized (or exponentiated) Lindley, Bakouch et al. (2012) for the extended Lindley, Ghitany et al.

(2011) and Al-Mutairi et al. (2015) for the weighted Lindley, Ghitany et al. (2013) for the power

Lindley and Ashour and Eltehiwy (2015) for the exponentiated power Lindley distributions.

Another technique that has been considered is the discrete-continuous compounding ap-

proach. It is defined as the minimum of N independent and identical continuous random vari-

ables, where N is a discrete random variable. Adamidis and Loukas (1998) pionnered this

method and introduced the exponential geometric distribution. We also find in the literature

some models obtained from compositions of Lindley and other discrete distributions. Sankaran

(1970) introduced the discrete Poisson-Lindley by combining the Poisson and Lindley distribu-

tions. Zamani and Ismail (2010) presented the negative binomial Lindley distribution. The zero-

truncated Poisson-Lindley and Pareto Poisson-Lindley distributions were introduced by Ghitany

et al. (2008a) and Asgharzadeh et al. (2013), respectively.

The Nadarajah-Haghighi (NH) distribution was pioneered by Nadarajah and Haghighi (2011)

as a generalization of the exponential distribution. Let Z denote a NH random variable with

parameters α > 0 and λ > 0. Its pdf and survival function are

q(z) = αλ(1 + λz)α−1e1−(1+λz)
α

and

Q(z) = e1−(1+λz)
α
,

respectively. Several generalizations of the NH distribution have been proposed in recent years,

such as the exponentiated Nadarajah-Haghighi (Lemonte, 2013), the gamma Nadarajah-Haghighi

(Bourguignon et al., 2015), beta Nadarajah-Haghighi (Dias, 2016) distributions and the Nadarajah-

Haghighi family of distributions (Dias, 2016), among others. By using the discrete-continuous
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compounding approach, we have the Poisson Gamma Nadarajah-Haghighi (Ortega et al., 2015)

and geometric Nadarajah-Haghighi (Marinho, 2016) distributions, for example.

A comprehensive review on compounding method for generating distributions can be found

in Tahir et al. (2016a). They pointed a different compounding approach by taking the minimum

between two continuous distributions. Note that in the discrete-continuous compositions we have

that N is a discrete random variable that represents the number of identical elements that follows

some continuous distribution. For the continuous-continuous compositions, we suppress the con-

dition to be identically distributed and fix N = 2. Some well-known continuous-continuous com-

pounded models are the additive Weibull (Xie and Lai, 1995; Lemonte et al., 2014), exponential-

Weibull (Cordeiro et al., 2014a) and generalized exponential-exponential (Popovíc et al., 2015)

distributions, among others.

In this Chapter, we introduce a new continuous-continuous compounded model referred to

as the Nadarajah-Haghighi Lindley (NHL) distribution. This three-parameter distribution is

obtained by compounding the Lindley and NH distributions. We assume that Y and Z are

independent random variables and define X = min(Y,Z) as a NHL random variable, whose

survival function is given by

F (x) = G(x)Q(x).

The cdf of X is

F (x) = 1− 1 + γ + γ x

1 + γ
e1−γ x−(1+λx)

α
, x > 0, (3.1)

where α > 0, λ ≥ 0 and γ ≥ 0. The pdf and hrf of X are given by

f(x) =
(1 + γ + γ x)

[
γ + αλ(1 + λx)α−1

]
− γ

γ + 1
e1−γ x−(1+λx)

α
(3.2)

and

h(x) =
(1 + γ + γ x)

[
γ + αλ(1 + λx)α−1

]
− γ

γ + γ x+ 1
,

respectively. Henceforth, we denote X ∼ NHL(α, λ, γ). The proposed distribution contains as

special models well-known distributions. For γ = 0, the NHL reduces to the NH distribution. If
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γ = 0 and α = 1, we have the exponential distribution. For α = 0 or λ = 0, we have the Lindley

distribution.

Figure 3.1 provides plots of the pdf of X for some parameter values. The new distribution

presents decreasing and reverse J shaped curve. Figure 3.2 reveals that the NHL distribution can

have decreasing, increasing, upside-down bathtub and bathtub-shaped hazard functions. This

feature makes the new distribution very competitive with the Weibull, gamma and exponential

distributions that exhibit only monotonic hazard rates. According to Nadarajah and Bakouch

(2011) this is a major weakness because most empirical life systems have bathtub shapes for

their hrfs.
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Figure 3.1: Pdf plots for the NHL distribution.

This approach may be useful in engineering. For example, let Y and Z denote the lifetimes of

two independent components of a system. Then, the lifetime of the system will be a NHL random

variable. Cordeiro et al. (2014a) studied a similar situation for the exponential-Weibull lifetime

distribution and presented some motivations that may be adapted for the current distribution,

such as

• Time to the first failure. Consider a system with two sub-systems functioning in series
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Figure 3.2: Hrf plots for the NHL distribution
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independently at a given time. Suppose that the system fails if each or both sub-systems

fail. Let Y and Z be their failure times. If Y and Z follow the Lindley and NH distributions,

respectively. Thus, the NHL distribution can characterize the system lifetime.

• Reliability. From the stochastic representation X = min{Y, Z}, we note that the NHL

model can arise in series systems with two different components. This situation may

appear in engineering applications and biological organisms.

Furthermore, Nadarajah and Haghighi (2011) mentioned some advantages of NH model, such as

the ability to model data with mode fixed at zero and the fact that it can be interpreted as a

truncated Weibull distribution. The NHL distribution also accumulates this advantages once it

has the NH distribution as special model.

The rest of this chapter is outlined as follows. In Sections 3.2-3.4, we derive a range of math-

ematical properties of the NHL distribution. In Section 3.5, we adopt the maximum likelihood

method to estimate the model parameters. We perform a simulation study in Section 3.6. A real

data application is provided in Section 3.7. Some concluding remarks are offered in Section 3.8.

3.2 Mean residual life

The mean residual life is a relevant characteristic to the design of safe systems in a wide

variety of applications in engineering and reliability. Given that a component survives up to

time x > 0, the residual life is defined by

m(x) = IE(X − x|X > x) =
1

1− F (x)

∞∫
x

[1− F (t)] dt.

It represents the period beyond x until the time of failure. Note that

m(x) =
exγ+(1+λx)α

(1 + γ + γ x)

∞∫
x

(1 + γ + γ t) e−γ t−(1+λ t)
α

dt.

We consider the integral

J =

∞∫
x

(1 + γ + γ t) e−γ t−(1+λ t)
α

dt.
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Setting u = (1 + λ t)α, we have t = (u1/α − 1)/λ. So, the above integral reduces to

J =
1

αλ

∞∫
(1+λx)α

u(1−α)/α[1 + γ + γ λ−1(u1/α − 1)] e−u−γ λ
−1(u1/α−1) du.

By expanding

e−γ λ
−1(u1/α−1) =

∞∑
i=0

(−1)iγi(u1/α − 1)i

λii!
,

and using the binomial expansion for (u1/α − 1)i, we can write

m(x) =
eγ x+(1+λx)α

αλ(1 + γ + γ x)

∞∑
i=0

i∑
j=0

(−1)2i−jγi

λi i!

(
i

j

)[
γ

λ
Γ

(
j + 2

α
, (1 + λx)α

)

+
(

1 + γ − γ

λ

)
Γ

(
j + 1

α
, (1 + λx)α

)]
,

where Γ(a, z) = Γ(a)− γ(a, z) =
∫∞
z ta−1e−tdt is the upper incomplete gamma function.

3.3 Generating function and moments

We denote by MX(t) the moment generating function (mgf) of X. From Equation (3.2), we

obtain

MX(t) =
e

1 + γ

∫ ∞
0

{
(γ + γx+ 1)[γ + αλ(1 + λx)α−1]− γ

}
ex(t−γ)−(1+λx)

α
dx.

Setting u = (1 + λx)α, we have

MX(t) =
e

αλ(1 + γ)

∫ ∞
1

u
1−α
α

{
[γ + γλ−1(u1/α − 1) + 1](γ + αλu

α−1
α )− γ

}
× exp

{
(u1/α − 1)(t− γ)

λ
− u

}
du.

By expanding

exp

{
(u1/α − 1)(t− γ)

λ

}
=
∞∑
i=0

(u1/α − 1)i(t− γ)i

λii!
,

using the binomial expansion for (u1/α − 1)i and, after some algebra, we can write

MX(t) =
e

1 + γ

∞∑
i=0

i∑
j=0

(−1)i−j(t− γ)i

λi i!

(
i

j

)[
γ

λ
Γ

(
j + 1

α
+ 1 , 1

)

+
(

1 + γ − γ

λ

)
Γ

(
j + α

α
, 1

)
+

γ2

αλ2
Γ

(
j + 2

α
, 1

)
+
γ2(λ− 1)

αλ2
Γ

(
j + 1

α
, 1

)]
.
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The expression above is useful for computing moments and cumulants of a random variable,

among other interesting characteristics of a distribution (e.g., tendency, dispersion, skewness

and kurtosis).

The sth ordinary moment of X is given by

µ′s =
e

1 + γ

∫ ∞
0

xs
{

(γ + γx+ 1)[γ + αλ(1 + λx)α−1]− γ
}

e−λx−(1+λx)
α
dx.

Again, setting u = (1 + λx)α in this integral and expanding exp(−λx), we can write (for s ≥ 1)

µ′s =
e

αλs+2(γ + 1)

s∑
i=0

∞∑
j=0

j∑
k=0

(−1)2j−i−k+sγj

j!λj

(
s

i

)(
j

k

)[
γ2Γ

(
i+ 2

α
, 1

)

+ αλγΓ

(
i+ 1

α
+ 1 , 1

)
γ2(λ− 1)Γ

(
i+ 1

α
, 1

)
+ αλ(λ− γ)Γ

(
i

α
+ 1 , 1

)]
.

The central moments (µs) and cumulants (κs) of X can be determined from these raw moments

using well-known relationships. We have

µs =

s∑
k=0

(−1)k
(
s

k

)
µ′k1 µ

′
s−k and κs =

s−1∑
k=0

(
s− 1

k − 1

)
κk µ

′
s−k,

respectively, where κ1 = µ′1. Thus, κ2 = µ′2 − µ′21 , κ3 = µ′3 − 3µ′2µ
′
1 + 2µ′31 , etc.

The skewness γ1 = κ3/κ
3/2
2 can be determined from the third standardized cumulant. Fur-

ther, an alternative expression for the skewness was introduced by MacGillivray (1986). The

MacGillivray’s skewness function of X is expressed as

ρ(u) = ρ(u;α, β, γ) =
Q(1− u) +Q(u)− 2Q(1/2)

Q(1− u)−Q(u)
,

where u ∈ (0, 1) and Q(·) is the qf of X, which can only be determined numerically. Plots of the

MacGillivray skewness for some parameter values are displayed in Figure 3.3. Note that ρ(u)

presents more variability for small values of γ. Once the qf of the NHL distribution can not be

solved analytically, we can use numerical techniques for inverting the cdf in (3.1). We use the

inverse function from the GoFKernel script in the R software. It may also be helpful in random

number generation by the inversion method.
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Figure 3.3: Skewness of the NHL model for some parameter values.

3.4 Incomplete moments

The sth incomplete moment of X is defined by ms(y) =
∫ y
0 xn f(x)dx. Thus, by inserting

(3.2) in ms(y), we have

ms(y) =
e

1 + γ

∫ y

0
xs
{

(γ + γx+ 1)[γ + αλ(1 + λx)α−1]− γ
}

e−λx−(1+λx)
α
dx.

