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Abstract

In regression analysis a wide range of techniques can be used to investigate the relation-

ship between the response and the regressors. In some situations, two or more competing

models may fit the data equally well. When none of them can be obtained from the

others by imposing parametric restrictions, we say the models are nonnested. In order to

choose between competing nonnested linear regression models, one can use the J and MJ

tests. In this PhD thesis we present an adaptation of such tests to nonnested models in

the class of generalized additive models for location, scale and shape (GAMLSS). Monte

Carlo evidence on the finite sample behaviour of the proposed tests and an application

are reported. We also develop a frequentist approach to the augmented simplex regression

model proposed by Bandyopadhyay, Galvis and Lachos [Bandyopadhyay, D., Galvis, D.

M. & Lachos, V. H. (2014), ‘Augmented mixed models for clustered proportion data’,

Statistical Methods in Medical Research (In Press)]. It can be used when the response

assumes values in [0,1), (0,1] or [0,1] and we call it zero and/or one inflated simplex

regression model. Inference, diagnostics measures and an application are also reported.

Keywords : Nonnested models. GAMLSS. J and MJ tests. Zero and/or one inflated

simplex regression model. Diagnostic measures.



Resumo

Na modelagem de dados por meio de regressão, há uma ampla variedade modelos

que podem ser ajustados para avaliar a relação entre a variável resposta e os regressores.

Em algumas situações, a modelagem pode envolver dois ou mais modelos com ajustes se-

melhantes, embora com especificações distintas. Quando nenhum dos modelos ajustados

pode ser obtido por meio de restrições paramétricas impostas aos outros modelos, dizemos

que eles são não-encaixados. Dois possíveis métodos para selecionar o mais adequado

entre modelos lineares não-encaixados são os testes J e MJ . Nesta tese é apresentada

uma adaptação desses testes para a classe de modelos denominada generalized additive

models for location, scale and shape (GAMLSS). Evidências obtidas a partir de simulações

de Monte Carlo em pequenas amostras e uma aplicação são reportadas. Também é a-

presentada uma abordagem paramétrica para o modelo de regressão simplex aumentado.

Este modelo pode ser ajustado nos casos em que a variável resposta assume valores nos

intervalos [0,1), (0,1] ou [0,1]. Aqui o modelo é chamado de modelo de regressão simplex

inflacionado em zero e/ou um. Inferência, medidas de diagnóstico e uma aplicação também

são apresentados.

Palavras-chave: Modelos não-encaixados. GAMLSS. Testes J e MJ . Regressão simplex;

Regressão simplex inflacionada em zero e/ou um. Medidas de diagnóstico.
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CHAPTER 1

Nonnested hypothesis testing inference for GAMLSS models

Resumo

É comum em situações práticas a obtenção de dois ou mais modelos com ajustes seme-

lhantes, mas com especificações distintas. Se qualquer um dos modelos não puder ser

obtido a partir de restrições impostas sobre os parâmetros que os indexam, dizemos que

estes são não-encaixados. Dois testes usados para avaliar qual dos modelos está correta-

mente especificado em modelos lineares de regressão são os testes J e MJ . Neste capítulo

propomos variantes desses dois testes para a classe de modelos GAMLSS (Generalized Ad-

ditive Models for Location, Scale and Shape). São reportadas evidências de Monte Carlo

para avaliar o comportamento dos testes propostos em amostras finitas. De modo geral, a

variante bootstrap do teste MJ apresentou melhor performance. Uma aplicação empírica

da modelagem da renda líquida mensal na cidade de Munique é também apresentada e

discutida.

13
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1.1 Introduction

Regression theory received the first rigorous mathematical treatment with the devel-

opment of the linear regression model by Pearson (1896). Since then several new models

and inferential procedures were developed, such as the class of generalized linear models

(GLMs) (Nelder & Wedderburn 1972), generalized additive models (GAMs) (Hastie &

Tibshirani 1986, 1990) and beta regression models (Ferrari & Cribari-Neto 2004). Such

classes of models were designed to cope with violations of some of the standard assump-

tions of the linear regression model (e.g., non-normal errors, heteroskedasticity and res-

ponse variable restricted to a subinterval of the real line).

A class of models which has received attention in the past few years is the class of

generalized additive models for location, scale and shape (GAMLSS). It was introduced

by Rigby & Stasinopoulos (2001, 2005) and Akantziliotou et al. (2002) to overcome lim-

itations of the GLMs and GAMs. In GAMLSS the response variable (Y ) is assumed to

belong to a distribution family which includes highly skewed and/or kurtotic continuous

and discrete distributions.

In GAMLSS a general distribution family D is assumed for the response variable

(Y ). In general, the response distribution has four parameters and is denoted by Y ∼

D(µ, σ, ν, τ). The parameters µ and σ are usually the location and the scale parameters,

whereas ν and τ are the shape parameters (e.g., skewness and kurtosis parameters). In

GAMLSS, a submodel is estimated for each parameter related to a linear predictor through

a link function. The submodel can be linear or nonlinear, parametric or semi-parametric

(see Section 1.2). Hence, not only the location but other parameters of the distribution

of Y can be modeled.

Once the model is estimated, practitioners usually carry out hypothesis testing infer-

ence to evaluate whether the data is well represented by the estimated model. However,

it is not uncommon to have at disposal more than one model with different parametric

(or semi-parametric) structures that fits the data equally well. In situations where no

model can be obtained from the others by imposing parametric restrictions the models
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are said to be nonnested. When that happens the usual asymptotic tests, such as the

likelihood ratio (LR), Wald and score tests, cannot be applied to choose the best model

(Cribari-Neto & Lucena 2015).

The literature on nonnested models has its origins in papers written by Sir David Cox

(Cox 1961, 1962), which were revisited by Cox (2013). Three general approaches may be

used for nonnested competing models (Pesaran & Weeks 2001): modified LR procedure

or Cox test; comprehensive models, advocated by Atkinson (1970) and used by Davidson

& MacKinnon (1981); and the encompassing procedure, developed by Deaton (1982) and

Dastoor (1983) and extended by Gouriéroux et al. (1983) and Mizon & Richard (1986).

The most frequently applied nonnested hypothesis test in statistics and econometrics

is the J test (Godfrey 2011, McAleer 1995), which was introduced by Davidson & MacK-

innon (1981). Some extensions and modifications of the test were proposed since then.

Wooldridge (1990) modified the test to make it robust under heterogeneity of unknown

form. Michelis (1999) obtained the asymptotic null distribution of J test statistic for

regression models with almost orthogonal nonnested regressors. Davidson & MacKin-

non (2002) analyzed the finite-sample distribution of the J test statistic. Sapra (2008)

proposed a modification on J test with superior finite sample performance when there

are outliers in the data. Kelejian (2008), Kelejian & Piras (2014), Burridge & Fingleton

(2010) and Piras & Lozano-Garcia (2012) studied the finite sample performance of J test

using spatial data. Ghali et al. (2011) came up with a Bayesian variant of J test. Ra-

malho et al. (2011) evaluated the finite sample performance of nonnested hypothesis tests

for choosing the link function of binary response models. Hagemann (2012) proposed a

modification of the J test that avoids sequential testing and ambiguous outcomes: the

MJ test. Cribari-Neto & Lucena (2015) adapted the J and MJ tests for beta regression

models.

In GAMLSS, researchers may have at disposal two or more competing models with

different regressors, link functions, or both of them. The models can also differ in the way

nonparametric components are used. These differences may take place in one or more
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submodels. Notice that the J and MJ tests as defined in literature are not suitable for

these situations because they have been developed for linear regressions. The chief goal

of this chapter is to present variants of J and MJ tests for GAMLSS models and evaluate

their finite sample performance using Monte Carlo simulations. The tests were performed

in the simulations for competing GAMLSS models that differ in the regressors and link

functions. We also considered bootstrap-based testing inference.

This chapter is organized as follows. Section 1.2 introduces the GAMLSS. The J and

MJ tests and their GAMLSS variants are presented in Section 1.3. Numerical results

are presented and discussed in Section 1.4. In Section 1.5, we present and discuss an

application using real (not simulated) data. Finally, Section 1.6 contains some concluding

remarks.

1.2 The GAMLSS models

Let y = (y1, y2, . . . , yn)> be a set of independent observations yi, i = 1, 2, . . . , n, each

one with distribution D(θθθi), where θiθiθi = (θ1i, θ2i, θ3i, θ4i)
> = (µi, σi, τi, νi)

> is a vector of

four distribution parameters. D is a probability distribution that can be discrete, continu-

ous or mixed. Each yi has probability (density) function (p.d.f.) f(yi|θθθi). The parameters

µi and σi are generally interpreted as the location and scale parameters whereas νi and

τi are shape parameters (for example, skewness and kurtosis parameters). In a GAMLSS

model each distribution parameter can be written as a function of regressors.

Let gk(·), k = 1, 2, 3, 4, be known, strictly increasing and twice differentiable func-

tion. In the GAMLSS class of models introduced by Rigby & Stasinopoulos (2005), the

distribution parameters are related to the regressors by

gk(θθθk) = ηηηk = Xkβββk +

Tk∑
t=1

Ztkγγγtk, (1.1)
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that is,

g1(µµµ) = ηηη1 = X1βββ1 +

T1∑
t=1

Zt1γγγt1,

g2(σσσ) = ηηη2 = X2βββ2 +

T2∑
t=1

Zt2γγγt2,

g3(ννν) = ηηη3 = X3βββ3 +

T3∑
t=1

Zt3γγγt3,

g4(τττ) = ηηη4 = X4βββ4 +

T4∑
t=1

Zt4γγγt4,

where µµµ, σσσ, ννν and τττ and ηηηk are vectors of length n, βββk = (β1k, β2k, . . . , βTkk) is a vector

of parameters of length Tk, Xk and Ztk are known fixed matrices of regressors of order

n×Tk and n×qtk, respectively. γγγtk is a qtk-dimensional random variable with distribution

γtk ∼ Nqtk(0,G
−1
tk ), where G−1

tk is a (generalized) inverse of a qtk × qtk symmetric matrix

Gtk = Gtk(λλλtk). Gtk may depend on a vector of hyperparameters λλλtk. If Gtk is singular

then γγγtk have improper prior density function proportional to exp(−1
2
γγγ>tkGtkγγγtk), if Gtk is

not singular then γtk follows a qtk-dimensional multivariate normal distribution with mean

0 and variance-covariance matrix G−1
tk . βββk and γγγtk are called, respectively, parametric

vectors and random effects parameters.

The GAMLSS class contains important submodels. When Tk = 0 in Equation (1.1),

the model is fully parametric, called simple parametric linear GAMLSS, and given by

gk(θθθk) = ηηηk = Xkβββk. (1.2)

Notice that θθθk, for k = 1, 2, 3, 4, contains the distribution parameter vectors µµµ, σσσ, ννν and

τττ . If Ztk = In, where In is the n × n identity matrix, and γγγtk = htk = htk(xtk) for all

combinations of t and k, model (1.1) becomes

gk(θθθk) = ηηηk = Xkβββk +

Tk∑
t=1

htk(xtk), (1.3)
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where xtk (t = 1, 2, . . . , Tk) is an n-vector. Here, htk is an unknown function of Xtk and

htk = htk(xtk) is the vector that contains htk evaluated at xtk. Model (1.3) is called linear

semi-parametric additive GAMLSS.

Model (1.3) may be extended to include nonlinear parametric terms in each submodel.