Using the exponential and binomial expansions, we obtain

ms(y) =
e

αλs+2(γ + 1)

s∑
i=0

∞∑
j=0

j∑
k=0

(−1)2j−i−k+sγj

j!λj

×
(
s

i

)(
j

k

){[
γ2Γ

(
i+ 2

α
, 1

)
+ αλγΓ

(
i+ 1

α
+ 1 , 1

)
+ γ2(λ− 1)Γ

(
i+ 1

α
, 1

)
+ αλ(λ− γ)Γ

(
i

α
+ 1 , 1

)]
−
[
γ2Γ

(
i+ 2

α
, (λy + 1)α

)
+ αλγΓ

(
i+ 1

α
+ 1 , (λy + 1)α

)
+ γ2(λ− 1)Γ

(
i+ 1

α
, (λy + 1)α

)
+ αλ(λ− γ)Γ

(
i

α
+ 1 , (λy + 1)α

)]}
. (3.3)

In various practical situations, the shape of many distributions can be usefully described by

the incomplete moments. For example, the amount of scatter in a population is measured to
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some extent by the totality of deviations from the mean and median, which are applications of

the first incomplete moment. If X has the NHL distribution with pdf (3.2) we can derive the

mean deviations about the mean (δ1 = IE(|X − µ′1|)) and about the median (δ2 = IE(|T −M |))

of X from the relations

δ1 = 2µ′1F (µ′1)− 2m1(µ
′
1) and δ2 = µ′1 − 2m1(M),

respectively, where µ′1 = IE(X), M = Median(X) is the median, F (µ′1) is easily determined from

(3.1) and m1(y) =
∫ y
0 x f(x)dx is the first incomplete moment given by (3.3) with s = 1.

Another applications of the first incomplete moment refers to the Lorenz and Bonferroni

curves defined, for a given probability π, by

B(π) =
m1(q)

πµ′1
and L(π) =

m1(q)

µ′1
,

respectively, where q = F−1(π) is the inverse function of (3.1) evaluated at π. Hence,

B(π) =
e

αλq+2(γ + 1)π µ′1

1∑
i=0

∞∑
j=0

j∑
k=0

(−1)2j−i−k+qγj

j!λj

×
(
q

i

)(
j

k

){[
γ2Γ

(
i+ 2

α
, 1

)
+ αλγΓ

(
i+ 1

α
+ 1 , 1

)
+ γ2(λ− 1)Γ

(
i+ 1

α
, 1

)
+ αλ(λ− γ)Γ

(
i

α
+ 1 , 1

)]
−

[
γ2Γ

(
i+ 2

α
, (λy + 1)α

)
+ αλγΓ

(
i+ 1

α
+ 1 , (λy + 1)α

)
+ γ2(λ− 1)Γ

(
i+ 1

α
, (λy + 1)α

)
+ αλ(λ− γ)Γ

(
i

α
+ 1 , (λy + 1)α

)]}
. (3.4)

The Lorenz curve follows by multiplying (3.4) by π. For each π = F (x), L(π) is the proportion

of the total volume of income that accumulates the set of units with income less than or equal

to x. It is clear that L(π) ≤ π for 0 ≤ π ≤ 1, where L(π) = π in case of equidistribution and

L(π) = 0, 0 ≤ p < 1, L(1) = 1, if the concentration is maximum. It is possible to show that

B(π) ≤ 1, 0 ≤ π ≤ 1. For an egalitarian distribution we have that B(π) = 1, 0 ≤ π ≤ 1, whereas

when the concentration is maximum, B(π) = 0 if 0 ≤ π < 1 and B(1) = 1. Plots of the Lorenz
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and Bonferroni curves for some parameter values are displayed in Figure 3.4. Equations (3.3)

and (3.4) are the main result of this section.
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Figure 3.4: (a) Bonferroni curves for the NHL distribution for some parameter values; (b) Lorenz
curves for the NHL distribution for some parameter values

3.5 Maximum likelihood estimation

The maximum likelihood method for estimation of the three parameters of the NHL dis-

tribution is presented in this section. Let x1, . . . , xn be a observed sample of size n from the

NHL(α, λ, γ) distribution and θ = (α, λ, γ)T the parameter vector of interest. The log-likelihood

function for θ based on this sample is

`(θ) = n− γ
n∑
i=1

xi −
n∑
i=1

(1 + λxi)
α − n log(1 + γ) (3.5)

+
n∑
i=1

log
{

(1 + γ + γxi)
[
γ + αλ(1 + λxi)

α−1]− γ} .
The maximum likelihood estimates (MLEs) of the model parameters can be obtained by

maximizing (3.5). Alternatively, we can differentiating (3.5) and solving the resulting nonlinear
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likelihood equations. We can express the components of the score vector U(θ) as

Uα(θ) = λ

n∑
i=1

1

R(xi)
(1 + γ + γxi)(1 + λxi)

α−1[1 + α log(1 + λxi)]

+

n∑
i=1

(1 + λxi) log(1 + λxi),

Uλ(θ) = α
n∑
i=1

1

R(xi)
(1 + αλxi)(1 + γ + γxi)(1 + λxi)

α−2

− α
n∑
i=1

xi(1 + λxi)
α−1,

and

Uγ(θ) =
n∑
i=1

1

R(xi)
(1 + xi)

[
2γ + αλ(1 + λxi)

α−1]− n∑
i=1

xi −
n

1 + γ
,

where R(x) = (1 + γ + γx)
[
γ + αλ(1 + λxi)

α−1]− γ.
The MLEs of the three unknown parameters are obtained by setting the equations above

to zero, U(θ) = 0, and solving them simultaneously. Once these equations can not be solved

analytically, we have to use iterative techniques. The quasi-Newton BFGS and Newton-Raphson

algorithms are well-known alternatives for solving these equations, see Press et al. (2007). The

initial values for the parameters are not hard to obtain by fitting special NHL models.

The observed information matrix given by

J(θ) = −∂
2 `(θ)

∂θ ∂θT
=

 Jαα Jαλ Jαγ
. Jλλ Jλγ
. . Jγγ

 ,

can be used to construct approximate confidence intervals for the model parameters. Under

standard regularity conditions and for large n, the distribution of (α̂ − α, λ̂ − λ, γ̂ − γ) can be

approximated by a trivariate normal distribution N3(0,J(θ̂)
−1

). The elements of J(θ̂) can be

available from the authors upon request.

3.6 Simulation study

In this section, a Monte Carlo simulation experiment is conducted to evaluate the MLEs

of the parameters of the NHL distribution. The simulations are performed by generating ob-

servations from six different parameter combinations of the NHL distribution using the inverse
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transformation method. The number of Monte Carlo replications is N = 10, 000. We use the

subroutine maxBFGS with analytical derivatives in R for maximizing the log-likelihood function.

The results of the simulations are given in Table 3.1. The RMSEs are estimated from N

Monte Carlo replications. We set the sample size at n= 100, 300 and 500. Note that for all

parametrizations the mean estimates of the parameters tend to be closer to the true parameter

values when the sample size n increases as expected under first-order asymptotic theory.

Table 3.1: Monte Carlo simulation results: mean estimates and RMSEs of the NHL distribution
for some parameter values.

Mean estimates RMSEs
n α λ γ α̂ λ̂ γ̂ α̂ λ̂ γ̂

100 0.1 0.5 2.5 0.430 0.491 2.522 2.781 0.179 0.065
0.1 2.5 0.5 0.123 2.489 0.507 0.035 0.010 0.011
0.1 0.2 0.3 0.277 0.184 0.286 0.446 0.028 0.050
1.3 2.0 2.5 1.466 1.933 2.564 1.425 0.264 0.332
0.5 2.5 0.1 0.525 2.475 0.106 0.039 0.093 0.015
2.5 0.5 0.1 3.207 0.438 0.125 1.982 0.126 0.068

300 0.1 0.5 2.5 0.211 0.490 2.515 0.356 0.011 0.020
0.1 2.5 0.5 0.115 2.490 0.509 0.020 0.010 0.009
0.1 0.2 0.3 0.168 0.189 0.300 0.153 0.012 0.022
1.3 2.0 2.5 1.391 1.935 2.571 0.443 0.256 0.321
0.5 2.5 0.1 0.515 2.484 0.108 0.020 0.044 0.011
2.5 0.5 0.1 2.720 0.477 0.120 0.849 0.070 0.059

500 0.1 0.5 2.5 0.210 0.490 2.513 1.069 0.013 0.020
0.1 2.5 0.5 0.112 2.490 0.509 0.014 0.010 0,009
0.1 0.2 0.3 0.145 0.189 0.304 0.150 0.011 0.018
1.3 2.0 2.5 1.382 1.916 2.603 0.310 0.317 0.432
0.5 2.5 0.1 0.513 2.486 0.109 0.015 0.033 0.011
2.5 0.5 0.1 2.643 0.479 0.133 0.510 0.051 0.082

3.7 Application

In this section, we fit the NHL distribution for a real data set to illustrate the potentiality

of this distribution for modeling positive data. It represents the times to reinfection of sexually

transmitted diseases (STDs) for eight hundred and seventy seven patients. These data are taken

from Section 1.12 of Klein and Moeschberger (1997).

Table 3.2 provides a descriptive summary for the reinfection times data. We have large
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amplitude and variance. The measures of central tendency, such as mean, median and mode, are

quite distant when compared among them. Besides, it presents positive values for the skewness

and kurtosis. It also exhibit large amplitude and variance.

Table 3.2: Descriptive statistics for the reinfection times data set.
Statistics Reinfection times
Mean 369.5268
Median 247.0000
Mode 5.000
Variance 136940.7000
Skewness 1.15262
Kurtosis 0.51036
Maximum 1529.0000
Minimum 1.0000
n 877

For modeling these data, we fit the NHL distribution and also considered the fits of six related

distributions. They are described as follows: the ENH (Lemonte, 2013) with pdf

f(x) = αβλ
(1 + λx)α−1 exp{1− (1 + λx)α}

[1− exp{1− (1 + λx)α}]1−β
, x > 0,

where α > 0 and β > 0 are shape parameters and λ > 0 is a scale parameter; EW, whose pdf is

given by

f(x) = αβ λxα−1 exp (−λxα) [1− exp (−λxα)]β−1, x > 0,

where α > 0 and β > 0 are shape parameters and λ > 0 is a scale parameter; the Weibull model

arises from the EW model when β = 1; and the NH, Lindley and exponential distributions,

which are NHL special models.

We estimate the model parameters of the NHL distribution and the above competitive models

by maximum likelihood. The goodness-of-fit statistics considered are: KS, W ∗ and A∗. The

lower are these statistics, the better is the adjustment to the data. The MLEs and goodness-

of-fit statistics are evaluated using the AdequacyModel script in the R software (Marinho et al.,

2016).

Table 3.3 lists the MLEs (and the corresponding standard errors in parentheses) of the un-

known parameters for the fitted models. We note that all distributions present reasonable es-



60

timates for the standard errors. Table 3.4 presents the goodness-of-fit statistics for reinfection

times. According to these statistics, the NHL distribution provides a good fit and is quite com-

petitive with the other current distributions.

The introduced distribution yields the best fit under all goodness-of-fit statistics. Figure 3.5

displays the plots of the cumulative and empirical cumulative functions for the most competitive

models to both data sets. These plots illustrate the good adjustment of the NHL distribution.

Therefore, the results reveal that the proposed distribution can be an effective alternative to the

Weibull, EW and ENH distributions, among others.

Table 3.3: The MLEs of the model parameters for reinfection data and corresponding standard
errors in parentheses.

Distributions Estimates
NHL(α, λ, γ) 0.1247 0.0718 0.0031

(0.0121) (0.0130) (0.0001)
ENH(α, λ, β) 0.8445 0.0030 0.7908

(0.0347) (0.0001) (0.0324)
EW(α, λ, β) 0.9819 0.0026 0.7447

(0.0100) (0.0001) (0.0293)
Weibull(α, λ) 0.8464 0.0073

(0.0206) (0.0009)
NH(α, λ) 0.7950 0.0039

(0.0363) (0.0003)
Lindley(γ) 0.0053

(0.0001)
Exp(λ) 0.0026

(7.568e-05)

3.8 Concluding remarks

We introduce the Nadarajah-Haghighi Lindley (NHL) model by compounding the Lindley

and Nadarajah-Haghighi distributions. Once we have a composition by taking the minimum

of two continuous independent random variables, the proposed distribution might be useful in

engineering for modeling the failure time of systems composed of two independent components

in series. The NHL distribution has the Lindley, Nadarajah-Haghighi and exponential distribu-

tions as submodels. Besides, it is a competitive model to the Weibull, exponentiated Weibull
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Table 3.4: Goodness-of-fit statistics for the models fitted to reinfection times.

Statistics
Distributions W ∗ A∗ KS
NHL 0.0904 0.9826 0.0332
Lindley 0.3532 2.8802 0.2076
NH 0.5782 4.2894 0.0677
ENH 0.4790 3.6459 0.0477
Exp 0.3572 2.8505 0.0844
Weibull 0.5082 3.8380 0.0552
EW 0.3422 2.7487 0.0576
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Figure 3.5: Estimated cdfs of the NHL, ENH and EW models for the reinfection times.
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and exponentiated Nadarajah-Haghighi distributions, among others. We obtain some structural

properties of the proposed distribution, perform the estimation of the parameters by maximum

likelihood and provide an application to a real lifetime data set. The new distribution yields

a good adjustment for the times to reinfection of sexually transmitted diseases and is quite

competitive to other classical lifetime models.
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Chapter 4

The Weibull Nadarajah-Haghighi
distribution

Resumo

Neste capítulo é introduzida uma nova distribuição de quatro parâmetros, denominada Weibull

Nadarajah-Haghighi. O novo modelo é obtido considerando a distribuição Nadarajah-Haghighi

como baseline na família Weibull-G, definida por Bourguignon et al. (2014). A distribuição

proposta pode fornecer as formas constante, crescente, decrescente, banheira e banheira invertida

para sua função de risco. Estes são os formatos de maior importância e utilidade em análise de

sobrevivência. São exploradas algumas propriedades matemáticas da nova distribuição, tais

como a função quantílica, momentos ordinários e incompletos e a entropia de Rényi. O método

de máxima verossimilhaça é utilizado para obter as estimativas dos parâmetros do modelo. Um

estudo de simulação é conduzido. Além disso, a aplicabilidade da distribuição proposta é ilustrada

através de dois conjuntos de dados reais. Para ambas as bases de dados, a nova distribuição

apresentou melhores ajustes que algumas distribuições amplamente conhecidas em análise de

sobrevivência.

Palavras-chave: Dados de tempo de vida. Distribuição Nadarajah-Haghighi. Família Weibull-G.

Função taxa de falha. Máxima verossimilhança.
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Abstract

In this chapter, we introduce a new four-parameter model called the Weibull Nadarajah-Haghighi

distribution. It is obtained by inserting the Nadarajah-Haghighi distribution in the Weibull-G

family pioneered by Bourguignon et al. (2014). The proposed distribution can produce constant,

increasing, decreasing, bathtub and upsidedown-bathtub hazard rate shapes, which are the most

important and useful hazard shapes in lifetime analysis. We explore some of its structural

properties including the quantile function, ordinary and incomplete moments and Rényi entropy.

The maximum likelihood method is presented to estimate the model parameters. A simulation

study is performed. The applicability of the new distribution is illustrated by means of two real

data sets. The new model provides better fits than some widely known lifetime distributions.

Keywords: Hazard rate function. Lifetime data. Maximum likelihood. Nadarajah-Haghighi

distribution. Weibull-G family.

4.1 Introduction

The Weibull, gamma and exponential are three of the most popular distributions in lifetime

data analysis. The first one has an advantage because it has survival and hazard functions in

closed-form and has the exponential distribution as a special model, see Murthy et al. (2004) for

details. An alternative model is the EE distribution, discussed by Gupta et al. (1998). The EE

model is important because it has several properties similar to those of the gamma distribution.

Thus, it is a generalization of the exponential model and has closed-form survival and hazard

functions.

Gupta and Kundu (2001), Zheng (2002), Gupta and Kundu (2007), Abdel-Hamid and AL-

Hussaini (2009) and Nadarajah (2011) provided properties and applications of the EE distri-

bution. For some generalizations of the Weibull distribution, we refer the reader to Mudholkar

and Srivastava (1993) for the EW, Xie et al. (2002) for the modified Weibull, Cordeiro et al.

(2010) for the Kw-W and Bagheri et al. (2016) for the generalized modified Weibull power series

distributions.
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Another generalization of the exponential distribution that may be an alternative to those

classical lifetime models was introduced by Nadarajah and Haghighi (2011). The Nadarajah-

Haghighi (NH) distribution has cdf and pdf given by (2.1) and (2.2) and has the exponential

distribution is a special case for α = 1. The motivations for studying the NH distribution are

the relationship between the pdf (2.2) and the hrf, the ability (or inability) to model data with

mode fixed at zero and the fact that it can be interpreted as a truncated Weibull distribution.

Further details and general properties can be found in Nadarajah and Haghighi (2011).

Many authors developed extensions of the NH distribution in recent years. For exam-

ple, Lemonte (2013) pioneered the ENH and Bourguignon et al. (2015) introduced the gamma

Nadarajah-Haghighi (GNH) distributions. Lima (2015) studied the Kumaraswamy Nadarajah-

Haghighi (KNH) and VedoVatto et al. (2016) investigated the exponentiated generalized Nadarajah-

Haghighi (EGNH) distributions. The NH model is also a special case of the GPW distribution

proposed by Bagdonavicius and Nikulin (2002) and discussed by Nikulin and Haghighi (2006,

2009).

Further, Dias (2016) introduced the Nadarajah-Haghighi-G family of distributions. This

family is a sub-family of the T -X class defined by Alzaatreh et al. (2013). The beta-G family

pioneered by Eugene et al. (2002) and the gamma-G family defined by Zografos and Balakrishnan

(2009) are two well-known generated families in this class. Bourguignon et al. (2014) proposed

another useful family in the T -X class called the Weibull-G family.

Let G(x) and g(x) denote the cdf and pdf of a baseline model with parameter vector ξ.

Consider the Weibull cdf F (x) = 1− e−a xb for x > 0, a > 0 and b > 0. The Weibull-G family is

obtained by replacing the argument x with G(x)/G(x) in the Weibull cdf, where G(x) = 1−G(x).

Then, for x ∈ D ⊆ R, the cdf and pdf of the Weibull-G family are given by

F (x; a, b, ξ) =

∫ G(x;ξ)
1−G(x;ξ)

0
a b tb−1e−a t

b
dt = 1− exp

{
−a
[
G(x; ξ)

G(x; ξ)

]b}
(4.1)

and

f(x; a, b, ξ) = a b g(x; ξ)
G(x; ξ)b−1

G(x; ξ)b+1
exp

{
−a
[
G(x; ξ)

G(x; ξ)

]b}
, (4.2)

respectively. If b = 1, we have the exp-G family. Note that the Weibull-G family does not
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have as a special case the baseline G distribution. However, we can consider the distributions of

this family as a compounding between the Weibull and the baseline distributions (Tahir et al.,

2016b).

In this Chapter, we introduce a new four-parameter distribution called the Weibull Nadarajah-

Haghighi (WNH) distribution. Inserting Equation (2.1) in (4.1) yields the WNH cdf given by

F (x) = 1− exp
{
−a [exp{(1 + λx)α − 1} − 1]b

}
. (4.3)

The corresponding pdf reduces to

f(x) = a bαλ (1 + λx)α−1 [1− exp{1− (1 + λx)α}]b−1

× exp
{
−b [1− (1 + λx)α]− a [exp{(1 + λx)α − 1} − 1]b

}
. (4.4)

Hereafter, a random variable with density function (4.4) is denoted by X ∼ WNH(a, b, α, λ).

The hrf of X becomes

τ(x) = a bαλ (1 + λx)α−1 [1− exp{1− (1 + λx)α}]b−1

× exp {−b [1− (1 + λx)α]} .

Some motivations for proposing the WNH distribution are:

1. The new distribution allows for greater flexibility of its pdf than the baseline density. The

NH density is only monotonically decreasing, but the WNH density can be unimodal and is

quite flexible for skewness and kurtosis. Figure 4.1 displays plots of the WNH pdf for some

parameter values and reveals that the proposed density allows to fit left and right skewed

data. More details about the skewness and kurtosis can also be found in Section 4.3.2.

2. The NH distribution can only have monotonic types of hrf, but the WNH hrf presents de-

creasing, increasing, upside-down bathtub and bathtub-shaped forms. This feature makes

the new distribution quite competitive with other popular lifetime distributions and very

attractive to be used to model lifetime data. Figure 4.2 displays plots showing all mentioned

hrf forms.
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3. The WNH distribution contains as special models some known distributions. For α = 1,

it reduces to the Weibull-Exponential distribution introduced by Oguntunde et al. (2015).

If a = θ/λ (for θ > 0), b = 1 and α = 1, it becomes the Gompertz distribution.

4. In practical situations, the WNH distribution may provide ‘better fits’ than other generated

models under the NH baseline. See the results of Section 4.6. They reveal that the WNH

model can be a useful alternative not only to other NH generated distributions but also to

other widely known lifetime models.

The Chapter is outlined as follows. In Section 4.2, we derive a linear representation for

the WNH density function. In Section 4.3, we explore some structural properties of the new

distribution. The estimation of the model parameters by maximum likelihood is presented in

Section 4.4. A simulation study is performed in Section 4.5. Section 4.6 provides two applications

to real data for illustrative purposes. Section 4.7 offers some concluding remarks.

4.2 Useful expansion

Bourguignon et al. (2014) demonstrated that theWeibull-G density function can be expressed

in terms of the exp-G densities. Let G(y) be the baseline cdf of a random variable Y . The exp-G

cdf is obtained by a power transformation of G(y) given by Hc(y) = G(y)c, where c > 0 is an

additional shape parameter. Then, the exp-G density function is given by

hc(y) = c g(y)G(y)c.

Using such method, we can define the exponentiated exponential (Gupta et al., 1998) and

exponentiated Weibull (Mudholkar and Srivastava, 1993) models, among several others distri-

butions. Tahir and Nadarajah (2015) wrote a survey with other different ways for obtaining

generated continuous distributions and listed twenty eight different exp-G models already pub-

lished in the literature.
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Figure 4.1: Plots of the WNH density.
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By replacing equations (2.1) and (2.2) in (4.2), we obtain

f(x) = a bαλ (1 + λx)α−1 exp{1− (1 + λx)α} [1− exp{1− (1 + λx)α}]b−1

[exp{1− (1 + λx)α}]b+1

× exp

{
−a
[

1− exp{1− (1 + λx)α}
exp{1− (1 + λx)α}

]b}
. (4.5)

By expanding the exponential function in the last quantity in (4.5), we have

exp

{
−a
[

1− exp{1− (1 + λx)α}
exp{1− (1 + λx)α}

]b}
=
∞∑
i=0

(−1)iai

i!

[1− exp{1− (1 + λx)α}]i b

[exp{1− (1 + λx)α}]i b
.

Inserting the above expansion in (4.5) and after some algebra, we obtain

f(x) = a bαλ (1 + λx)α−1 exp{1− (1 + λx)α}

×
∞∑
i=0

(−1)iai

i!