It is expressed by (Rigby & Stasinopoulos 2006)

gk(θθθk) = ηηηk = hk(Xk,βββk) +

Tk∑
t=1

htk(xtk), (1.4)

where hk, k = 1, 2, 3, 4, is a nonlinear function and Xk is a matrix of known regressors

of order n × Tk. Model (1.4) is called nonlinear semi-parametric additive GAMLSS. If

Tk = 0 for all k = 1, 2, 3, 4, i.e., the submodels do not include additive terms, Model (1.4)

reduces to a nonlinear parametric GAMLSS model, expressed by

gk(θθθk) = ηηηk = hk(Xk,βββk). (1.5)

Further, if hk(Xk,βββk) = X>k βββk, for k = 1, 2, 3, 4 and i = 1, 2, . . . , n, Equation (1.5)

becomes the linear parametric model presented in (1.2). Any combination of Models

(1.2) and (1.5) is called parametric GAMLSS model. The models above can be extended

for p (p > 4) parameters, that is., k = 1, 2, . . . , p.

The R software (R Development Core Team 2011) has packages available to deal with

GAMLSS models. The additive functions htk admitted in the GAMLSS packages are

cubic splines, penalized splines, fractional polynomials, power polynomials, loess curves,

varying coefficient terms, among others (Stasinopoulos & Rigby 2008).

It is noteworthy that not necessarily all the distribution parameters need to be mod-

eled using regressors. Additionally, Rigby & Stasinopoulos (2005) emphasize that the

GAMLSS is more general than GLM, GAM or GAMM, since the response variable is not

restricted to the exponential family distribution and all parameters may be modeled in

terms of fixed and random effects.

The form of the distribution which can be assumed for the response variable may be
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very general. In the GAMLSS package for the R software there are several implemented

continuous and discrete distributions. The implemented distributions are indexed by one

parameter (such as the exponential and Poisson distributions), two parameters (such as

the beta, Weibull and beta-binomial distributions), three parameters (e.g., generalized

gamma, reverse Gumbel and Sichel distributions) or four parameters (e.g., the Box-Cox

t (BCT) and generalized beta type 1 distributions) (Rigby et al. 2014).

1.2.1 Estimation

Estimation of βββk, k = 1, 2, 3, 4, and of the random effects parameters γγγtk, t =

1, 2, . . . , Tk, is performed by maximizing the penalized likelihood function

`pen = `− 1

2

p∑
k=1

Tk∑
t=1

λtkγγγ
>
tkGtkγγγtk, (1.6)

for fixed values of the smoothing hyper-parameters λtk’s. In Equation (1.6), the term

` =
∑n

i=1 log[f(yi|θθθi)] is the log-likelihood function. More details on how the penalized

log-likelihood `pen is maximized can be found in Stasinopoulos & Rigby (2008). Note that

for parametric GAMLSS models, that is, models (1.2) and (1.5), `pen reduces to `, and βββk

is estimated by maximizing the log-likelihood function `.

Two algorithms may be used in R in order to maximize (1.6): the CG and RS algo-

rithms. The former is a generalization of the Cole & Green (1992) algorithm. It uses

the first and the second (expected or approximated) order and cross derivatives of the

likelihood function with respect to the distribution parameters θθθ = (µ, σ, ν, τ)>. For para-

metric GAMLSS models the CG algorithm is equivalent to Fisher’s scoring method. If the

parameters are orthogonal the cross derivatives of the log-likelihood function are 0. In

this case, the RS algorithm is more suited. It is a generalization of the algorithm used by

Rigby & Stasinopoulos (1996a, 1996b) for adjusting mean and dispersion additive models

(MADAM), which does not uses cross derivatives. It is worth pointing out that the RS

algorithm is not a particular case of the CG algorithm. Further details on both algorithms
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can be found in Rigby & Stasinopoulos (2005).

1.2.2 Model selection

In order to compare different nested models, that is, when one model can be obtained

from the others by imposing parametric restrictions, the global deviance or the generalized

Akaike information criterion can be used. They are defined, respectively, as GD = −2ˆ̀

and GAIC = −2ˆ̀+ (φ.df), where ˆ̀ =
∑n

i=1 log[f(yi|θ̂θθi)] is the maximized log-likelihood

function, φ is a penalization term and df denotes the total (effective) degrees of freedom

of the model. When φ = 2, GAIC reduces to the usual Akaike information criterion (AIC)

and when φ = log(n) it equals the Schwartz Bayesian criterion (SBC). The SBC tends to

favor more parsimonious models.

Consider two parametric GAMLSS models M0 and M1, where M0 is a particular case

of M1. Both models can be compared using the generalized LR test statistic given by

Λ = GD0 −GD1, (1.7)

where GD0 and GD1 are the global deviances of M0 and M1, respectively. GD0 and

GD1 have df0 and df1 degrees of freedom, respectively. The Λ statistic has asymptotic

χ2 distribution under the null hypothesis that M0 is the correct model, the distribution

number of degrees of freedom being d = df0 − df1. When models M0 and M1 contain

nonparametric additive terms the procedure proposed by Hastie & Tibshirani (1990) to

compare nested GAMs can be used.

In order to evaluate the goodness-of-fit of GAMLSS models, the generalized pseudo

R-squared of Nagelkerke (1991) can be used. It is defined as

R2 = 1−

(
L(0)

L(θ̂)

)2/n

,

where L(0) is the likelihood of the null model (only a constant is fitted to all parameters)
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and L(θ̂) is the current fitted model. This definition is also referred to as the Cox and

Snell R2.

The GAIC and SBC cannot be used to select a model from a set of nonnested candidate

models. In the next section we shall develop tests that can be used with nonnested models.

1.3 Nonnested hypothesis tests for GAMLSS models

Strategies have been proposed on literature for choosing a model from a set of regres-

sion nonnested linear models. The J test proposed by Davidson & MacKinnon (1981) is

one of the most commonly used tests. Suppose we haveM (M > 2) matrices of regressors

that are associated toM competing nonnested regression models for the response variable

y = (y1, y2, . . . , yn)>. The J test is performed by extending the model under evaluation

using fitted values from the competing models. If the additional terms do not improve

the model fit considerably, the model is not rejected. The artificial (augmented) model is

y =

1−
M∑
l=1
l 6=m

λl

Xmθm +
M∑
l=1
l 6=m

λlXlθ̂l + u, (1.8)

where λl, l = 1, . . . ,M , is a scalar; Xm is the covariates matrix (of dimension n × km)

of the mth model; θm is a vector containing km unknown parameters; θ̂l is the the least

squares estimator of the parameter vector of the lth model (i.e., θ̂l = (X>l Xl)
−1X>l y) and

u is a vector of random errors.

The J test consists in verify the validity of Model m against the M − 1 alternative

models by testing λl = 0 (l 6= m) in Equation (1.8). Let

ωm = n−1/2
(
y>PlMmy

)
l∈M \{m}

and

Σ̂m = n−1
(
y>PlMmΩ̂mMmPl′y

)
l,l′∈M \{m}

,
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where M = {1, . . . ,M}, Pm = Xm(X>mXm)−1X>m,Mm = In−Pm and Ω̂m = diag{û2

1,m, . . . ,

û2
n,m} is a diagonal matrix that contains the square residuals (û2

i,m = yi− x>i,mθ̂m). The J

statistic can be written as (Hagemann 2012)

J = ω>mΣ̂−1
m ωm. (1.9)

The test statistic in Equation (1.9) is asymptotically χ2
M−1-distributed under the null

hypothesis.

Model m is rejected if its fit is considerably improved by adding fitted values from

the competing models as additional regressors. Otherwise, Model m is not rejected.

The testing strategy consists of adding artificial regressors, that are obtained from the

competing models, and then testing their exclusion. Notice that the test is sequentially

applied for each candidate model. For example, when there are two competing nonnested

models, each model should be tested against the other. The test may suggest that more

than one model is not rejected.

In order to avoid sequential testing, Hagemann (2012) introduced the MJ test. The

test is based on the idea that if the correct model (m∗) is in the set of candidate models, its

associated J statistic has a well-defined asymptotic null distribution, whereas the other J

statistics diverge. However, ifm∗ is not in the set of candidate models, all statistics diverge

to ∞ as the sample size increases. Therefore, the model with the smallest J statistic is

the natural candidate to be taken as the correct model. Moreover, all candidate models

are safely rejected if the smallest J statistic is large. The MJ test is then useful to test

the null hypothesis that the correct model is on of the candidate models. Notice that no

sequential testing is needed. The test also provides a model selection procedure: if the

null hypothesis is not rejected by the MJ test, the model with the smallest J statistic can

be selected as the true model. Such a model selection strategy is asymptotically correct,

that is, it selects the correct model asymptotic with probability equal to one. Readers are

referred to (Hagemann 2012) for more details.



23
Given M nonnested models, the MJ test statistic is defined as

MJ = min{J1, . . . , JM}, (1.10)

where Jm, m = 1, 2, . . . ,M , is given in Equation (1.9). Under certain regularity conditions

(see Cox & Hinkley (1974), p. 281, for futher details) and under the null hypothesis ,

if the correct model m∗ is among the candidate models, the asymptotic distribution of

Jm∗ is χ2
M−1 (Hagemann 2012). Furthermore, for every model m ∈ M \{m∗} and for all

a ∈ R, limn→∞P(Jm ≥ a) = 1. Therefore, the model that corresponds to the smallest

J statistic is the only candidate for true model. At the α significance level, the MJ test

is carried out as follows: (1) for each candidate m ∈ M , estimate the augmented model

given in Equation (1.8) and compute the corresponding J test statistic; (2) compute the

MJ statistic using Equation (1.10); (3) reject the null hypothesis H0 : m∗ ∈ M (the

correct model is one of the candidate models) in favor of H1 : m∗ /∈ M (the correct model

is none of the candidate models) if MJ > χ2
1−α,M−1, where χ2

1−α,M−1 is the 1−α quantile

of the χ2
M−1 distribution.

Notice that MJ statistic has the same asymptotic null distribution as Jm∗ , the J

statistic for the correct model m∗, whereas the M − 1 test statistics diverge.

Let m̂ denote the model associated to the smallest MJ statistic. If the null hypothesis

is not rejected, that is, there is evidence that m∗ ∈ M , then m̂ is the candidate for

m∗. This model selection procedure is consistent when the correct model is one of the

candidates.

1.3.1 J and MJ tests for GAMLSS models

Both J and MJ tests were developed for the linear regression model. Hereafter we

consider their use in GAMLSS models. Nonnested GAMLSS models may differ in re-

gressors and/or link functions or have different probability distributions for the response

variable. Suppose the interest lies in testing M competing nonnested GAMLSS models.
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That is, we want to choose a model from H1,H2, . . . ,HM , such that Hm is one of the

models defined in Equations (1.1)-(1.5). For simplicity, we wish to test M nonnested

simple parametric linear GAMLSS models, that is, we are interested in choosing a model

from H1,H2, . . . ,Hm, such that, for m = 1, 2, . . . ,M ,

Hm : g1m(µµµ) = ηηη1m = X1mβββ1m,

g2m(σσσ) = ηηη2m = X2mβββ2m,

g3m(ννν) = ηηη3m = X3mβββ3m,

g4m(τττ) = ηηη4m = X4mβββ4m.