[1− exp{1− (1 + λx)α}](i+1)b−1

[exp{1− (1 + λx)α}](i+1)b+1
. (4.6)

By using the generalized binomial theorem, we can rewrite the quantity

[exp{1− (1 + λx)α}]−[(i+1)b+1] as

{1− [1− exp{1− (1 + λx)α}]}−[(i+1)b+1] =
∞∑
j=0

Γ([i+ 1]b+ j + 1)

j! Γ([i+ 1]b+ 1)

× [1− exp{1− (1 + λx)α}]j .

By inserting the last equation in (4.6) and after some simplifications, the WNH density

function can be expressed as an infinite linear combination of exp-NH densities, namely

f(x) =

∞∑
i,j=0

ωi,j h(i+1)b+j(x), (4.7)

where

ωi,j =
(−1)i b ai+1 Γ([i+ 1]b+ j + 1)

i! j! [(i+ 1)b+ j] Γ([i+ 1]b+ 1)
.

As mentioned before, the ENH model (Lemonte, 2013) is the exp-G distribution by taking for the

baseline the NH model. Figure 4.3 reveals the convergence of S =
∑n

i,j=0 ωi,j for n = 1, 2, . . . , 15

and a = b = 0.5. Equation (4.7) is the main result of this section.
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Figure 4.3: Sum of the coefficients S =
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i,j=0 ωi,j of the linear combination in (4.7).

4.3 Some structural properties

In this section, we obtain some structural properties of the WNH distribution from those

of the ENH model. Our investigation includes the qf, ordinary and incomplete moments, mean

deviations, Bonferroni and Lorenz curves and Rényi entropy.

4.3.1 Quantile function

The qf of X is determined by inverting equation (4.3). Thus, for u ∈ (0, 1), we have

Q(u) =
1

λ


[

1 + log

(
1 +

[
− log(1− u)

a

] 1
b

)] 1
α

− 1

 . (4.8)

Setting u = 0.5 gives the median M = Q(0.5) of X. The qf is a useful tool to obtain

skewness and kurtosis measures and for simulating WNH random variables using the inverse

transformation method. Let U be a standard uniform random variable. Thus, the random

variable X = Q(U) has pdf given by (4.4).
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4.3.2 Ordinary and central moments

The sth ordinary moments of X follows from (4.7) as

µ′s = E(Xs) =

∞∑
i,j=0

wi,j

∫ ∞
0

xs h(i+1)b+j(x) dx.

Using a result in Lemonte (2013), we obtain

µ′s = λ−s
∞∑

i,j,l=0

s∑
k=0

(−1)s+l−k [(i+ 1)b+ j] el+1wi,j

(l + 1)k/α+1

×
(

(i+ 1)b+ j − 1

l

)(
s

k

)
Γ

(
k

α
+ 1, l + 1

)
,

where Γ(a, x) =
∫∞
x za−1e−zdz denotes the complementary incomplete gamma function.

An alternative representation for the ordinary moments of X can be based on the NH qf. We

can write

µ′s = λ−s
∞∑

i,j=0

wi,j [(i+ 1)b+ j]I
(s)
i,j (α, b), (4.9)

where I(s)i,j (α, b) =
∫ 1
0 u

(i+1)b+j−1{[1− log(1− u)]1/α − 1}s du can be evaluated numerically.

The nth central moment of X, say µn, follows as

µn = E(X − µ)n =
n∑
k=0

(−1)k
(
n

k

)
µ′k1 µ

′
n−k.

The cumulants (κn ) of X can be obtained from (4.9) as

κn = µ′s −
n−1∑
k=1

(
n− 1

k − 1

)
κk µ

′
n−k,

where κ1 = µ′1. The standard skewness and kurtosis measures of X can be determined from the

ordinary moments using well-known relationships. The Bowley skewness and the Moors kurtosis

of X can also be defined in terms of the qf, respectively, by

B =
Q(3/4)− 2Q(1/2) +Q(1/4)

Q(3/4)−Q(1/4)
and M =

Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(3/4)−Q(1/4)
,

where Q(·) is given by (4.8). See Kenney and Keeping (1962) and Moors (1988).

Plots of the measures B andM for some parameter values are displayed in Figure 4.4. These

plots indicate that both measures are very sensitive on the shape parameters, thus indicating

the flexibility of the model.
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4.3.3 Incomplete moments

Let ms(y) denote the sth incomplete moment of X, say ms(y) =
∫ y
0 x

sf(x)dx. From Equa-

tion (4.7), we can write

ms(y) = E(Xs) =
∞∑

i,j=0

wi,j

∫ y

0
xs h(i+1)b+j(x) dx.

We can show that ms(y) is given by

ms(y) = λ−s
∞∑

i,j=0

wi,j [(i+ 1)b+ j]

∫ 1−e1−(1+λy)α

0
{[1− log(1− u)]1/α − 1}su(i+1)b+j−1 du.

Alternatively, we can determine ms(y) as

ms(y) = λ−s
∞∑

i,j,l=0

s∑
k=0

(−1)s+l−k [(i+ 1)b+ j] el+1wi,j

(l + 1)k/α+1

×
(

(i+ 1)b+ j − 1

l

)(
s

k

) [
Γ

(
k

α
+ 1, l + 1

)
− Γ

(
k

α
+ 1, (l + 1)(1 + λy)α

)]
.

4.3.4 Mean deviations

The mean deviations about the mean (δ1 = E(|X − µ′1|)) and about the median (δ2 =

E(|X −M |)) of X can be expressed as

δ1 = 2µ′1F (µ′1)− 2m1(µ
′
1) and δ2 = µ′1 − 2m1(M),

respectively, where µ′1 = E(X), M = Median(X) = Q(0.5) is the median, F (µ′1) is easily

determined from (4.3) and m1(y) =
∫ y
0 x f(x)dx is the first incomplete moment. Hence, we can

write

m1(y) = λ−1
∞∑

i,j=0

[(j + 1)b+ i]wi,j

∫ 1−e1−(1+λy)α

0
{[1− log(1− u)]1/α − 1}u(i+1)b+j−1 du.

Alternatively, we can determine m1(y) from the sums for ms(y) given in Section 4.3.3 by

taking s = 1. An important application of the previous result refers to the Bonferroni and

Lorenz curves, which have not only use in economics but also in other fields like reliability,

insurance, and medicine. They are defined, for a given probability π, by B(π) = m1(q)/(πµ
′
1)

and L(π) = m1(q)/µ
′
1, respectively, where q = Q(π) follows from (4.8).
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4.3.5 Rényi entropy

An important measure of variation of the uncertainty of a random variable is the Rényi

entropy. The theory of entropy has been successfully used in a wide variety of applications in

fields like physics, engineering, and economics. For the density function f(x), the Rényi entropy

is defined by

IR(δ) =
1

1− δ
log

[∫ ∞
−∞

f δ(x)dx

]
, (4.10)

for δ > 0 and δ 6= 1. By inserting (4.5) in equation (4.10), we obtain the Rényi entropy of X as

IR = C +
1

1− δ
log

{∫ ∞
0

(1 + λx)δ(α−1) exp{δ[1− (1 + λx)α]} (4.11)

× [1− exp{1− (1 + λx)α}]δ(b−1)

[exp{1− (1 + λx)α}]δ(b+1)
exp

{
−aδ

[
1− exp{1− (1 + λx)α}

exp{1− (1 + λx)α}

]b}
dx

}
,

where C = [δ/(1−δ)] log(a b δ λ). The above integral can be evaluated numerically. By expanding

the exponential function in equation (4.11), we can write

IR = C +
1

1− δ
log

{ ∞∑
i=0

(−1)i(δa)i

i!

∫ ∞
0

(1 + λx)δ(α−1) exp{δ[1− (1 + λx)α]}

× [1− exp{1− (1 + λx)α}]δ(b−1)+ib

[exp{1− (1 + λx)α}]δ(b+1)+ib
dx

}
.

Rewriting [e1−(1+λx)
α
]−δ(b+1)−ib as

{
1− [1− e1−(1+λx)

α
]
}−δ(b+1)−ib

, using the generalized bino-

mial expansion and inserting in the last equation, we have

IR = C +
1

1− δ
log


∞∑

i,j=0

(−1)i(δa)i Γ(δ(b+ 1) + ib+ j)

i! j! Γ(δ(b+ 1) + ib)

×
∫ ∞
0

(1 + λx)δ(α−1) exp{δ[1− (1 + λx)α]}[1− exp{1− (1 + λx)α}]δ(b−1)+ib+jdx
}
.

Using the binomial expansion, since 0 < e1−(1+λx)
α
< 1, in the previous expression, setting

u = (1 + λx)α(i+ δ) and after some algebra, we obtain

IR =
δ

1− δ
log(a b)− log(αλ) +

1

1− δ
log


∞∑

i,j,k=0

(−1)i+k (δa)i eδ+k Γ(δ(b+ 1) + ib+ j)

i! j! (k + δ)[δ(α−1)+1]/αΓ(δ(b+ 1) + ib)

×
(
δ(b− 1) + ib+ j

k

)
Γ

(
δ(α− 1) + 1

α
, k + δ

)}
. (4.12)

Equation (4.12) can be computed numericaly.
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4.4 Maximum likelihood estimation

In this section, we consider the maximum likelihood method for estimating the unknown

parameters of the WNH distribution. Let x1, . . . , xn be a observed sample of size n from the

WNH(a, b, α, λ) distribution given by (4.4). Based on this sample, the log-likelihood function for

the parameter vector θ = (a, b, α, λ) is given by

`(θ) =n log (a bαλ) + b

n∑
i=1

(1 + λxi)
α + (α− 1)

n∑
i=1

log (1 + λxi)

+ (b− 1)

n∑
i=1

log
[
1− e1−(1+λxi)

α
]
− a

n∑
i=1

[
e(1+λxi)

α−1 − 1
]b
− n b. (4.13)

Equation (4.13) can be maximized either directly or by solving the nonlinear likelihood equations

obtained by differentiating (4.13).

The components of the score vector U(θ) = [Ua(θ), Ub(θ), Uα(θ), Uλ(θ)]> can be expresssed

as

Ua(θ) =
n

a
−

n∑
i=1

[
e(1+λxi)

α−1 − 1
]b
,

Ub(θ) =
n

b
+

n∑
i=1

(1 + λxi)
α +

n∑
i=1

log
[
1− e1−(1+λxi)

α
]

− a
n∑
i=1

[
e(1+λxi)

α−1 − 1
]b

log
[
e(1+λxi)

α−1 − 1
]
− n,

Uα(θ) =
n

α
+ b

n∑
i=1

(1 + λxi)
α log[(1 + λxi)

α] +
n∑
i=1

log(1 + λxi)

+ (b− 1)
n∑
i=1

(1 + λxi)
α log(1 + λxi) e1−(1+λxi)

α

1− e1−(1+λxi)α

− a b
n∑
i=1

(1 + λxi)
α log(1 + λxi) e(1+λxi)

α−1
[
e(1+λxi)

α−1 − 1
]b−1
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and

Uλ(θ) =
n

λ
+ (α− 1)

n∑
i=1

xi (1 + λxi)
−1 − b α

n∑
i=1

xi (1 + λxi)
α−1

− a bα
n∑
i=1

xi(1 + λxi)
α−1 e(1+λxi)

α−1
[
e(1+λxi)

α−1 − 1
]b−1

+ α (b− 1)
n∑
i=1

xi(1 + λxi)
α−1 e1−(1+λxi)

α

1− e1−(1+λxi)α
.

The MLE θ̂ of θ can also be obtained by setting Ua(θ), Ub(θ), Uα(θ) and Uλ(θ) equal to zero

and solving these equations simultaneously. Once they can not be solved analytically, we may

use iterative techniques such as Newton-Raphson algorithm for the maximization (Press et al.,

2007).

Alternatively, we have from Ua(θ) = 0 that a semi-closed MLE for a is given by

â(b̂, α̂, λ̂) =
n∑n

i=1

[
e(1+λ̂ xi)α̂−1 − 1

]b̂ .
Letting θp = (b, α, λ) and replacing â in (4.13), we can use the profile log-likelihood to obtain

the MLEs for the other three parameters. It is given by

`(θp) = n log

(
n bαλ∑n

i=1

[
e(1+λxi)α−1 − 1

]b
)

+ b
n∑
i=1

(1 + λxi)
α + (α− 1)

n∑
i=1

log (1 + λxi)

+ (b− 1)
n∑
i=1

log
[
1− e1−(1+λxi)

α
]
− n (b+ 1). (4.14)

The maximization of (4.14) may be simpler than of (4.13) because it involves only three param-

eters.

The MLEs have interesting asymptotic properties that allow to construct approximate confi-

dence intervals and testing hypotheses for the model parameters. For n large, and under standard

regularity conditions, the distribution of (â − a, b̂ − b, α̂ − α, λ̂ − λ) can be approximated by a

multivariate normal distribution N4(0,J(θ̂)
−1

), where J(θ̂) is the observed information matrix
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given by

J(θ) = −∂
2 `(θ)

∂θ ∂θT
=


Ja a Ja b Jaα Jaλ
· Jb b Jb α Jb λ
· · Jαα Jαλ
· · · Jλλ

 .

.

The elements of J(θ̂) can be available from the authors upon request.

4.5 Simulation study

A Monte Carlo experiment is conducted to examine the performance of the MLEs of the

WNH parameters. The simulations are performed as follows:

• The data are generated using the inverse transformation method, where X = Q(U) is

obtained from equation (4.8).

• The parameter values are set at α = 0.1, λ = 1.1 and a and b vary in the set {1.5, 3.0, 6.5}.

• The sample sizes are n = 100, 300 and 500.

• Each sample size is replicated 10,000 times.

• The average estimates and RMSEs are calculated.

The simulation results are given in Table 4.1. As expected, the RMSEs decay when the

sample size increases. Moreover, the mean estimates of the parameters tend to be closer to the

true parameter values for larger values of n. These results are usually expected under first-order

asymptotic theory.

4.6 Applications

In this section, two applications to real survival data are presented. In order to illustrate

the potentiality of the new distribution, we compare the WNH model with ten other related

distributions in terms of model fitting. The considered models are (for x > 0):
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Table 4.1: Mean estimates and RMSEs of the WNH distribution for some parameter values (with
α = 0.1 and λ = 1.1).

Mean estimates RMSEs
n a b â b̂ α̂ λ̂ â b̂ α̂ λ̂

100 6.5 3.0 6.361 2.959 0.111 1.430 1.711 0.630 0.045 1.113
1.5 6.979 1.474 0.127 1.389 2.416 0.349 0.090 1.210

3.0 6.5 3.007 6.320 0.106 1.200 1.096 0.877 0.019 0.702
1.5 3.591 1.552 0.105 1.637 1.659 0.350 0.035 1.291

1.5 6.5 1.361 6.308 0.109 1.211 0.876 0.873 0.023 0.713
3.0 1.666 2.743 0.124 1.242 1.112 0.717 0.057 1.182

300 6.5 3.0 6.360 2.803 0.115 1.030 1.075 0.532 0.041 0.645
1.5 6.493 1.523 0.103 1.450 1.294 0.235 0.020 0.940

3.0 6.5 2.898 6.503 0.101 1.163 0.744 0.501 0.008 0.411
1.5 3.347 1.520 0.101 1.424 1.052 0.267 0.022 1.047

1.5 6.5 1.607 6.512 0.101 1.195 0.687 0.531 0.010 0.499
3.0 1.565 2.834 0.111 1.188 0.901 0.532 0.029 0.722

500 6.5 3.0 6.487 2.973 0.103 1.228 1.015 0.385 0.019 0.627
1.5 6.446 1.535 0.102 1.396 1.162 0.213 0.015 0.839

3.0 6.5 3.009 6.464 0.102 1.106 0.634 0.528 0.010 0.421
1.5 3.161 1.526 0.101 1.396 1.030 0.203 0.015 0.896

1.5 6.5 1.413 6.451 0.102 1.109 0.568 0.418 0.007 0.388
3.0 1.593 2.954 0.105 1.222 0.687 0.390 0.022 0.611

• The EGNH density given by

f(x) = a bαλ
(1 + λx)α−1

[
e1−(1+λx)

α]a{
1−

[
e1−(1+λx)α

]a}1−b .

• The KwNH density given by

f(x) = a bαλ
(1 + λx)α−1

[
e1−(1+λx)

α]a {
1−

[
e1−(1+λx)

α]a}a−1{
1−

[
1− e1−(1+λx)α

]a}1−b .

• The GNH density given by

f(x) =
αλ

Γ(a)
(1 + λx)α−1 [(1 + λx)α − 1]a−1 e1−(1+λx)

α
.

• The WExp density given by

f(x) = a b λ
(

1− eλx
)b−1

e−b λ x−a(e
λx−1)

b

.

• The GPW density given by

f(x) = αλγ (1 + λxγ)α−1 e1−(1+λx
γ)α .
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• The EW density given by

f(x) = αβ λxα−1 exp (−λxα) [1− exp (−λxα)]β−1.

• The ENH density given by

f(x) = αβ λ
(1 + λx)α−1 exp{1− (1 + λx)α}

[1− exp{1− (1 + λx)α}]1−β
.

• The NH density given by (2.2).

• The Weibull density given by

f(x) = αλ (λx)α−1 e−(λx)
α
.

• The Gompertz density given by

f(x) = θ eλx e
θ
λ
(eλx−1).

The parameters of the above densities are all positive real numbers.

The first data set refers to the times of successive failures of the air conditioning system

of a fleet with 213 Boeing 720 jet airplanes (Proschan, 1963). The data were also analyzed

by Adamidis and Loukas (1998) and Ristić and Balakrishnan (2012), among others. The second

data set consists of the service times of 63 Aircraft Windshield (Murthy et al., 2004). The unit

of measurement is 1000 h. These data were studied by Tahir et al. (2015) for fitting the Weibull

Lomax distribution.

Table 4.2 presents the descriptive statistics for both data sets. For the two samples, the

mean is larger than the median and the mode is outlier. The Boeing 720 data have great

variance and amplitude, showing more variability than the Aircraft Windshield. The first data

set presents positive kurtosis, while the second data set has negative one. Moreover, both data

sets present positive skewness, indicating right-skewed data. Note that the WNH model allows

fitting skewed-data, as explained in Section 1.

Tables 4.3 and 4.5 list the MLEs (and the corresponding standard errors in parentheses)

of the unknown parameters for all fitted models to the first and second data sets, respectively.
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Table 4.2: Descriptive statistics for the Boeing 720 and Aircraft Windshield data sets.
Statistics Real data sets

Boeing 720 Aircraft Windshield
Mean 93.14 2.09
Median 57.00 2.06
Mode 14.00 2.50
Variance 11398.47 1.55
Skewness 2.11 0.44
Kurtosis 4.92 -0.27
Minimum 1.00 0.05
Maximum 603.00 5.14
n 213 63

These results are obtained using the AdequacyModel script in R software (Marinho et al., 2016).

We use the simulated-annealing algorithm for maximizing the log-likelihood function for these

models.

We consider the following goodness-of-fit statistics to select the most appropriate model: the

KS statistic and the A∗ and W ∗ corrected statistics. A∗ and W ∗ are tests based on the empirical

cdf, and to obtain them, we can proceed as follows: (i) compute ηi = F (xi,θ) where F is a cdf

with known form, θ is a k-dimensional parameter vector unknown and the xi’s are in ascending

order; (ii) compute yi = Φ−1(ηi) , where Φ(·) is the standard normal cdf and Φ(·)−1 its qf;

(iii) compute ui = Φ{(yi − ȳ)/sy}, where ȳ = n−1
∑n

i=1 yi and s2y = (n − 1)−1
∑n

i=1(yi − ȳ)2;

(iv) calculate W 2 =
∑n

i=1{ui − (2i − 1)/(2n)}2 + 1/(12n) and A2 = −n − n−1
∑n

i=1{(2i −

1) log(ui) + (2n + 1 − 2i) log(1 − ui)} and (v) modify W 2 into W ∗(1 + 0.5/n) and A2 into

A∗ = A2(1 + 0.75/n + 2.25/n2) The lower are them, the better is the model adjustment to the

data. For further details, the reader is referred to Chen and Balakrishnan (1995).

Tables 4.4 and 4.6 provide the values of the goodness-of-fit statistics for all the fitted models

to the Boeing 720 and the Aircraft Windshield data sets, respectively. The WNH model gives

the lowest values of KS, A∗ and W ∗ for both data sets. So, it could be chosen as the best

model among the other known lifetime models, including the generated distributions from the

NH baseline model.

Figure 4.5 displays the histogram and the plots of estimated densities of the three more
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competitive models according to the goodness-of-fit statistics, whereas the plots of estimated

cdfs for these models are displayed in Figure 4.6. The plots confirm that the WNH distribution

yields an effective alternative to other NH generated distributions, such as the KwNH and ENH

models in the first application. It also can be useful against other widely known lifetime models,

such as the EW and Gompertz models in the second data set.

Table 4.3: The MLEs of the model parameters to the Boeing 720 jet airplanes data set.
Distributions Estimates

WNH(a, b, α, λ) 5.6708 2.6781 0.0793 0.9853
(2.4485) (0.2825) (0.0083) (0.4853)

EGNH(a, b, α, λ) 0.0119 9.1082 0.9174 1.4956
(0.0058) (0.6526) (0.0692) (0.4088)

KwNH(a, b, α, λ) 1.5797 0.2124 0.7244 0.1344
(0.3358) (0.0891) (0.0793) (0.0517)

GNH(a, α, λ) 1.3541 0.5726 0.0440
(0.2213) (0.0775) (0.0217)

Wexp(a, b, λ) 2.1559 0.7478 0.0030
(0.2971) (0.0402) (0.0003)

GPW(α, λ, γ) 1.5918 0.2756 14.8971
(0.1918) (0.0466) (2.534)

EW(α, β, λ) 0.0279 0.6187 2.2841
(0.0111) (0.0883) (0.6961)

ENH(α, β, λ) 0.5402 0.0431 1.3862
(0.0633) (0.0152) (0.2059)

NH(α, λ) 0.7256 0.0188
(0.0891) (0.0044)

Weibull(α, λ) 51.9386 0.7593
(4.2992) (0.0429)

Gompertz(θ, λ) 0.0147 0.0021
(0.0035) (0.0009)
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Figure 4.5: Histogram and estimated densities of the (a) WNH, KwNH and ENH models for the
Boeing 720 data set; (b) WNH, EW and Gompertz models for the Aircraft Windshield data set
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Figure 4.6: Estimated and empirical cdfs of the (a) WNH, KwNH and ENH models for the
Boeing 720 data set; (b) WNH, EW and Gompertz models for the Aircraft Windshield data set
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Table 4.4: Goodness-of-fit statistics for the models fitted to the Boeing 720 jet airplanes data
set.