(1.11)

Let δµ(m), δσ(m), δν(m) and δτ(m) be the number of submodels for µ, σ, ν and τ that

differ from the corresponding submodel in the mth model (Hm). For testing Model Hm

using the J test, one first estimates the parameters in the remaining models, and then

includes the estimated predictors η̂ηη1r, η̂ηη2r, η̂ηη3r and η̂ηη4r (r = 1, 2, . . . ,M ; r 6= m) that

differ from Hm as additional regressors in its respective submodels. The LR J statistic

for testing the joint exclusion of η̂ηη1r, η̂ηη2r, η̂ηη3r and η̂ηη4r (r = 1, 2, . . . ,M ; r 6= m) is

Jm = 2{ˆ̀m − ˜̀
m}, (1.12)

where ˆ̀
m and ˜̀

m are the (penalized) log-likelihood functions, defined in Equation (1.6),

evaluated at the maximum likelihood estimators for the augmented model and for the

respective mth model (Hm), respectively. Note that δµ(m), δσ(m), δν(m) and δτ(m) additional

regressors are included in the submodels for µ, σ, ν and τ , respectively. Hence, the total

number of regressors included in the augmented model is δm = δµ(m) +δσ(m) +δν(m) +δτ(m).

The model specified in Hm is rejected at significance level α when Jm > χ2
1−α,δm .

For instance, suppose there is interest in testing two nonnested GAMLSS models, H1

and H2, which differ in the µ and σ submodels. In order to test H1 using J test, the

parameters of Model H2 are estimated and the estimated linear predictors (η̂12 and η̂22)
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are included in the respective submodels of the model under test (Model H1). Note that

δµ(m) = 1, δσ(m) = 1 and δν(m) = δτ(m) = 0, for m = 1, 2. The augmented model is then

estimated and the J1 statistic given in Equation (1.12) is computed. Model H1 is rejected

at significance level α if J1 > χ2
1−α;2 (since δ1 = 2). For testing H2, one includes η̂11 and

η̂21 as additional regressors in the Model H2 and test their joint exclusion.

If the competing models have a different number of submodels, only the submodels

with regression structures in both models are considered. For example, H1 has three

submodels (one for µµµ, one for σσσ and one for ννν) and H2 has two submodels (one for µµµ

and one for σσσ), only the submodels for µµµ and σσσ are to be considered in H1 and H2 when

performing the J test.

For nonnested models with different distributions for the response variable, the respec-

tive linear predictors are included in the submodels with regression structure. Suppose, for

instance, that two models were estimated. For Model HGU it is assumed that the response

variable has Gumbel(µ, σ) distribution (Crowder et al. 1991, p. 17) and for model HBCT

it is assumed the Box-Cox t distribution with parameters µ, σ, ν and τ , BCT(µ, σ, ν, τ)

(Rigby & Stasinopoulos 2006). In order to perform the J test for HGU and HBCT , only

the linear predictors of the submodels for µ and σ are included in the respective com-

peting submodels and tested the exclusion. Here, the JGU and JBCT statistics have χ2

distribution with 2 degrees of freedom.

Suppose there are M nonnested GAMLSS models under consideration. To perform

the MJ test, one must compute the J test statistic for each model and then set MJ =

min{J1, J2, . . . , JM}, where Jm (i = 1, 2, . . . ,M) is defined in Equation (1.12). The null

hypothesis that the correct model is in the set of candidate models (H1,H2, . . . , HM)

is rejected if MJ > χ2
1−α,s, where s is the number of degrees of freedom in the J test

corresponding to the smallest J test statistic. Suppose the MJ test is to be performed for

testing two nonnested GAMLSS models (H1 and H2) with differences in three submodels.

After computing the J statistic for each model, the statisticMJ = min{J1, J2} is obtained.

If MJ > χ2
1−α,3 (notice that δ(m) = 3 for m = 1, 2), there is no evidence that one of the
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model is the correct model. If the null hypothesis is not rejected, the model corresponding

to the minimal J statistic is selected as the correct model.

The null distributions of J and MJ can be poorly approximated by their asymptotic

counterpart (χ2) in small sample sizes. Improved hypothesis testing inference can be

achieved by using the bootstrap method (Fan & Li 1995, Godfrey 1998, Hagemann 2012).

Let y = (y1, y2, . . . , yn)> be a vector of independent random variables with a certain

distribution, yi ∼ D(µi, σi, νi, τi), i = 1, 2, . . . , n. The bootstrap J test for testing the

GAMLSS model H1 against H2, with differences in one submodel, say the submodel for

θθθi, can be outlined as follows:

1. Estimate Model H2, obtain the η̂ηηi2 and include it as an additional regressors in

model H1. Estimate the augmented model.

2. Compute the J test statistic.

3. Generate a bootstrap sample, y∗, with y∗i
ind∼ D(µ̂i, σ̂i, ν̂i, τ̂i), where µ̂i, σ̂i, ν̂i and

τ̂i are the (penalized) maximum likelihood estimates of the parameters that index

Model H1.

4. Estimate the augmented model using y∗ as response variable and compute J∗.

5. Execute steps (3) and (4) B times, where B is a large positive integer.

6. Compute ϕ1−α, the 1− α quantile of all bootstrap test statistics (J∗1 , J∗2 , . . . , J∗B).

7. Reject Model H1 at significance level α if J > ϕ1−α.

The decision rule can also be expressed using the bootstrap p-value, given by

p∗ =
#J∗b > J

B
, b = 1, 2, . . . , B,

where # denotes the cardinality of a set and J∗b is the J statistic computed using the bth

bootstrap sample. Model H1 is rejected if p∗ is smaller than the chosen nominal level. For

testing H2 and for more than two nonnested models (M > 2), the procedure is similar.
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The bootstrap MJ test is performed as follows.

1. Compute the MJ statistic as describe above.

2. Generate a bootstrap sample, y∗, with y∗i
ind∼ D(µ̂i, σ̂i, ν̂i, τ̂i), where µ̂i, σ̂i, ν̂i and

τ̂i are the (penalized) maximum likelihood estimates of the parameters that index

Model H1.

3. Compute the bootstrap MJ statistic, MJ∗.

4. Execute steps (2) and (3) B times.

5. Compute ϕ1−α, the 1 − α quantile of all MJ bootstrap test statistics (MJ∗1 ,MJ∗2 ,

. . . ,MJ∗B).

6. Reject the null hypothesis that the true model is in the set of candidates if MJ >

ϕ1−α.

The tests described in this section for GAMLSS models are extensions of the J andMJ

tests introduced by (Cribari-Neto & Lucena 2015) for varying dispersion beta regression

models.

1.4 Numerical results

In order to evaluate the finite sample behavior of the J and MJ tests, several Monte

Carlo Simulations were performed considering M = 2 GAMLSS models with different

regressors, link functions and distributions. The finite sample performances of the tests

and their bootstrap versions were evaluated. All tests are based on the LR statistic. The

covariates values were chosen as random draws from the standard uniform distribution,

U(0, 1), and were held constant all through the experiment. The number of Monte Carlo

and bootstrap replications were 10,000 and 1000, respectively. The tests nominal levels

were α = 1%, 5% and 10%. All the simulations were carried out using R software;

https://www.r-project.org/. In order to speed up the execution time of the programs,

https://www.r-project.org/
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the function enableJIT(3) from the library compiler were used. The GAMLSS package

were used.

The sample sizes considered were n = 25, 50, 75 and 100. For each regressors we

generated 10 observations and then replicated the necessary number of times to achieve

the sample size. This was done to guarantee that the degree of heterogeneity is held

constant for all sample sizes.

We considered 10 different scenarios with two competing models with different regres-

sors, link functions and distributions. The models were always defined as H1 against H2

and the true data-generating process corresponds to Model H1. In the first six scenarios

the probability distribution assumed for the response variable in both competing models

is Weibull. The parametrization used in the p.d.f. is such that µ is the mean of the

distribution. For a random variable Y ∼Weibull(µ, σ), its p.d.f. is given by (Rigby et al.

2014)

f(y|µ, σ) =
σ

φ

(
y

φ

)σ−1

exp

{
−
(
y

φ

)σ}
, (1.13)

y > 0, µ > 0 and σ > 0 and φ = µ/Γ( 1
σ

+ 1), where Γ(·) is the gamma function. The

distribution mean is µ and its variance is µ2
{

Γ( 2
σ

+ 1)
[
Γ( 1

σ
+ 1)

]−2 − 1
}
.

Table 1.1 presents the tests null rejection rates (entries are percentages) for competing

GAMLSS models with Weibull distributed response. We present numerical results for

three scenarios, namely: competing models with different regressors in the µ submodel

(SC1), in the σ submodel (SC2) and in both submodels (SC3). Both models are simple

parametric GAMLSS models.

The competing models in the scenario SC1 are

H1 : log(µi) = β0 + β1xi1 + β2xi2 and H2 : log(µi) = β0 + β1xi1 + β3xi3

log(σi) = γ0 + γ1xi1 log(σi) = γ0 + γ1xi1,

i = 1, 2, . . . , n. Model H1 uses the regressors xi1 and xi2 in the µ submodel whereas in

H2 the regressors are xi1 and xi3. The parameter values are β0 = 1.0, β1 = 2.7, β2 = 1.6,
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γ0 = 1.4 and γ1 = 2.0.

Under scenario SC2, the simple parametric GAMLSS models under evaluation are

H1 : log(µi) = β0 + β1xi1 + β2xi2 and H2 : log(µi) = β0 + β1xi1 + β2xi2

log(σi) = γ0 + γ1xi1 + γ2xi3 log(σi) = γ0 + γ1xi1 + γ3xi4,

i = 1, 2, . . . , n. The models differ in the σ submodel (H1 has xi1 and xi3 as regressors

whereas H2 uses xi1 and xi4). The parameter values are β0 = 1.0, β1 = 2.7, β2 = 1.6,

γ0 = 1.0 and γ1 = 2.0 and γ2 = 1.3.

In the scenario SC3 the competing models are

H1 : log(µi) = β0 + β1xi1 + β2xi2 and H2 : log(µi) = β0 + β1xi1 + β3xi3

log(σi) = γ0 + γ1xi1 + γ2xi4 log(σi) = γ0 + γ1xi1 + γ3xi5,

i = 1, 2, . . . , n. The models differ in both µ and σ submodels. The submodels have two

regressors and differ in just one of them when compared to the corresponding submodel.

Since in scenario SC1 the models differ only in µ submodel, δµ(m) = 1 and δσ(m) = 0,

m = 1, 2. In SC2, we have δµ(m) = 0 and δσ(m) = 1, because the difference lies in the

σ submodel. Then, in both SC1 and SC2 the critical values were obtained from the χ2

distribution with δm = δµ(m) + δσ(m) = 1 degree of freedom. For SC3, δµ(m) = 1 and

δσ(m) = 1, and the number of degrees of freedom is δ(m) = 2, m = 1, 2.

The results in Table 1.1 contain results relative to scenarios SC1–SC3. The bootstrap

tests clearly outperform the corresponding tests based on asymptotic critical values. Large

size distortions are observed when the sample size is small and the tests are based on χ2

critical values. For example, when n = 25 and α = 0.05 in SC3, the null rejection rates of

the J andMJ tests are close to 13%. In contrast, the null rejection rates of the bootstrap

tests are close to 5%. The tests based on asymptotic critical values are liberal, except for

the MJ test in scenario SC2.