Statistics
Distributions KS A∗ W∗

WNH 0.0284 0.2226 0.0323
EGNH 0.0417 0.3102 0.6932
KwNH 0.0311 0.2285 0.0337
GNH 0.0367 0.2672 0.0373
Wexp 0.2913 1.7808 0.0954
GPW 0.0827 0.5692 0.0850
EW 0.0411 0.2926 0.0389
ENH 0.0335 0.2534 0.0336
NH 0.0782 0.5091 0.0466
Weibull 0.1046 0.6634 0.1775
Gompertz 0.4733 2.8589 0.1397

Table 4.5: The MLEs of the model parameters to the Aircraft Windshield data set.
Distributions Estimates

WNH(a, b, α, λ) 0.2135 1.0479 0.6657 1.3431
(0.0881) (0.2106) (0.1176) (0.4799)

EGNH(a, b, α, λ) 0.0067 9.9244 2.1092 3.9386
(0.0022) (1.3329) (0.1545) (0.6356)

KwNH(a, b, α, λ) 1.2302 0.2046 2.6044 0.4097
(0.3722) (0.0941) (0.4623) (0.1126)

GNH(aαλ) 1.38304 4.5360 0.0916
(0.1867) (1.7030) (0.0412)

WExp(a, b, λ) 2.2251 1.3864 0.1815
(1.0921) (0.1460) (0.0474)

GPW(α, λ, γ) 1.311 4.251 8.979
(0.1753) (4.5984) (9.2221)

EW(α, β, λ) 0.2829 3.3454 0.3407
(0.0373) (1.0606) (0.1439)

ENH(α, β, λ) 5.19228 0.07274 1.42357
(1.7410) (0.0278) (0.2221)

NH(α, λ) 6.08583 0.05458
(2.4754) (0.0242)

Weibull(α, λ) 2.308 1.625
(0.1869) (0.1680)

Gompertz(θ, λ) 0.2065 0.4882
(0.0498) (0.0984)



85

Table 4.6: Goodness-of-fit statistics for the models fitted to the Aircraft Windshield data set.
Statistics

Distributions KS A∗ W∗

WNH 0.0425 0.2812 0.0628
EGNH 0.1114 0.6844 0.7383
KwNH 0.0651 0.3975 0.0799
GNH 0.0697 0.4247 0.0926
WExp 0.0639 0.3907 0.0698
GPW 0.0576 0.3561 0.0877
EW 0.0503 0.3237 0.0739
ENH 0.0763 0.4633 0.0939
NH 0.0754 0.4574 0.1518
Weibull 0.1046 0.6339 0.1095
Gompertz 0.0449 0.3019 0.0675

4.7 Concluding remarks

We introduce the Weibull Nadarajah-Haghighi (WNH) model by inserting the Nadarajah-

Haghighi distribution in the Weibull-G family (Bourguignon et al., 2014). The proposed distri-

bution allows for greater flexibility of the density function than the Nadarajah-Haghighi den-

sity and presents constant, increasing, decreasing, bathtub and upsidedown-bathtub hazard rate

shapes. It has the Weibull exponential and Gompertz distributions as sub-models. We explore

some structural properties of the WNH distribution, estimate its parameters by maximum like-

lihood, perform a simulation study and provide two applications to real lifetime data sets. The

WNH model is quite competitive not only than other NH generated distributions but also to

other widely known lifetime models.
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Chapter 5

The Logistic Nadarajah-Haghighi
distribution

Resumo

Introduzimos uma nova distribuição de três parametros, chamada logistic Nadarajah-Haghighi.

Esta é obtida inserindo a distribuição Nadarajah-Haghighi na família logistic-X, proposta por Tahir

et al. (2016a). A nova distribuição pode acomodar densidade unimodal, superando uma limitação

da distribuição Nadarajah-Haghighi, a qual possui apenas densidade monótona decrescente. A

distribuição proposta também possui função taxa de falha mais flexível que sua baseline, per-

mitindo formas monótonas e de banheira invertida. São obtidas algumas propriedades adicionais

da nova distribuição, incluindo a função quantílica, momentos ordinários e incompletos e tam-

bém os desvios médios e curvas de Lorenz e Bonferroni. O método de máxima verossimilhança

é considerado para estimar os parâmetros do modelo. Um estudo de simulação é realizado para

verificar a precisão das estimativas e a utilidade da nova distribuição é ilustrada através de duas

aplicações a dados reais. O modelo proposto apresenta melhores ajustes que outros modelos sob

a mesma distribuição baseline e também com relação a outros modelos amplamente utilizados

no contexto de análise de sobrevivência.

Palavras-chave: Dados de tempo de vida. Distribuição Nadarajah-Haghighi. Família logistic-X.

Função taxa de falha. Máxima verossimilhança.
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Abstract

We introduce a new three-parameter model called the logistic Nadarajah-Haghighi distribution.

It is obtained by inserting the Nadarajah-Haghighi distribution in the logistic-X family pio-

nnered by Tahir et al. (2016a). The proposed distribution can produce an unimodal density

overcoming a Nadarajah-Haghighi limitation that can only have monotonic decreasing density.

It is also more flexible than the baseline hazard rate function, allowing constant, increasing,

decreasing and upsidedown-bathtub forms. We obtain some structural properties for the new

distribution, including the quantile function, ordinary and incomplete moments, mean deviations

and Bonferroni and Lorenz curves. We present the maximum likelihood estimators for the model

parameters. A simulation study is carried out to verify the precision of the estimates and we

illustrate the usefulness of the new distribution by means of two applications to real data. It pro-

vides consistently better fits than other generated models under the same baseline distribution

and some other widely known lifetime distributions.

Keywords: Hazard rate function. Lifetime data. Logistic-X family. Maximum likelihood.

Nadarajah-Haghighi distribution.

5.1 Introduction

Several authors propose continuous models by adding shape parameter(s) to a baseline dis-

tribution. Tahir and Nadarajah (2015) provide an extensive review of the well-established and

widely-accepted generated families, such as the exp-G, the beta-G by Eugene et al. (2002), the

Kumaraswamy-G by Cordeiro and Castro (2011) and the McDonald-G by Alexander et al. (2012),

among others. According to Tahir and Nadarajah (2015), this parameter induction is useful be-

cause it may allow to improve the goodness-of-fit and explore tail properties of the generated

family.

In this context, Alzaatreh et al. (2013) defined the transformed transform (T -X) class, which

includes all the above-mentioned generators as sub-families. Since then, several other generated

families have been introduced. For example, the exponentiated T -X family by Alzaghal et al.
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(2013), Weibull-G by Bourguignon et al. (2014), Lomax-G by Cordeiro et al. (2014b), the new

Weibull-G by Tahir et al. (2016c) and the odd Burr-G by Alizadeh et al. (2017).

Tahir et al. (2016a) pioneered another competitive class of continuous distributions in the

T -X family, called the logistic-X class (“LX" for short). Let G(x) and g(x) denote, respectively,

cdf and pdf of a baseline model with parameter vector ξ. Consider the logistic cdf H(t) =

(1 + e−λt)−1, for t ∈ IR and λ > 0. The cdf of the LX family is obtained by replacing the

argument t with log{− log[1−G(x)]} in the logistic cdf. Thus, the cdf and pdf of the LX family

are given by

F (x; γ, ξ) =
1

1 + {− log[1−G(x; ξ)]}−γ
(5.1)

and

f(x; γ, ξ) =
γ g(x; ξ)

1−G(x; ξ)

[
1 + [− log(1−G(x; ξ)]−γ

]−(γ+1)

×
{

1 + [− log(1−G(x; ξ)]−γ
}−2

,

respectively. Tahir et al. (2016a) present some general properties and applications of the LX

family. However, there is no much contributed work addressed to specific baselines on such

parameter induction. We can only refer the reader to Tahir et al. (2016a) for a description of

the mathematical properties and applications of the logistic-Fréchet distribution, which follows

from the LX family under the Fréchet baseline.

In this chapter, we introduce a new three-parameter distribution so-called the logistic Nadarajah-

Haghighi (LNH) distribution. It is based on the NH distribution, which is considered as baseline

in the LX family. The NH distribution was introduced by Nadarajah and Haghighi (2011) and

has cdf and pdf given by (2.1) and (2.2), respectively.

Note that the exponential distribution arises as a special case for α = 1. Nadarajah and

Haghighi (2011) emphasize some characteristics of the NH model such as: i) its density is always

monotonically decreasing; ii) its hrf can only have monotonic types; iii) the ability to model data

with mode fixed at zero; iv) it can be interpreted as a truncated Weibull distribution. Some

NH generalizations have been introduced in recent years, such as the GPW (Bagdonavicius and

Nikulin, 2002), the ENH (Lemonte, 2013) and GNH (Bourguignon et al., 2015) distributions.
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Inserting equation (2.1) in (5.1) gives the LNH cdf

F (x) =
[(1 + λx)α − 1]γ

1 + [(1 + λx)α − 1]γ
. (5.2)

The corresponding pdf reduces to

f(x) =
γ αλ (1 + λx)α−1 [(1 + λx)α − 1]γ−1

{1 + [(1 + λx)α − 1]γ}2
. (5.3)

Hereafter, a random variable with density function (5.3) is denoted by X ∼ LNH(γ, α, λ). The

hrf of X becomes

h(x) =
γ αλ (1 + λx)α−1 [(1 + λx)α − 1]γ−1

1 + [(1 + λx)α − 1]γ
.

We provide at least three possible motivations for introducing the LNH distribution. First,

the NH distribution can only have monotonic decreasing pdf, but the LNH density overcomes this

limitation. Figure 5.1 displays some plots of the LNH pdf for some parameter values and reveal

that it can be unimodal, being more flexible than the baseline density. The second motivation

is based on the ability to accommodating upside-down bathtub shape for the hrf, which is not

allowed under the baseline model. Figure 5.2 illustrates this feature by providing plots of the

LNH hrf for some parameter values. The third motivation is about to provide consistently

better fits than other generated models under the same baseline distribution, see the results in

Section 5.9. Considering these motivations, our purpose by introducing the LNH model is to

define a wide flexible distribution with applications to survival analysis and possibly to other

fields like biological sciences, economics, engineering, physics, etc.

The rest of the Chapter is outlined as follows. We derive a linear representation for the LNH

density function in Section 5.2. Some structural properties of the new distribution are explored

in Sections 5.3-5.6. In Section 5.7, we present the maximum likelihood estimators for the model

parameters. A simulation study is performed in Section 5.8. In Section 5.9, we provide two

applications of the LNH distribution and compare it with others related distributions. Finally,

Section 5.10 offers some concluding remarks.
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Figure 5.1: Plots of the LNH density.

5.2 Useful expansions

Tahir et al. (2016a) demonstrated that the logistic-X density function can be expressed as

an infinite linear combination of exp-G densities. It is a desirable feature since the exp-G family

has been widely explored. Tahir and Nadarajah (2015) traced back this family of distributions

to the first half of the nineteenth century, but we can also refer the reader to Gupta et al.

(1998), Mudholkar and Srivastava (1993), Gupta and Kundu (2001) and Sarhan et al. (2013) for

other studies.

By replacing Equation (2.1) in (5.1), we can write the LNH cdf as

F (x) =
1

1 +
{
− log

[
1−

(
1− e1−(1+λx)α

)]}−γ . (5.4)

Let z = 1− e1−(1+λx)
α and consider the following power series (for a < 0)

1 + [− log(1− z)]a = 1 +

[
1 +

a

2
z +

1

24
(3a2 + 5a) z2 +

1

48
(a3 + 5a2 + 6a) z3

+
1

5760
(15a4 + 150a3 + 485a2 + 502a) z4

]
za +O(za+5),

which can be obtained in the Mathematica software.
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Using the last expression in (5.4) and after some algebra, we have

F (x) =
[1− e1−(1+λx)

α
]γ

[1− e1−(1+λx)α ]γ +
∑∞

i=0 pi [1− e1−(1+λx)α ]i
, (5.5)

where the pi’s are given by p0 = 1, p1 = γ/2, p2 = γ (3γ + 5)/24, p3 = γ (γ2 + 5γ + 6)/48,

p4 = γ (15γ3 + 150γ2 + 485γ + 502)/5760, etc.

Note that for any γ > 0 real non-integer, the following expansion holds

[1− e1−(1+λx)
α
]γ =

∞∑
i=0

qi [1− e1−(1+λx)
α
]i, (5.6)

with qi =
∑∞

r=i (−1)i+r
(
γ
r

)(
r
i

)
. Thus, inserting (5.6) in equation (5.5) gives

F (x) =

∑∞
i=0 qi [1− e1−(1+λx)

α
]i∑∞

i=0 υi [1− e1−(1+λx)α ]i
=
∞∑
i=0

ciHi(x), (5.7)

where υi = qi + pi and the coefficients ci’s are determined from the recurrence equation (for

i ≥ 0)

ci =
1

υ0

(
qi −

1

υ0

i∑
l=0

υr ci−l

)

and Hi(x) denotes the exp-G cdf with the NH model as baseline and power parameter i.

Thus, by differentiating (5.7), we can rewrite the LNH density as an infinite linear combina-

tion of exp-NH density functions

f(x) =

∞∑
i=0

ci+1 hi+i(x), (5.8)

where hi+1(x) is the exp-G pdf with the NH model as baseline and power parameter i + 1. As

mentioned before, the exp-NH distribution was pionnered by Lemonte (2013) and is refereed to

as the ENH model. Equations (5.7) and (5.8) are de main results of this section.

5.3 Quantile function

By inverting equation (5.2), we determine the qf of X . Thus, for u ∈ (0, 1), we have

.Q(u) =
1

λ


[

1 +

(
u

1− u

) 1
γ

] 1
α

− 1

 . (5.9)
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If U has a uniform distribution in (0, 1), then Q(U) has pdf given by (5.3). Then, simulating

LNH random variable using the inverse transformation method is straightforward. The qf is

also useful to obtain any quantiles of interest. For example, setting u = 0.5 gives the median

M = Q(0.5) of X.

The Bowley skewness and the Moors kurtosis are defined in terms of the qf, respectively, by

B =
Q(3/4)− 2Q(1/2) +Q(1/4)

Q(3/4)−Q(1/4)
and M =

Q(7/8)−Q(5/8) +Q(3/8)−Q(1/8)

Q(3/4)−Q(1/4)
,

where Q(·) is given by (5.9). See Kenney and Keeping (1962) and Moors (1988).

Figure 5.3 displays the measures B andM for some parameter values of the LNH distribution.

These plots indicate that the both measures are very sensitive to different values of the shape

parameters α and γ, thus indicating the usefullness of the proposed distribution in many practical

situations.
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Figure 5.3: The Bowley skewness (a) and Moors kurtosis (b) of the LNH distribution.
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5.4 Ordinary and central moments

Let X be a random variable having the LNH distribution. Using the result in (5.8), it is easy

to obtain the sth moment of X from the known properties of the exp-G distribution as

µ′s = E(Xs) =
∞∑
i=0

ci+1

∫ ∞
0

xs hi+1(x) dx.

Hence, the moments of X can be obtained in closed-form using the result reported in Lemonte

(2013). Then, we obtain (for s = 1, 2, 3, . . .)

µ′s = λ−s
∞∑
i=0

i∑
j=0

s∑
k=0

(−1)s+j−k (i+ 1) ej+1 ci+1

(j + 1)k/α+1

(
i

j

)(
s

k

)
Γ

(
k

α
+ 1, j + 1

)
, (5.10)

where Γ(a, x) =
∫∞
x za−1e−zdz denotes the complementary incomplete gamma function.

The moments of X can also be obtained from (5.9) as

µ′s = λ−s
∫ 1

0


[

1 +

(
u

1− u

) 1
γ

] 1
α

− 1


s

du.

Using the binomial expansion, since [1 + u1/γ(1 − u)−1/γ ]1/α > 1, and after some algebra, we

obtain

µ′s = λ−s
s∑
i=0

(−1)s−i
(
s

i

)
Ii(α, γ),

where Ii(α, γ) =
∫∞
0 (1 + u1/γ)i/α(1 + u)−2du. Thus, it is easily observed that

• µ′1 = 1
λ(α−1) for γ = 1 and α > 1

• µ′1 → 0 when α→∞

• µ′1 → 21/α−1
λ when γ →∞

• µ′s → 0 when λ→∞, ∀s.

In general, Ii(α, γ) can be evaluated numerically.

The nth central moment of X, say µn, follows as

µn = E(X − µ)n =
n∑
k=0

(−1)k
(
n

k

)
µ′k1 µ

′
n−k.
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The cumulants (κn ) of X can be obtained from (5.10) as

κn = µ′n −
n−1∑
k=1

(
n− 1

k − 1

)
κk µ

′
n−k,

where κ1 = µ′1. The standard skewness and kurtosis measures of X can be determined from the

ordinary moments using well-known relationships.

5.5 Incomplete moments

For lifetime models, it is of interest to know the sth incomplete moment of X, defined as

ms(y) =
∫ y
0 x

sf(x)dx. It follows that

ms(y) = λ−s
s∑
i=0

(−1)s−i
(
s

i

)
I∗i (α, γ; y),

where

I∗i (α, γ; y) =

∫ [(1+λy)α−1]γ

0
(1 + u1/γ)i/α(1 + u)−2du.

An alternative expression for ms(y) takes the form

ms(y) = λ−s
∞∑
i=0

i∑
j=0

s∑
k=0

(−1)s+j−k (i+ 1) ej+1 ci+1

(j + 1)k/α+1

(
i

j

)(
s

k

) [
Γ

(
k

α
+ 1, j + 1

)

− Γ

(
k

α
+ 1, (j + 1)(1 + λy)α

)]
. (5.11)

It is of some interest to know the sth upper incomplete moment of X defined by Ts(y) =

E(Xs|X > y). We can show that Ts(y) is given by

Ts(y) = λ−s
∞∑
i=0

i∑
j=0

s∑
k=0

(−1)s+j−k (i+ 1) ej+1 ci+1

(j + 1)k/α+1

(
i

j

)(
s

k

)

× Γ

(
k

α
+ 1, (j + 1)(1 + λy)α

)
.

An application of Ts(y) is the mean residual lifetime function defined by T1(y) − y, which

represents the expected additional life length for a unit which is alive at age y.
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5.6 Mean deviations

The deviations from the mean and the median are used as measures of the amount of scatter

in a population. The mean deviations about the mean and about the median of X can be

determined as

δ1 =

∫ ∞
0
|X − µ′1| f(x) dx = 2µ′1F (µ′1)− 2m1(µ

′
1)

and

δ2 =

∫ ∞
0
|X −M | f(x) dx = µ′1 − 2m1(M),

respectively, where F (µ′1) follows from (5.2), m1(µ
′
1) denotes the first incomplete moment and

M = Q(0.5) is the median. We can show that µ′1 = [I1(α, γ)− 1] and

m1(M) =

∫ (2/γ−1)γ

0
(1 + u1/γ)i/α(1 + u)−2du.

Expressions for µ′1 and M in closed-form can be easily obtained from equation (5.10) and (5.11),

respectively.

Important applications of the previous results are the Bonferroni and Lorenz curves, which

have not only use in economics but also in other fields like reliability, insurance, and medicine.

They are defined, for a given probability π, by B(π) = m1(q)/(πµ
′
1) and L(π) = m1(q)/µ

′
1,

respectively, where q = Q(π) follows from (5.9).

5.7 Maximum likelihood estimation

The maximum likelihood method is the most commonly technique employed for parameter

estimation. The interesting asymptotic properties and usefulness for constructing confidence

intervals are some advantages of using this procedure. In this section, we provide the procedure

to obtain the MLEs of the unknown parameters for the LNH distribution.

Let x1, . . . , xn be a observed sample of size n from the LNH(γ, α, λ) distribution given by (5.3)

and let θ = (γ, α, λ) be the parameter vector. The log-likelihood for θ based on this sample is
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given by

`(θ) = n log(γ αλ) + (α− 1)

n∑
i=1

log(1 + λxi) + (γ − 1)

n∑
i=1

log[(1 + λxi)
α − 1] (5.12)

− 2

n∑
i=1

log {1 + [(1 + λxi)
α − 1]γ} .

The MLE θ̂ of θ can be determined by maximizing (5.12) . Alternatively, they can be obtained

by setting all components of the score vector U(θ) = [Uγ(θ), Uα(θ), Uλ(θ)]> equal to zero and

solving these equations simultaneously. These components are expressed as

Uγ(θ) =
n

γ
+

n∑
i=1

log[(1 + λxi)
α − 1]− 2

n∑
i=1

[(1 + λxi)
α − 1]γ log[(1 + λxi)

α − 1]

1 + [(1 + λxi)α − 1]γ
,

Uα(θ) =
n

α
+

n∑
i=1

log(1 + λxi) + (γ − 1)

n∑
i=1

(1 + λxi)
α log(1 + λxi)

log {1 + (1 + λxi)α − 1]}

− 2 γ

n∑
i=1

(1 + λxi)
α [(1 + λxi)

α − 1]γ−1 log(1 + λxi)
α

log {1 + [(1 + λxi)α − 1]γ}

and

Uλ(θ) =
n

λ
+ (α− 1)

n∑
i=1

xi (1 + λxi)
−1 + α (γ − 1)

n∑
i=1

xi (1 + λxi)
α−1

(1 + λxi)α − 1

− 2αγ

n∑
i=1

xi (1 + λxi)
α−1[(1 + λxi)

α − 1]γ−1

1 + [(1 + λxi)α − 1]γ
.

Note that these equations cannot be solved in closed-form. Thus, we may apply iterative

techniques such as Newton-Raphson type algorithms for the maximization (Press et al., 2007).

Under standard regularity conditions, we have that
√
n(θ̂− θ) can be approximated by a multi-

variate normal distribution N3(0,J(θ̂)
−1

), where J(θ̂) is the observed information matrix given

by

J(θ) = −∂
2 `(θ)

∂θ ∂θT
=

 Jγγ Jγα Jγλ
. Jαα Jαλ
. . Jλλ

 .

.

The elements of J(θ̂) can be available from the authors upon request.
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5.8 Simulation study

A Monte Carlo experiment is conducted to examine the performance of the MLEs of the LNH

parameters. The simulations are performed as follows:

• The parameter values are chosen.

• The data are generated using the inverse transformation method, where X = Q(U) is

obtained from equation (5.9).

• The sample sizes are n = 100, 300 and 500.

• Each sample size is replicated 10,000 times.

• The average estimates and RMSE are calculated.

The simulation results are given in Table 5.1. As expected, the RMSEs decay when the

sample size increases. Moreover, the mean estimates of the parameters tend to be closer to the

true parameter values for larger values of n. These results are usually expected under first-order

asymptotic theory.

5.9 Applications

In this section, we present two applications to real data sets to illustrate that, in practical

situations, the LNH model can provide “better fits" than other related distributions. The first

data set was reported by Bjerkedal (1960). It is about the survival times of 72 guinea pigs

infected with virulent tubercle bacilli. The data (measured in days) were previous considered

by Gupta et al. (1997) for fitting the lognormal distribution. The second data set represents the

failure times of 20 mechanical components and was reported by Murthy et al. (2004). Cordeiro

and Bourguignon (2016) also considered these data in order to illustrate the importance of the

Ristić-Balakrishnan family of distributions.