We computed the mean, the standard deviation and the coefficient of variation of the

estimates. Table 1.2 contains such results for n = 50 for scenario SC1. Notice that the
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mean estimates are close to the true parameters values. For the remaining models and

other sample sizes the results are similar.

Table 1.1: Null rejection rates (%) for scenarios SC1, SC2 and SC3.

Scenario α = 1% α = 5% α = 10%

n 25 50 75 100 25 50 75 100 25 50 75 100
SC1 J 2.3 1.8 1.5 2.2 9.1 6.5 5.5 6.8 15.3 12.3 10.7 13.0

Jboot 1.5 1.4 1.3 1.5 4.8 5.3 4.7 5.2 9.8 9.2 9.6 10.2
MJ 2.3 1.8 1.5 2.2 9.1 6.5 5.5 6.8 15.3 12.3 10.7 13.0
MJboot 1.5 1.3 1.6 1.5 4.8 5.3 4.7 5.2 9.8 9.2 9.6 10.2

SC2 J 3.4 1.5 2.2 1.2 10.6 6.9 5.6 5.8 16.2 11.9 10.6 12.7
Jboot 1.3 1.5 1.4 1.3 5.3 5.2 5.3 5.2 10.0 9.5 9.6 10.4
MJ 0.7 0.5 1.1 0.4 3.8 3.1 3.4 3.8 6.3 7.1 7.1 10.2
MJboot 0.9 1.3 1.3 1.1 5.4 4.9 4.9 5.2 9.7 9.3 9.5 10.3

SC3 J 4.7 1.9 1.2 1.3 13.2 7.8 6.4 6.1 21.4 13.7 12.8 12.4
Jboot 1.8 1.5 1.0 1.1 5.2 5.3 5.1 4.8 10.4 10.1 10.3 10.3
MJ 4.7 1.9 1.2 1.3 13.2 7.8 6.4 6.1 21.4 13.7 12.8 12.4
MJboot 1.8 1.5 1.0 1.1 5.2 5.3 5.1 4.8 10.4 10.1 10.3 10.3

Table 1.2: Means, standard deviations and coefficients of variation, Weibull distributed
response, n = 50.

Estimate Parameter value Mean Std. deviation Coef. of variation
β̂0 1.0 1.004 0.056 1.004
β̂1 2.7 2.703 0.053 1.001
β̂2 1.6 1.592 0.065 0.995
γ̂0 1.4 1.438 0.347 1.027
γ̂1 2.0 2.053 0.650 1.027

In the next three scenarios, different link functions were used in the submodels of the

competing models. The models are

H1 : g11(µi) = β0 + β1xi1 + β2xi2 and H2 : g12(µi) = β0 + β1xi1 + β3xi2

g21(σi) = γ0 + γ1xi1 + γ2xi3 g22(σi) = γ0 + γ1xi1 + γ3xi3,

i = 1, 2, . . . , n; g12 and g22 being the logarithm link function. In scenario SC4, g11 is

the inverse function and g21 is the logarithm function. Under scenario SC5, g11 is the

logarithm function and g21 is the identity function. In scenario SC6, g11 and g21 are the
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inverse and identity functions, respectively. Thus, the models in the scenario SC4, SC5

and SC6 differ in the µ submodels, in the σ submodel and in both submodel, respectively.

Hence, δm = 1 in SC4 and SC5, whereas δm = 2 in SC6.

Table 1.3 contains the null rejection rates corresponding to SC4, SC5 and SC6. Once

again, the figures show that J test is liberal in SC4 and SC5 when the submodels differ

in the link functions. Overall, the bootstrap tests outperformed the corresponding tests

based on asymptotic critical values.

Table 1.3: Null rejection rates (%), scenarios SC4, SC5 and SC6.

Scenario α = 1% α = 5% α = 10%

n 25 50 75 100 25 50 75 100 25 50 75 100
SC4 J 3.1 2.1 1.6 1.4 9.6 6.7 7.4 6.8 17.6 11.5 12.9 11.8

Jboot 1.1 1.4 1.5 1.4 5.3 4.9 6.0 5.9 10.0 9.8 10.8 11.1
MJ 1.7 1.1 0.7 0.6 5.4 3.0 3.8 3.4 10.6 5.6 7.3 5.5
MJboot 1.6 1.4 1.8 1.8 6.2 4.6 5.7 5.6 11.0 9.0 11.2 10.2

SC5 J 3.8 1.7 2.1 1.9 10.0 5.4 7.7 6.8 17.3 11.4 12.5 11.5
Jboot 1.5 1.5 2.0 1.9 5.3 4.9 5.3 5.5 10.3 9.7 10.9 10.6
MJ 2.8 1.5 1.8 1.7 9.0 4.9 7.1 6.2 15.6 10.0 11.6 10.7
MJboot 1.7 1.3 2.0 2.0 5.0 4.9 5.6 5.6 10.3 9.6 11.6 10.5

SC6 J 5.2 1.6 1.6 1.4 12.0 7.0 7.1 7.1 20.0 13.7 13.1 13.0
Jboot 1.5 0.7 1.3 1.3 5.4 4.9 5.5 5.2 10.3 10.1 11.0 11.2
MJ 1.8 1.0 1.0 1.1 7.6 4.3 4.3 4.2 13.0 8.8 8.3 8.0
MJboot 1.4 1.2 1.3 1.5 5.6 5.7 5.2 5.6 10.4 10.7 10.2 10.5

The behavior of J and MJ tests were also studied when different distributions are

specified for the response variable. In scenario SC7 the true model (H0) uses the Weibull

distribution for the response, with p.d.f. given by Equation (1.13), whereas the competing

model (H1) uses the gamma distribution. The gamma p.d.f., denoted by GA(µ, σ) (Rigby

et al. 2014), is given by

f(y|µ, σ) =
1

(σ2µ)1/σ2

y
1
σ2
−1e−y/(σ

2µ)

Γ(1/σ2)
,

for y > 0, µ > 0 and σ > 0. Here, E(y) = µ and Var(y) = σ2µ2. The models in H0 and

H1 were defined exactly as in Scenario SC3: the link function in both submodels is the

logarithm function and the covariates in both submodels are different.
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Competing GAMLSS models with three distributional paramaters are considered in

scenario SC8. The type 2 power exponential distribution (PE2) is taken as true distribu-

tion and the alternative model assumes the t family distribution (TF). The PE2(µ, σ, ν)

p.d.f. is given by (Rigby et al. 2014)

f(y|µ, σ, ν) =
ν exp[−|z|ν ]

2σΓ( 1
ν
)

,

−∞ < y, µ < +∞, σ, ν > 0, z = (y − µ)/σ. Here, E(y) = µ and Var(y) = σ2c2, where

c2 = Γ(1/ν)[Γ(3/ν)]−1. The TF(µ, σ, ν) p.d.f. is (Rigby et al. 2014)

f(y|µ, σ, ν) =
1

σB(1
2
, ν

2
)
√
ν

[
1 +

(y − µ)2

σ2ν

]− ν+1
2

,

−∞ < y, µ < +∞, σ, ν > 0, where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the beta function.

The mean is E(y) = µ and the variance is Var(y) = σ2ν/(ν − 2) for ν > 2. The random

variable T = (y − µ)/σ has standard t distribution with ν degrees of freedom. The

regression structures defined for the competing models in scenario SC8 are

H1 : µi = β0 + β1xi1 + β2xi2 and H2 : µi = β0 + β1xi1 + β3xi3

log(σi) = γ0 + γ1xi1 + γ2xi4 log(σi) = γ0 + γ1xi1 + γ3xi5,

log(νi) = ϕ0 + ϕ1xi2 + ϕ2xi6 log(νi) = ϕ0 + ϕ1xi2 + ϕ3xi7,

i = 1, . . . , n, log(·) denotes the logarithm function. Here, the models differ in one regressor

in each submodel. Note that δ(m) = δµ(m) + δσ(m) + δν(m) = 1 + 1 + 1 = 3. The parameters

values in model H1 (true model) are β0 = γ0 = ϕ0 = 1.0, β1 = 1.6, β2 = 2.7, γ1 = 3.5,

γ2 = 2.2, ϕ1 = 2.3 and ϕ2 = 1.4.

In scenario SC9, the nonnested models distributions are indexed by four parameters:

the distribution used in modelH1 is the Box-Cox t distribution (BCT) and the generalized

beta distribution (GB2) is used in ModelH2. The BCT(µ, σ, ν, τ) p.d.f. is given by (Rigby
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et al. 2014)

f(y|µ, σ, ν, τ) =
yν−1fT (z)

µνσFT

(
1
σ|ν|

) ,
for y, µ, σ > 0 and −∞ < ν < +∞, where fT (t) and FT (t) is are, respectively, the

p.d.f. and the cumulative distribution function of a random variable T having standard

t distribution with τ > 0 degrees of freedom; z is defined as 1
σν

[(
y
µ

)ν
− 1
]
, if ν 6= 0, and

1
σ

log
(
y
µ

)
, if ν = 0. The EGB(µ, σ, ν, τ) p.d.f. is (Rigby et al. 2014)

f(y|µ, σ, ν, τ) = eνz{|σ|B(ν, τ)[1 + ez]ν+τ}−1,

−∞ < y, µ, σ < +∞, ν, τ > 0, where z = (y − µ)/σ. The competing models are

H1 : log(µi) = β0 + β1xi1 + β2xi2 and H2 : log(µi) = β0 + β1xi1 + β3xi3

log(σi) = γ0 + γ1xi1 + γ2xi4 log(σi) = γ0 + γ1xi1 + γ3xi5,

log(νi) = ϕ0 + ϕ1xi2 + ϕ2xi6 log(νi) = ϕ0 + ϕ1xi2 + ϕ3xi7,

log(τi) = ϑ0 + ϑ1xi2 + ϑ2xi8 log(τi) = ϑ0 + ϑ1xi2 + ϑ3xi9,

i = 1, . . . , n. Note that δ(m) = δµ(m) + δσ(m) + δν(m) + δτ(m) = 1 + 1 + 1 + 1 = 4. The

parameter values in the true model (H1) are β0 = 1.0, β1 = 1.6, β2 = 2.7, γ0 = 0.75,

γ1 = 2.1, γ2 = −2.7, ϕ0 = 1.0, ϕ1 = 2.3, ϕ2 = −2.4, ϑ0 = 2.0, ϑ1 = 4.1 and ϑ2 = 3.9.

A tenth scenario was also considered. In SC10 we compare the behavior of J and MJ

tests in the zero-inflated beta regression model (true model) against the beta regression

model after transforming the response so that it assumes values in (0,1). The transfor-

mation used is y′ = [(n− 1)y + 0.5]/n, where n is the sample size (Smithson & Verkuilen

2006). Inflated beta regressions were proposed by Ospina & Ferrari (2012). The model

allows y to assume values in [0, 1), (0, 1] or [0, 1]. We consider the case where y ∈ [0, 1).
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The competing models in our simulations are

H1 : log( µi
1−µi ) = β0 + β1xi1 + β2xi2 and H2 : log( µi

1−µi ) = β0 + β1xi1 + β2xi2

σi = σ σi = σ,

log( νi
1−νi ) = ϕ0 + ϕ1xi3 + ϕ2xi4

i = 1, . . . , n; νt is a inflated beta regression parameter such that νt = P (yt = 0). The

parameters in the true model are β0 = −1.0, β1 = 0.5, β2 = 1.2, σ = 1.5, ϕ0 = −1.5,

ϕ1 = 0.4, ϕ2 = 1.1.

Table 1.4 contains the J and MJ tests null rejection rates (%) for scenarios SC7,

SC8, SC9 and SC10. The tests based on asymptotic critical values are considerably

liberal, especially when the competing models employ distributions indexed by three or

four parameters (scenarios SC8 and SC9, respectively). However, MJ tests based on

asymptotical critical values in SC10 are conservative and a larger sample size is required

for accurate inferences (in our simulations, something like n = 700). In general, larger

samples are needed for the J and MJ tests based on asymptotic critical values display

small size distortions. The corresponding bootstrap tests presented were considerably less

distorted.

As explained in the previous section, the MJ statistic is the minimal J statistic. It

can be used for model selection when the null hypothesis (that the correct model is one

of the candidate models) is not rejected. We computed the percentages of correct model

selections when theMJ statistic is used as a model selection criterion. We only considered

the replications in which the null hypothesis was not rejected. The results for scenarios

SC1 (difference in regressors of the µ submodel), SC2 (difference in regressors of the σ

submodel), SC4 (difference in link functions) and SC7 for α = 5% (different distributions

assumed for the response variable) are presented in Table 1.5. The results for the other

scenarios were quite similar, except for scenario SC10, which will be discussed later.

When the competing models differ by a regressor of the µ submodel or when different

distributions are assumed for the response variable,MJ model selection works well. When
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the models differ in their link function(s) or when there is no difference in the regressors

of the µ submodel, larger sample sizes are required for reliable model selection.

Table 1.4: Null rejection rates (%), scenarios SC7, SC8, SC9 and SC10.

Scenario α = 1% α = 5% α = 10%

n 25 50 75 100 25 50 75 100 25 50 75 100
SC7 J 5.0 2.3 1.7 1.3 13.9 8.8 7.4 6.1 23.3 14.9 12.8 12.4

Jboot 1.9 1.6 1.3 1.1 5.7 5.6 5.7 4.8 11.4 11.0 10.4 10.3
MJ 5.0 2.3 1.7 1.3 13.9 8.8 7.4 6.1 23.3 14.9 12.8 12.4
MJboot 1.9 1.6 1.3 1.1 5.7 5.6 5.7 4.8 11.4 11.0 10.4 10.3

SC8 J 11.6 7.9 5.3 4.7 30.4 21.4 16.9 16.3 44.0 23.8 18.2 17.5
Jboot 1.8 1.6 1.4 1.3 5.8 5.5 5.5 5.3 11.7 11.2 10.9 10.4
MJ 8.0 5.2 4.7 4.6 26.0 19.6 16.8 16.0 40.5 23.2 18.3 17.2
MJboot 1.8 1.6 1.5 1.1 5.9 5.6 5.5 5.2 10.9 10.6 10.2 10.1

SC9 J 14.2 9.9 8.4 8.1 27.0 23.2 18.0 16.7 34.1 30.0 26.5 18.3
Jboot 1.8 1.5 1.2 1.2 6.2 5.4 5.6 5.3 11.8 10.7 10.1 10.3
MJ 12.6 9.5 8.4 6.4 23.1 17.7 15.4 15.7 31.8 29.6 26.3 17.5
MJboot 1.9 1.4 1.3 1.2 5.5 5.5 5.4 5.4 11.4 10.6 10.7 10.3

SC10 J 2.5 3.2 1.5 1.1 9.3 7.6 6.7 7.3 15.6 12.4 11.5 13.1
Jboot 1.1 2.3 1.7 1.3 6.1 6.0 5.5 6.6 10.6 10.7 10.9 13.2
MJ 0.0 0.0 0.0 0.0 0.4 0.5 0.5 0.3 1.6 1.8 1.2 1.2
MJboot 1.1 1.3 0.9 0.7 4.3 4.8 3.8 4.4 8.8 9.3 8.1 8.5

Table 1.5: Frequencies (%) of correct model selection using the MJ statistic (when the
null hypothesis is not rejected, α = 5%).

Scenario Criterion n = 25 n = 50 n = 75 n = 100
SC1 MJ 100,0% 100,0% 100,0% 100,0%

MJboot 100,0% 100,0% 100,0% 100,0%

SC2 MJ 68.2% 82.0% 89.9% 93.4%
MJboot 68.6% 82.2% 90.0% 93.4%

SC4 MJ 62.3% 71.2% 77.8% 78.5%
MJboot 62.9% 71.3% 78.0% 78.6%

SC7 MJ 100.0% 100.0% 100.0% 100.0%
MJboot 100.0% 100.0% 100.0% 100.0%

In order to compare MJ model selection to other approaches, we performed Monte

Carlo simulations under scenarios SC2 and SC10. Two alternative model selection pro-

cedures were used: those based on the GAIC criterion and on the SBC criterion (Rigby

& Stasinopoulos 2005). Model selection was performed regardless of MJ testing and also
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only when the MJ test indicated that one of the competing models is the true model.

Table 1.6 presents the results for n = 50 and α = 5% in SC2. The three procedures

behave similarly. However, MJ model selection has a noteworthy advantage: it is coupled

with a test that indicates whether the true model is in the set of competing models.

Table 1.6: Frequencies (%) of correct model selection in scenario SC2 using different
criteria (n = 50).

MJ GAIC SBC
Regardless the rejection of H0 − 81.8 81.8
H0 is not rejected by MJ (at the 5% sig. level) 82.0 82.0 82.0
H0 is not rejected by MJ boot. (at the 5% sig. level) 82.2 82.2 82.2

In scenario SC10, model selection based on MJ test statistic was performed for

n = 100, 500 and 700 and α = 5%. The frequencies of correct model selection (zero-

inflated beta regression) based on asymptotic and bootstrap critical values of MJ test

were 47.2% (n = 100), 66.0% (n = 500) and 81.1% (n = 700). In contrast, GAIC and

SBC always selected the wrong model (beta regression with transformed) for all sample

sizes considered. Here, MJ model selection had was clearer superior.

1.5 Application

We shall now present an empirical application. The interest lies in modeling the

monthly net rent (in Euros) per month in Munich. The covariates are living area in square

meters (x1); year of construction (x2); a factor with three levels, indicating the quality

of location according to an expert assessment (x3(2): good location, x3(3): top location);

a factor with two levels indicating whether the bath facilities are standard or premium

(x4); a factor with two levels indicating the quality of the kitchen (x5); a factor indicating

the presence of central heating (x6); and district in Munich (x7). More details about the

data can be found in Fahrmeir et al. (2013). Four different GAMLSS nonnested models

were considered with different covariates and probability distributions for the response.
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Model HBCCG uses Box-Cox Cole-Green distribution for the response, model HBCPE uses

the Box-Cox power exponential distribution, model HWEI uses the Weibull distribution

and model HGG uses the generalized gamma distribution. The models are

HBCCG : log(µ) = β0 + β1x1 + β2x2 + β3x3(2) + β4x3(3) + β5x4 + β6x5 + β6x7 + β8x7

+ β9x1x4 + β10x1x5 + β11x2x5 + β12x2x7 + β13x3(2)x4 + β14x3(3)x4

log(σ) = γ0 + γ1x1 + γ2x2 + γ3x3(2) + γ4x3(3) + γ5x6 + γ6x1x2 + γ7x1x3(2)

+ γ8x1x3(3) + γ9x2x6

log(ν) = ϕ0 + γ1x2 + γ2x5

HBCPE : log(µ) = β0 + β1x1 + β2x2 + β3x3(2) + β4x3(3) + β5x4 + β6x6 + β7x7

+ β8x1x4 + β9x2x7

log(σ) = γ0 + γ1x1 + γ2x2 + γ3x3(2) + γ4x3(3) + γ5x5 + γ6x6 + γ7x1x2

+ γ8x1x3(2) + γ9x1x3(3) + γ10x2x5 + γ11x2x6

log(ν) = ϕ0 + γ1x2 + γ2x5 + γ3x2x5

τ = ϑ0 + ϑ1x6

HWEI : log(µ) = β0 + β1x1 + β2x2 + β3x3(2) + β4x3(3) + β5x4 + β6x5 + β7x6 + β8x1x4

+ β9x1x6 + β10x2x5 + β11x3(2)x4 + β12x3(2)x4

log(σ) = γ0x1 + γ1x2 + γ2x6 + γ3x2x6

HGG : log(µ) = β0 + β1x1 + β2x2 + β3x3(2) + β4x3(3) + β5x4 + β6x5 + β7x6 + β8x7

+ β9x1x4 + β10x1x6 + β11x2x5 + β11x2x7

log(σ) = γ0 + γ1x1 + γ2x2 + γ3x3(2) + γ4x3(3) + γ5x5 + γ6x6 + γ7x2x6

log(ν) = ϕ0 + ϕ1x1 + ϕ2x2 + ϕ3x3(2) + ϕ4x3(3) + ϕ5x5 + ϕ6x1x2.
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The parameter estimates are presented in Table 1.8. The generalized pseudo R2 for

GAMLSS models Nagelkerke (1991), GAIC and SBC of the estimated models were also

computed; see Table 1.7. Model HWEI has the highest pseudo-R2. On the other hand,

the GAIC favors Model HBCCG and the SBC favors Model HBCPE.

Table 1.7: Generalized R2, GAIC and SBC of models HBCCG, HBCPE, HWEI and HGG.

Model Generalized pseudo R2 GAIC SBC
HBCCG 0.543 38,343.86 38,512.79
HBCPE 0.541 38,338.88 38,507.81
HWEI 0.565 38,493.37 38,601.97
HGG 0.542 38,353.68 38,522.61

The J andMJ tests and their bootstrap versions were also performed. The number of

bootstrap replications was 1,000. First, one should note that Models HBCCG, HBCPE and

HGG have three regression structures (submodels) whereas ModelHWEI has two regression

structures. In order to carry out the tests, we consider the minimum number of regression

structures (submodels) in all models. In this case, Model HWEI has the minimum number

of submodels (one for µ and another one for σ). Then, when J and MJ tests, only the

submodels for µ and σ are augmented in each competing model. For example, to test

Model HBCCG against the other models using J test, one should include the respective

estimated linear predictors of µ and σ submodels from the competing models and test

their exclusion using the likelihood ratio test. We performed the tests at 5% significance

level. The J test p-values for each model in the presence of the other three competing

models are: 0.245 (J = 7.902) for HBCCBG, 0.289 (J = 7.353) for HBCPE, 7.296×10−11

(J = 58.967) for HWEI and 0.576 (J = 4.754) for HGG. We note that Model HWEI is

the only rejected model. The MJ test statistic is the smallest J statistic observed. It

corresponds to Model HGG; the p-value (0.576) indicates that the correct model is among

the candidate models. Since the smallest J statistic corresponds to Model HGG, such a

model is selected using the MJ approach. Hence, we conclude that Model HGG as the

appropriate model.
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Table 1.8: Parameter estimates for models HBCCG, HBCPE, HWEI and HGG.
Model HBCCG Model HBCPE Model HWEI Model HGG

β̂0 -3.110 β̂0 3.053 β̂0 -5.186 β̂0 -2.432
β̂1 1.106×10−2 β̂1 -1.087×10−1 β̂1 0.010 β̂1 6.824×10−3