Table 5.2 presents the descriptive statistics for the two data sets. For both cases, the mean

is greater than the median and mode. We have positive skewness and kurtosis. The first data
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Table 5.1: Mean estimates and RMSEs for some LNH parameter values (α = 0.1 and λ = 1.1).
Mean estimates RMSEs

n γ α λ γ̂ α̂ λ̂ γ̂ α̂ λ̂

100 0.5 1.8 0.2 0.503 2.030 0.208 0.062 0.719 0.123
0.5 3.2 0.3 0.506 3.692 0.329 0.058 1.718 0.180
0.7 1.3 0.5 0.720 1.416 0.583 0.110 0.524 0.581
1.2 0.8 3.0 1.235 0.941 3.761 0.238 0.736 2.865
1.2 1.5 0.9 1.249 1.896 1.160 0.241 1.395 1.274

300 0.5 1.8 0.2 0.504 1.838 0.208 0.036 0.343 0.067
0.5 3.2 0.3 0.501 3.357 0.307 0.031 0.751 0.099
0.7 1.3 0.5 0.708 1.319 0.532 0.056 0.246 0.174
1.2 0.8 3.0 1.227 0.818 3.377 0.143 0.207 1.538
1.2 1.5 0.9 1.216 1.591 0.943 0.110 0.461 0.377

500 0.5 1.8 0.2 0.503 1.812 0.208 0.028 0.249 0.051
0.5 3.2 0.3 0.500 3.253 0.308 0.025 0.560 0.078
0.7 1.3 0.5 0.705 1.314 0.517 0.044 0.197 0.128
1.2 0.8 3.0 1.215 0.815 3.197 0.109 0.155 1.123
1.2 1.5 0.9 1.203 1.566 0.918 0.078 0.344 0.268

set presents more variability than the second one. It can be noted by observing their variances

and amplitudes.

In terms of model fitting, we compare the LNH distribution with the widely known Weibull,

EW, GPW and NH distributions. We also consider some other generated models under the NH

baseline. These models and their corresponding densities are listed bellow (for x > 0):

Table 5.2: Descriptive statistics for the guinea pigs and mechanical components.
Statistics Real data sets

Guinea pigs Mechanical components
Mean 1.77 0.12
Median 1.50 0.10
Mode 1.25 0.07
Variance 1.07 0.01
Skewness 1.34 3.59
Kurtosis 1.99 12.20
Minimum 0.10 0.07
Maximum 5.55 0.48
n 72.00 20.00
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• The EGNH density given by

f(x) = a bαλ
(1 + λx)α−1

[
e1−(1+λx)

α]a{
1−

[
e1−(1+λx)α

]a}1−b ,

where a > 0, b > 0, α > 0 and λ > 0.

• The GNH density given by

f(x) =
αλ

Γ(a)
(1 + λx)α−1 [(1 + λx)α − 1]a−1 e1−(1+λx)

α
,

where a > 0, α > 0 and λ > 0.

• The GPW density given by

f(x) = αλγ (1 + λxγ)α−1 e1−(1+λx
γ)α ,

where α > 0, λ > 0 and γ > 0.

• The EW density given by

f(x) = αβ λxα−1 exp (−λxα) [1− exp (−λxα)]β−1,

where α > 0, β > 0 and λ > 0.

• The ENH density given by

f(x) = αβ λ
(1 + λx)α−1 exp{1− (1 + λx)α}

[1− exp{1− (1 + λx)α}]1−β
,

where α > 0, β > 0 and λ > 0.

• The NH density given by (2.2).

• The Weibull density given by

f(x) = αλ (λx)α−1 e−(λx)
α
,

where α > 0 and λ > 0.
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Table 5.3: The MLEs of the model parameters to the guinea pigs data set.
Distributions Estimates

EGNH(a, b, α, λ) 0.0093 13.5260 1.9726 4.7183
(0.0032) (1.6167) (0.1442) (0.8815)

LNH(γ, α, λ) 2.3455 3.9430 0.1227
(0.2456) (1.4014) (0.0479)

GNH(a, α, λ) 3.0463 0.9915 1.7350
(0.6225) (0.1704) (0.8591)

GPW(α, λ, γ) 2.8845 0.3791 1.0563
(0.6568) (0.1363) (0.1998)

EW(α, β, λ) 0.8700 1.1610 2.6060
(0.2835) (0.2467) (1.2181)

ENH(α, β, λ) 1.2151 0.7615 3.1451
(0.2866) (0.3381) (0.7583)

NH(α, λ) 4.7831 0.0836
(1.9613) (0.0385)

Weibull(α, λ) 1.9960 1.8280
(0.1361) (0.1588)

Tables 5.3 and 5.5 give the MLEs (with corresponding standard errors in parentheses) for

all the fitted models to the guinea pigs and the mechanical components data sets, respectively.

All these results are carried out using the simulated-annealing algorithm for maximizing the log-

likelihood function, which is disposable in AdequacyModel script in R software (Marinho et al.,

2016).

Tables 5.4 and 5.6 present the A∗, W ∗ and KS statistics. These goodness-of-fit measures

are helpful for selecting the most appropriate model. Since the values of the A∗, W ∗ and KS

statistics are smaller for the LNH distribution compared with those from the other models, we

can conclude that the new distribution fits better than the other models for both data sets.

The histogram and the estimated densities of the three more competitive models according to

the goodness-of-fit statistics are plotted in Figure 5.4. Figure 5.5 displays the plots of estimated

cdfs for these models. Based on these plots, it is possible to confirm the conclusion that the LNH

distribution yields a very competitive alternative to other NH generalizations, such as the GPW

distribution in both data sets and ENH model for the guinea pigs data. The new distribution

also overcomes other widely known lifetime models, such as the EW model in the second data
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Table 5.4: Goodness-of-fit statistics for the models fitted to the guinea pigs data set.
Statistics

Distributions KS A∗ W∗

EGNH 0.0967 0.5701 0.8340
LNH 0.0646 0.3948 0.0808
GNH 0.0965 0.5954 0.0903
GPW 0.0719 0.4587 0.0823
EW 0.0907 0.5628 0.0877
ENH 0.0906 0.5626 0.0853
NH 0.1927 1.1347 0.2354
Weibull 0.1652 0.9727 0.1044

Table 5.5: The MLEs of the model parameters to the mechanical components data set.
Distributions Estimates

EGNH 0.0696 16.0231 2.2595 15.6816
(0.0268) (3.6816) (0.3236) (3.7837)

LNH(γ, α, λ) 4.9800 1.0150 9.4760
(1.0774) (0.3102) (4.0127)

GNH(a, α, λ) 2.4220 1.4000 10.4650
(0.7096) (0.2990) (5.1827)

GPW(α, λ, γ) 5.2867 0.1836 0.06962
(1.3534) (0.0524) (0.0086)

EW(α, β, λ) 20.7950 1.0060 7.1765
(7.4255) (0.1603) (3.0213)

ENH(α, β, λ) 1.0850 17.4880 6.45220
(0.2162) (8.0323) (3.2188)

NH(α, λ) 2.301 2.7750
(0.8734) (1.3102)

Weibull(α, λ) 0.1372 1.6263
(0.0201) (0.2306)

Table 5.6: Goodness-of-fit statistics for the models fitted to the mechanical components data set.
Statistics

Distributions W∗ A∗ KS
EGNH(a, b, α, λ) 0.2815 1.8464 0.9482
LNH 0.0912 0.6825 0.1291
GNH 0.3534 2.2297 0.2833
GPW 0.1381 1.0225 0.2736
EW 0.2078 1.4387 0.2242
ENH 0.2221 1.5210 0.2226
NH 0.4078 2.5059 0.3771
Weibull 0.3943 2.4380 0.2677
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Figure 5.4: Histogram and estimated densities of the (a) LNH, GPW and ENH models for the
guinea pigs data set; (b) LNH, GPW and EW models for the mechanical components data set.
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Figure 5.5: Estimated and empirical cdfs of the (a) LNH, GPW and ENH models for the guinea
pigs data set; (b) LNH, GPW and EW models for the mechanical components data set.



104

5.10 Concluding remarks

We introduce a Nadarajah-Haghighi generated model, which is part of the logistic-X family

pioneered by Tahir et al. (2016a), called the logistic Nadarajah-Haghighi distribution. The

new three-parameter model is more flexible than its baseline distribution because it presents

unimodal density shape and the hazard rate function allows constant, increasing, decreasing and

upsidedown-bathtub forms. We demonstrate that the proposed density can be rewritten as an

infinite linear combination of exponentiated Nadarajah-Haghighi densities and derive structural

properties from this relationship. They include the ordinary and incomplete moments and mean

deviations. We also present the quantile function for the proposed distribution. The maximum

likelihood estimators for the model parameters are obtained and a simulation study is performed.

The usefulness of the new distribution is illustrated by means of two applications to real data. In

both cases, the new model provides consistently better fits than other generated models under

the same baseline distribution and than some other known lifetime distributions. Thus, it may

be a useful alternative in practical situations.
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Chapter 6

Final conclusion

In this thesis, we consider different generating methods for introducing four new distributions

that generalize the Nadarajah-Haghighi (NH) model. They are proposed as alternatives for mod-

eling lifetime data, although they can also be applied in other fields. Some general motivations

for introducing these models are i) to overcome a limitation of the NH density, which can only

be monotonic decreasing; ii) to obtain distributions that accommodate non-monotonic hazard

shapes, since the NH hazard rate function only presents monotonic types and iii) to propose

distributions that might provide ‘better fits’ than some widely known lifetime models and other

NH generalizations.

In Chapter 2, we introduce a new four parameter distribution using the concept of expo-

nentiated (exp-G) models. The called exponentiated generalized power Weibull distribution is

obtained by taking the generalized power Weibull as baseline in the exp-G family. It has nine

known lifetime distributions as special models, including the NH distribution, and can also be

derived from a power transform in the exponentiated Nadarajah-Haghighi distribution. The

motivations for introducing this new model are presented and some mathematical properties are

studied. Furthermore, we obtain the maximum likelihood estimators, perform a simulation study

and illustrate the flexibility of this model by means of an application to a lifetime data set.

In Chapter 3, we use the continuous-continuous compounding approach to define the Nadarajah-

Haghighi Lindley distribution. It is obtained from the minimum between a NH and a Lindley

random variables. Some properties of this distribution are derived, the maximum likelihood
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method is considered to obtain the parameter estimators, a simulation study is carried out and

an application is presented.

Chapters 4 and 5 define the Weibull Nadarajah-Haghighi and the logistic Nadarajah-Haghighi

distributions, respectively. They are obtained by taking the NH distribution as baseline in the

Weibull-G and logistic-X generated families, respectively. Some structure properties of the both

distributions are obtained from the exp-NH properties, such as the moments, incomplete mo-

ments, mean deviations and Bonferroni and Lorenz curves. We also derive explicit expressions for

the quantile function of the models, estimate their parameters by maximum likelihood method,

conduct simulation studies and considere applications to real lifetime data sets.

Due to the NH distribution was recently introduced in the literature, there are several other

generated methods that could be developed considering this model. Additionaly, we list some

studies to be investigated:

• Alizadeh et al. (2017) defined the Odd-Burr generalized family of distributions. We propose

the investigation of the Odd-Burr Nadarajah-Haghighi distribution, obtained by inserting

the Nadarajah-Haghighi model as baseline in this family.

• Using similar approach as Adamidis and Loukas (1998), another future research line is

to introduce the Poisson logistic Nadarajah-Haghighi model by compounding the discrete

Poisson distribution withe the logistic Nadarajah-Haghighi distribution presented in Chap-

ter 5. This distribution could be used as a cure rate survival model, being competitive with

the Poisson gamma Nadarajah-Haghighi distribution (Ortega et al., 2015), among others.
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