β̂2 4.182×10−3 β̂2 -2.071×10−3 β̂2 0.005 β̂2 4.019×10−3

β̂3 7.195×10−2 β̂3 -6.431×10−3 β̂3 0.098 β̂3 8.677×10−2

β̂4 1.944×10−1 β̂4 8.885×10−1 β̂4 0.192 β̂4 3.181×10−1

β̂5 1.878×10−1 β̂5 1.997×10 β̂5 0.173 β̂5 2.358×10−1

β̂6 5.627 β̂6 1.691×10 β̂6 4.967 β̂6 7.328
β̂7 2.772×10−1 β̂7 5.631×10−5 β̂7 0.120 β̂7 -7.096×10−3

β̂8 -3.266×10−3 β̂8 1.312×10−3 β̂8 -0.002 β̂8 -3.069×10−3

β̂9 -2.016×10−3 β̂9 -9.878×10−3 β̂9 0.002 β̂9 -2.097×10−3

β̂10 1.157×10−3 β̂10 -9.713×10−3 β̂10 -0.002 β̂10 3.630×10−3

β̂11 -2.815×10−3 β̂11 -8.855×10−3 β̂11 0.084 β̂11 -3.586×10−3

β̂12 1.649×10−6 γ̂0 -13.905 β̂12 0.082 β̂12 1.549×10−6

β̂13 8.678×10−2 γ̂1 0.007 γ̂0 5246 γ̂0 -4.043
β̂14 1.065×10−1 γ̂2 -13.029 γ̂1 -1.842×10−3 γ̂1 0.003
γ̂0 3.156 γ̂3 0.008 γ̂2 -2.139×10−3 γ̂2 0.001
γ̂1 -1.011×10−1 ϕ̂0 0.372 γ̂3 -1.780×10 γ̂3 0.058
γ̂2 -2.128×10−3 ϕ̂1 0.350 γ̂4 9.322×10−3 γ̂4 -0.024
γ̂3 -1.950×10−2 γ̂5 -0.401
γ̂4 9.116×10−1 γ̂6 15.376
γ̂5 1.635×10 γ̂7 -0.008
γ̂6 5.239×10−5 ϕ̂0 16.702
γ̂7 1.426×10−3 ϕ̂1 -0.554
γ̂8 -9.900×10−3 ϕ̂2 -0.008
γ̂9 -8.559×10−3 ϕ̂3 0.069
ϕ̂0 3.156 ϕ̂4 0.962
ϕ̂0 -2.128×10−3 ϕ̂5 1.575
ϕ̂0 -1.950×10−2 ϕ̂6 0.003×10−1

ϕ̂0 9.116×10−1

ϕ̂0 1.635×10
ϕ̂0 5.239×10−5

ϕ̂0 1.426×10−3

ϕ̂0 -9.900×10−3

ϕ̂0 -8.559×10−3
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1.6 Concluding remarks

In this chapter, we addressed the problem of nonnested hypothesis testing in GAMLSS

models. We proposed variants of the J andMJ tests for such a class of models. The finite

sample performances of the two tests and of their bootstrap counterparts were evaluated

via Monte Carlo simulations. In GAMLSS models with three or more submodels, the

tests based on asymptotic critical values tend to be liberal (oversized) in small samples.

However, the size distortions become quite small when bootstrap critical values are used.

The MJ test statistic may also be used as a model selection criterion. It works well when

the competing models differ in distributions and regressors of the mean submodel. In

other situations, a larger sample is needed for the procedure to work well. An empirical

application was presented and discussed.



CHAPTER 2

The Inflated Simplex Regression Model

Resumo

Neste capítulo é proposta uma abordagem frequentista para o modelo de regressão

simplex inflacionado em zero e/ou um. Esse modelo é adequado aos casos em que a variável

resposta está restrita ao intervalo [0,1), (0,1] ou [0,1], tais como taxas e proporções. A

distribuição simplex inflacionada é descrita como uma combinação entre a distribuição

simplex e uma distribuição degenerada em 0 e/ou 1. O modelo de regressão é composto

por submodelos que possuem uma estrutura de regressão associada a cada parâmetro da

distribuição. O processo de estimação dos parâmetros do modelo, intervalos de confiança

e testes de hipóteses são apresentados. Aplicações com dados simulados avaliando a

estimação dos parâmetros do modelo de regressão também são reportados.

41
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2.1 Introduction

Statistical modeling is oftentimes based on distributional assumptions. When such

assumptions do not hold statistical inferences can be inaccurate and even invalid. A

strategy to cope with violations of some assumptions of the model is to transform the

response variable. However, this procedure has some limitations because it affects the

variance and the parameters are no longer interpretable in terms of the response (Atkinson

1985, Ch. 7). An alternative strategy is to use regression models which assume an

adequate probability distribution for the response. For example, in order to analyze

data observed in the unit interval, Cox (1996) discuss some practical aspects of fitting

and interpreting nonlinear quasi-likelihood regression models. Another approach was

introduced by Song & Tan (2000) and Song et al. (2004) who proposed the simplex

regression model to such data. Furthermore, Ferrari & Cribari-Neto (2004) and Simas

et al. (2010) proposed to model data using the beta regression model.

The presence of excess of ones in a dataset precludes the possibility of using a dis-

tribution defined in the open unity interval. In this situation, the distribution may be

augmented in order to allow the data to assume values in (0,1]. In this case the model is in-

flated in one. Many inflated models can be found in literature. Lambert (1992) introduced

the zero-inflated Poisson (ZIP) regression model. Greene (1994) presented an alternative

to ZIP model by extending the negative binomial model for excess of zeros count data, i.e.,

by developing the zero-inflated negative binomial (ZINB) model. Hall (2000) and Vieira

et al. (2000)described the zero-inflated binomial (ZIB) regression model. Paul et al. (2004)

proposed a zero-inflated beta-binomial (ZIBB) model. Famoye & Singh (2006) proposes

the zero-inflated generalized Poisson (ZIGP) regression and modeled domestic violence

data with too many zeros. Tong et al. (2013) proposed the zero-adjusted gamma (ZAGA)

regression and empirically validates the model. Ospina & Ferrari (2010) presented mixed

continuous-discrete distributions called inflated beta distributions. Bandyopadhyay et al.

(2014) proposed, the zero-one augmented simplex regression (ZOAS-RE).

The regression model proposed by Bandyopadhyay et al. (2014) is an alternative to
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the model proposed by Ospina & Ferrari (2010). Both may be used to model variates that

assume values in [0,1), (0,1] or [0,1]. This is the case of modeling rates and proportions,

which are typically restricted to the standard unit interval (0, 1), but it is not uncommon

for the data to contain zeros and/or ones. The zero-one augmented simplex regression is

a mixed continuous-discrete distribution with probability mass at zero and/or one. In the

model the continuous part and the parameter(s) associated to the degenerated part of the

model are modeled through a regression structure. We shall explore a frequentist approach

to the model, since the authors of the ZOAS-RE model only developed a Bayesian inference

for that model. Once we perform an approach similar to Ospina & Ferrari (2010), in what

follows the model will be called inflated simplex regression (IS-RE). In what follows, we

shall use a notation similar to that of Ospina & Ferrari (2010).

The inflated simplex model is obtained by combining the simplex and Bernoulli distri-

butions. It is suitable for variables with support in [0,1]. For responses that assume values

in [0,1) or (0,1], the new distribution is obtained by combining the simplex distribution

with a distribution degenerated at 0 or 1. The simplex density is quite flexible for data

modeling since it can assume many different forms. It can be, e.g., highly skewed, flat or

bimodal. This makes the IS-RE a good choice for modeling proportion data that include

zeros and/or ones since their continuous part is usually skewed and multimodal.

This chapter unfolds as follows. Section 2.2 describes the simplex distribution. Section

2.3 presents the inflated simplex distribution. In Section 2.4 the inflated simplex regression

model is presented and inference strategies are developed and discussed.

2.2 Dispersion Models and The Simplex Distribution

The simplex distribution was introduced by Barndorff-Nielsen & Jørgensen (1991) to

model data restricted to the standard unit interval (0,1). The distribution is a special case

of the class of probability models known as dispersion models, introduced by Jørgensen

(1997), which extends the class of generalized linear models, GLM (Nelder & Wedder-
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burn 1972). A dispersion model, denoted by DM(µ, σ2), with location parameter µ and

dispersion parameter σ2, is a family of distributions whose probability density function

takes the form

f(y;µ, σ2) = a(y;σ2) exp

{
− 1

2σ2
d(y;µ)

}
, y ∈ C, (2.1)

where µ ∈ Ω ⊆ C ⊆ IR, σ2 > 0, a(·) > 0 is a suitable function independent of µ. Here,

d(y;µ) is the unit deviance.

The unity deviance satisfies two properties: (i) it is zero when µ equals the observed

y, i.e., d(y; y) = 0, ∀y ∈ Ω; (ii) it is positive when µ and the observed y are different,

i.e., d(y;µ) > 0, ∀y 6= µ. Moreover, we say the unit deviance is said to be regular if the

function d(y;µ) is twice continuously differentiable with respect to (y, µ) and satisfies

∂2d(y; y)

∂µ2
=
∂2d(y;µ)

∂µ2

∣∣∣∣
y=µ

> 0, ∀y ∈ Ω.

The variance function V : Ω→ (0,∞) of a regular unity deviance is defined as

V (µ) =
2

∂2d(y;µ)
∂µ2

∣∣∣
y=µ

, µ ∈ Ω. (2.2)

2.2.1 Simplex Distribution

Let y be a random variable following the simplex distribution S−(µ, σ2) with param-

eters µ ∈ (0, 1) and σ2 > 0. Then, its probability density function is given by

f(y;µ, σ2) = {2πσ2[y(1− y)]3}−1/2 exp

{
− 1

2σ2
d(y;µ)

}
, (2.3)

for y ∈ (0, 1) and unit deviance is given by

d(y;µ) =
(y − µ)2

y(1− y)µ2(1− µ)2
. (2.4)
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Note that a(y;σ2) = {2πσ2[y(1 − y)]3}−1/2 in (2.1). Using Equation (2.2), it follows

that the variance function is V (µ) = µ3(1− µ)3. The expectation is ES−(y) = µ and the

variance is given by (Jørgensen 1997)

VarS−(y) = µ(1− µ)− 1√
2σ2

exp

(
1

2σ2µ2(1− µ)2

)
Γ

(
1

2
,

1

2σ2µ2(1− µ)2

)
, (2.5)

where Γ(a, b) is the incomplete gamma function, i.e., Γ(a, b) =
∫∞
b
ta−1e−tdt. Properties

of the simplex distribution can be found in Barndorff-Nielsen & Jørgensen (1991) and

Song (2007).

Different simplex densities are presented in Figure 2.1 for some values of the parameters

(µ, σ2). The distribution can be unimodal or bimodal. It can also be bell-shaped, U-

shaped, J-shaped and reverse-J-shaped (i.e., L-shaped). The density function is symmetric

when µ = 1/2 and asymmetric when µ 6= 1/2.
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Figure 2.1: Simplex densities for different values of (µ, σ2).

2.3 The Inflated Simplex Distribution

Rates and proportions may contain zeros and/or ones and in this case the simplex

distribution is not suitable. In what follows, extensions of the simplex distribution are
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presented. These extensions are divided into two groups: one suitable for modeling data

in [0, 1) and (0, 1], and another for data in [0, 1].

2.3.1 The Zero or One Inflated Simplex Distribution

If the data contain zeros or ones (but not both at the same time), the simplex dis-

tribution may be combined with a distribution degenerated at a known point c (where

c = 0 or c = 1) in order to model the data. The support of the mixed distribution is [0, 1)

or (0, 1] according to the value attributed to c. The probability density function of the

mixture is defined as

isc(y;α, µ, σ2) =


α, y = c,

(1− α)f(y;µ, σ2), y ∈ (0, 1),

(2.6)

or, alternatively, as

isc(y;α, µ, σ2) =
{
α1{c}(y)(1− α)1−1{c}(y)

}{
f(y;µ, σ2)1−1{c}(y)

}
,

α ∈ (0, 1), µ ∈ (0, 1), σ2 > 0. Here, f(y;µ, σ2) is the probability density function of the

simplex distribution S−(µ, σ2), which is given in (2.3), and 1{c}(y) is an indicator function

that equals 1 if y = c and 0 if y 6= c. The probability mass at c is α, i.e., the probability

of observing c = 0 or c = 1 equals α is called the mixture parameter. Note that density

(2.6) is the product of two terms: the first depends only on α and the second depends

solely on (µ, σ2).

Let y be a random variable following the inflated simplex distribution with proba-

bility density function (2.6). Depending on where inflation takes place (value of c), two

nomenclatures can be defined for the distribution:

1. If c = 0, the distribution is called zero-inflated simplex distribution (ZIS), here

denoted by y ∼ ZIS(α, µ, σ2).
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2. If c = 1, the distribution is called one-inflated simplex distribution (OIS), here

denoted by y ∼ OIS(α, µ, σ2).

Note that if y ∼ ZIS(α, µ, σ2), then α = Pr(y = 0) and if y ∼ OIS(α, µ, σ2), then

α = Pr(y = 1).

The expected value and the variance of the zero-or-one inflated simplex distribution

are obtained from the relationships

E(y) = E
[
E(y|1{c}(y))

]
and Var(y) = E

[
Var(y|1{c}(y))

]
+ Var

[
E(y|1{c}(y))

]
.

It can be shown that

E[y|1{c}(y)] =


c, with probability α,

µ, with probability 1− α,

Var[y|1{c}(y)] =


0, with probability α,

VarS−(y), with probability 1− α.

VarS−(y) is the variance of the distribution S−(µ, σ2) given in (2.5). Therefore, the mean

and variance of the ZIS distribution are

E(y) = (1− α)µ and Var(y) = (1− α)VarS−(y) + α(1− α)µ2.

The mean and the variance of the OIS distribution are

E(y) = α + (1− α)µ and Var(y) = (1− α)VarS−(y) + α(1− α)(1− µ)2.

2.3.2 The Zero and One Inflated Simplex Distribution

The distribution presented in Subsection 2.3.1 is not suitable for modeling variates

that assume values in [0, 1]. For such variables, the zero and one inflated simplex dis-
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tribution (ZOIS) is suitable (Bandyopadhyay et al. 2014). The notation used is y ∼

ZOIS(δ0, δ1, µ, σ
2). The probability density function of the ZOIS distribution is

zois(y; δ0, δ1, µ, σ
2) =


δ0, y = 0,

(1− δ0 − δ1)f(y;µ, σ2), y ∈ (0, 1),

δ1, y = 1,

(2.7)

0 < δ0 + δ1 < 1, µ ∈ (0, 1) and σ2 > 0. Here, f(y;µ, σ2) is the simplex density function

given in (2.3). Note that Pr(y = 0) = δ0 and Pr(y = 1) = δ1. When δ0 + δ1 → 1, the

ZOIS distribution tends to concentrate its probability mass in the extreme values of the

interval [0,1]. When δ0 + δ1 → 0, the ZOIS distribution tends to the simplex distribution.

The expected value and variance of the zero-and-one inflated simplex distribution are

obtained from the relationship

E(y) = E
[
E(y|1{0,1}(y))

]
and Var(y) = E

[
Var(y|1{0,1}(y))

]
+ Var

[
E(y|1{0,1}(y))

]
.

It follows that

E[y|1{0,1}(y)] =


δ1

δ0+δ1
, with probability δ0 + δ1,

µ, with probability 1− δ0 − δ1,

Var[y|1{0,1}(y)] =


δ0δ1

(δ0+δ1)2
, with probability δ0 + δ1,

VarS−(y), with probability 1− δ0 − δ1.

Here, VarS−(y) is the variance of the simplex distribution S−(µ, σ2) given in (2.5). It can

be shown, after some algebra, that the mean and variance of the ZOIS distribution are

E(y) = δ1 + (1− δ0 − δ1)µ
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and

Var(y) = δ1(1− δ1) + (1− δ0 − δ1)
[
VarS−(y)− 2δ1µ+ (δ0 + δ1)µ2

]
.

2.4 The Zero or One Inflated Simplex Regression Model

Let y1, . . . , yn be independent random variables, each following an inflated simplex

distribution at point c (c = 0 or c = 1). Then, for t = 1, . . . , n, yt has p.d.f. given in (2.6).

The simplex regression model inflated at point c (c = 0 or c = 1), denoted by IS-REc, is

defined by the relationships

h(αt) =
M∑
i=1

ztiϕi = z>t ϕ = ζt,

g(µt) =
m∑
i=1

xtiβi = x>t β = ηt,

(2.8)

where ϕ = (ϕ1, . . . , ϕM)> and β = (β1, . . . , βm)> are unknown parameter vectors such that

ϕ ∈ RM and β ∈ Rm; zt = (zt1, . . . , ztM)> and xt = (xt1, . . . , xtm)> are known observations

on covariates; M +m < n. The z’s and x’s can coincide partially or completely. The link

functions h : (0, 1)→ R and g : (0, 1)→ R are strictly monotone and twice differentiable.

Commonly used link functions are logit, probit, log-log, Cauchy and complementary log-

log, among others.

Note that c is fixed for all observations and αt = Pr(yt = c). The parameters µt

and σ2 are the conditional mean and the dispersion parameter of yt, for yt ∈ (0, 1).

The parameter σ2 (as well as the other parameters) may be considered constant or be

regressed onto some covariates. In what follows, we shall assume that σ2 is constant. The

zero inflated simplex regression model (c = 0) will be called ZIS-RE and the one inflated

simplex regression model (c = 1) will be denoted by OIS-RE.
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2.4.1 Likelihood Inference

Consider the parameter vector θ = (ϕ>, β>, σ2)>. The log-likelihood function of the

simplex regression model inflated at point c is

L(θ) =
n∏
t=1

isc(yt;αt, µt, σ2) = L1(ϕ)L2(β, σ2), (2.9)

where isc(·; ·, ·, ·) is the probability density function defined in Equation (2.6) and

L1(ϕ) =
n∏
t=1

α
1{c}(yt)
t (1− αt)1−1{c}(yt),

L2(β, σ2) =
∏

t: yt∈(0,1)

f(yt;µt, σ
2).

The parameters αt and µt are defined as functions of ϕ and β, respectively, in Equation

(2.8), i.e., αt = h−1(ζt) and µt = g−1(ηt). Note that the likelihood function factors into two

terms: one depending only on ϕ and another one depending only on (β>, σ2)>. Therefore,

the parameter vectors are separable (Pace & Salvan 1997, p.128) and maximum likelihood

inference on (β>, σ2)> can be performed as if ϕ were known and vice-versa. Note that the

component L1(ϕ) only involves the parameters used to model the probability of observing

zero or observing one. On the other hand, L2(β, σ2) only involves the parameters used to

model the conditional distribution of the response variable on the interval (0,1).

The logarithm of the likelihood function for θ = (ϕ>, β>, σ2)> is

`(θ) = log[L(θ)] = `1(ϕ) + `2(β, σ2), (2.10)

where

`1(ϕ) =
n∑
t=1

`t(αt),

`2(β, σ2) =
∑

t:yt∈(0,1)

`t(µt, σ
2).
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Here,

`t(αt) = 1{c}(yt) log(αt) + (1− 1{c}(yt)) log(1− αt),

`t(µt, σ
2) = −1

2
log(2π)− 1

2
log(σ2)− 3

2
log[yt(1− yt)]−

1

2σ2
d(yt;µt),

where c = 0 or c = 1, depending on the case; d(yt;µt) is as defined in (2.4). For

t = 1, . . . , n, the random variable 1{c}(yt) is Bernoulli distributed with parameter αt.

Note that αt = P
(
1{c}(yt) = 1

)
. The parameter αt is associated to the linear predictor

ζt (which includes regressors and parameters) through a link function h(·), as defined in

(2.8). Therefore, `1(ϕ) is the log-likelihood function of a generalized linear model with a

binary response. Further details can be found in McCullagh & Nelder (1989). Addition-

ally, `2(β, σ2) is the log-likelihood function of a simplex regression model with response

restricted to the interval (0,1).

The score function is obtained from differentiation of the log-likelihood function with

respect to each unknown parameter. The score function for ϕR can be written as

UϕR = Z>PG(yc − α∗), (2.11)

where Z is a matrix of dimension n ×M , whose tth line is z>t and the other elements

are P = diag{1/[α1(1− α1)], . . . , 1/[αn(1− αn)]}, G = diag{1/h′(α1), . . . , 1/h′(αn)}, yc =

(1{c}(y1), · · · ,1{c}(y1))> and α∗ = (α1, . . . , αn)>.

The score function for βr can be expressed as

Uβr = σ−2X>THu, (2.12)

where X is an n × m matrix, whose tth line is x>t , T = diag{1/g′(µ1), . . . , 1/g′(µn)},

H = diag{1− 1{c}(y1), · · · , 1− 1{c}(yn)}, u> = (u1, . . . , un)> and

ut =
(yt − µt)(yt − 2µtyt + µ2

t )

yt(1− yt)µ3
t (1− µ)3

,
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The score function Uσ2 is given by

Uσ2 = tr(H D∗), (2.13)

where D∗ = diag{d∗1, . . . , d∗n}, with d∗t = −1/(2σ2) + [1/(2σ4)]d(yt;µt), and tr(·) is the

trace of a square matrix.

Details on how the first order derivatives of the logarithm of the likelihood function

(2.10) were obtained can be found in Appendix A (section A.1).

In order to obtain Fisher’s information matrix, similarly to the work of Ospina &

Ferrari (2012), we calculate the moments and the cumulants of the second order derivatives

of the log-likelihood function (2.10) (see Appendix A.2 for details). Fisher’s information

matrix for the simplex regression model inflated at point c (c = 0 or c = 1) has the form

K(θ) =


Kϕϕ 0 0

0 Kββ 0

0 0 Kσ2σ2

 , (2.14)

where Kϕϕ = Z>QZ, Kββ = −σ−2X>∆AX and Kσ2σ2 = tr(∆D), Q = diag{q1, . . . , qn},

A = diag{a1, . . . , an}, ∆ = diag{δ1, . . . , δn}, D = diag{d1, . . . , dn}. For t = 1, . . . , n,

qt = −pt[1/h′(αt)]2, pt = 1/[αt(1− αt)], δt = 1− αt, dt = −1/(2σ4) and

at =

(
3σ2

µt(1− µt)
+

1

µt3(1− µt)3

)(
1

g′(µt)

)2

.

It is noteworthy that the matrix in (2.14) does not depend on the inflation point c.

The inverse of Fisher’s information matrix is

K(θ)−1 =


Kϕϕ 0 0

0 Kββ 0

0 0 Kσ2σ2

 , (2.15)
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where Kϕϕ = (Z>QZ)−1, Kββ = −σ2(X>∆AX)−1 and Kσ2σ2

= [tr(∆D)]−1.

Because of the separability of ϕ and (β>, σ2)>, the maximum likelihood estimators

(MLE) are obtained separately. The MLE of ϕ is obtained as solution of the nonlinear

system Uϕ = 0 whereas the MLE of (β>, σ2)> is the solution of the nonlinear system

(U>β , Uσ2)> = 0. Only the estimator for σ2 can be expressed in closed form. Therefore,

the log-likelihood function (2.10) need to be numerically maximized when obtaining esti-

matives of ϕ and β. Nonlinear optimization can be carried out using the Newton-Raphson

method, Fisher’s method of scoring or the Broyden–Fletcher–Goldfarb–Shanno (BFGS)

algorithm; see Press et al. (1992) for further details.

2.4.2 Estimation Process

We shall now present an estimation procedure of the parameters that index IS-REc

model. The estimation process using Fisher’s method of scoring depends on the score

function and on Fisher’s information matrix. The MLE of ϕ is obtained using the following

iterative mechanism:

ϕ(m+1) = ϕ(m) + (Z>Q(m)Z)−1Z>P (m)G(m)(yc − α∗(m))

= (Z>Q(m)Z)−1Z>Q(m)τ
(m)
1 ,

(2.16)

where τ (m)
1 = Zϕ(m) + (Q(m))−1P (m)G(m)(yc − α∗(m)) and m = 0, 1, 2, . . ..

The scoring iterative scheme used to obtain the MLE of β is expressed by

β(m+1) = β(m) + (X>∆(m)A(m)X)−1X>T (m)H(m)u(m)

= (X>∆(m)A(m)X)−1X>∆(m)A(m)τ
(m)
2 ,

(2.17)

where τ (m)
2 = Xβ(m) + (∆(m)A(m))−1T (m)H(m)u(m).

The iterations in (2.16) and (2.17) are carried on until the distances between ϕ(m+1)

and ϕ(m) and between β(m+1) and β(m) are smaller than a specified tolerance. The distance

used may be the Euclidean distance.
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The MLE of σ2 has closed-form. From Uσ2 = 0, we obtain

σ̂2 =

n∑
t=1

(
1− 1{c}(yt)

)
d(yt;µt)

n−
n∑
t=1

1{c}(yt)
.

2.4.3 Confidence Interval and Hypothesis Tests

Under mild regularity conditions (Cox & Hinkley 1974, Sen & Singer 1993), θ̂ andK(θ̂)

are consistent for θ and K(θ); here, K(θ̂) denotes Fisher’s information matrix evaluated

at θ̂. Let J(θ) = lim
n→∞

K(θ)/n be nonsingular. Then

√
n(θ̂ − θ) D−→ NM+m+1(0, J(θ)−1),

where θ̂ = (ϕ̂>, β̂>, σ̂2)> is the maximum likelihood estimator of θ = (ϕ>, β>, σ2)>,

NM+m+1 is the multivariate normal distribution of dimension M +m+ 1 and D−→ denotes

convergence in distribution. Using the asymptotic normality of the MLE θ̂, asymptotic

confidence intervals can be easily obtained for the parameters that index the simplex

regression model inflated at c.

For a confidence level of 100(1− ν)%, ν ∈ (0, 0.5), the asymptotic confidence intervals

for ϕR, βr and σ2 are, respectively,

(
ϕ̂R − z1−ν/2

(
K̂ϕϕ
RR

)1/2

, ϕ̂R + z1−ν/2

(
K̂ϕϕ
RR

)1/2
)
,

for R = 1, . . . ,M ,

(
β̂r − z1−ν/2

(
K̂ββ
rr

)1/2

, β̂r + z1−ν/2

(
K̂ββ
rr

)1/2
)
,

for r = 1, . . . ,m, and, finally,

(
σ̂2 − z1−ν/2

(
K̂σ2σ2

)1/2

, σ̂2 + z1−ν/2

(
K̂σ2σ2

)1/2
)
.
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The estimated asymptotic variances of ϕ̂R, β̂r and σ̂2 are K̂ϕϕ

RR, K̂
ββ
rr and K̂σ2σ2 , respec-

tively. Here, K̂ϕϕ
RR is the element (R,R) of the matrix Kϕϕ evaluated at ϕ̂; K̂ββ

rr is the

element (r, r) of the matrix Kββ evaluated at β̂ and K̂σ2σ2 is the element Kσ2σ2 evaluated

at σ̂2. In the above confidence intervals, z1−ν/2 denotes the 1 − ν/2 standard normal

quantile.

Using the multivariate delta method (Lehmann & Casella 2002), the asymptotic con-

fidence interval for the mean response µ◦t = E(yt), t = 1, . . . , n, of the model IS-REc with

100(1− ν)% of confidence can be shown to be

(
µ̂◦t − z1−ν/2 se(µ̂◦t ), µ̂◦t + z1−ν/2 se(µ̂◦t )

)
,

where

µ̂◦t = c α̂t + (1− α̂t)µ̂t = c h−1(ζ̂t) + (1− h−1(ζ̂t))g
−1(η̂t)

and

se(µ̂◦t ) =

√√√√(1− µ̂t
h(ζ̂t)

)2

z>t K̂
ϕϕ zt +

(
1− α̂t
g(η̂t)

)2

x>t K̂
ββ xt,

where K̂ϕϕ and K̂ββ are the elements Kϕϕ and Kββ of the inverse of Fisher’s information

matrix (2.15) evaluated at ϕ̂ and β̂.

Hypothesis testing inference can also be easily performed. Suppose the interest lies

in testing a subset of the parameter vectors ϕ and β. We partition ϕ and β as ϕ =

(ϕ>1 , ϕ
>
2 )> and β = (β>1 , β

>
2 )>, where ϕ1 = (ϕ1, . . . , ϕM1)

>, ϕ2 = (ϕM+1, . . . , ϕM)>, β =

(β, . . . , βm1)
> and β2 = (βm1+1, . . . , βm)>. Here, 0 < M1 ≤M and 0 < m1 ≤ m. Suppose

we wish to test H0 : ϕ1 = ϕ
(0)
1 ; β1 = β

(0)
1 against H1 : violation of at least one equality.

Here, ϕ(0)
1 and β(0)

1 are vectors of dimension M1 and m1, respectively.

The hypothesis can be tested using the log-likelihood ratio test statistic, which is given

by

Λ = 2{`(ϕ̂, β̂, σ̂2)− `(ϕ̃, β̃, σ̃2)},

where `(ϕ, β, σ2) is the log-likelihood function given in (2.10) and (ϕ̂, β̂, σ̂2) and (ϕ̃, β̃, σ̃2)
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are the unrestricted and restricted (under hypothesis H0) MLEs of (ϕ, β, σ2)>, respec-

tively. Under some regularity conditions, Λ is asymptotically distributed as χ2 with

M1 + m1 degrees of freedom under the null hypothesis H0, i.e., Λ
D−→ χ2

M1+m1
. The test

can be performed using critical values from χ2
M1+m1

.

An alternative to the likelihood ratio test is the score test. Let Z1, Z2, X1 and X2

be full rank matrices of dimension n ×M1, n × (M −M1), n × m1 and n × (m − m1),

respectively. From the null hypothesis H0 : ϕ1 = ϕ
(0)
1 ; β1 = β

(0)
1 , we can define the

matrices of regressors Z and X as partitioned matrices Z = [Z1, Z2] and X = [X1, X2].

Here, if M1 = M we define Z1 = Z and if m1 = m we have X1 = X. Let U1ϕ be the

vector of dimension M1 containing the first M1 elements of score vector Uϕ and let Kϕϕ
11

be the matrix containing the first M1 lines and the first M1 columns of the matrix Kϕϕ,

defined in (2.15). In similar fashion, let U1β be the vector of dimension m1 containing the

first m1 elements of the score vector Uβ and Kββ
11 be the matrix of dimension m1 × m1

formed using the first m1 lines and the first m1 columns of Kββ, which is defined in (2.15).

Therefore, U1ϕ = Z>1PG(yc − α∗) and U1β = σ−2X>1THu. The score statistic ξ can be

written as

ξ = Ũ>1ϕK̃
ϕϕ
11 Ũ1ϕ + Ũ>1βK̃

ββ
11 Ũ1β,

where “ ˜ ” indicates that the quantities are evaluated at the restricted MLEs. Under some

the regularity conditions and the null hypothesis, the score statistic is asymptotically

distributed as χ2
M1+m1

.

The null hypothesis H0 can also be tested using the Wald test. The Wald statistic is

given by

$ =
(
ϕ̂1 − ϕ̂(0)

1

)>(
K̂ϕϕ

11

)−1(
ϕ̂1 − ϕ̂(0)

1

)
+
(
β̂1 − β̂(0)

1

)>(
K̂ββ

11

)−1(
β̂1 − β̂(0)

1

)
,

where “ ̂ ” indicates the quantities evaluated at the unrestricted MLEs. Under the null

hypothesis and under some regularity conditions, $ D−→ χ2
M1+m1

. The test can thus be

performed using critical values obtained from the χ2 distribution with M1 + m1 degrees
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of freedom. In particular, the significance of the Rth parameter ϕR, R = 1, . . . ,M , can

be tested using the square root of the Wald statistic, i.e., ϕ̂R/se(ϕ̂R), where se(ϕ̂R) is

the standard error of ϕ̂R. Note that se(ϕ̂R) is the square root ot the (R,R) element

of Kϕϕ evaluated at the MLE. The asymptotic distribution of ϕ̂R/se(ϕ̂R) under the null

hypothesis is standard normal, N (0, 1). Hypothesis testing inferences on βr, r = 1, . . . ,m,

can be performed analogously.

2.4.4 Application to simulated data

We fitted the zero-inflated simplex regression (ZIS-RE) model to a simulated dataset.

To the end, we used the gamlss and simplexreg R (R Development Core Team 2011)

packages. The source code is included in Appendix A.6. We consider the model with the

following structure:

g(µt) = β0 + β1xt,

h(αt) = ϕ0 + ϕ1zt,

t = 1, . . . , n, where g and h are the logit link functions. The values of xt and zt were

obtained as standard uniform random draws. The true values of the parameters are

β0 = −1.5, β1 = 1.5, ϕ0 = −1, ϕ1 = 0.5 and σ2 = 1.

In our example, 32.6% of the values of the response variable are equal to zero. Dis-

persion diagrams of the response variable yt against xt and zt are displayed in Figure 2.2.

Maximum likelihood estimates and their respective standard errors can be found in Table

2.1. Notice that all regressors are significant at the useful significance levels. We point

out that the MLEs of the parameters that index the submodel for αt are biased in small

samples. Preliminary numerical experiments suggest that such estimators only become

nearly unbiased when n ≥ 400. Further details on the simulated data can be found in

Appendix A.6.
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Table 2.1: Maximum likelihood estimatives and standard errors for the simulated data in
ZIS-RE.

Parameter β0 β1 ϕ0 ϕ1 σ2

Estimate −1.5135 1.4989 −1.0066 0.5522 0.9840
Std. error 0.0407 0.0748 0.1959 0.3317 0.0379
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Figure 2.2: Dispersion diagrams of the response yt against xt (left) and zt (right).

2.5 The Zero and One Inflated Simplex Regression Mo-

del

Let y1, . . . , yn be independent random variables with probability density function given

by (2.7), i.e., yt ∼ ZOIS(δ0, δ1, µt, σ
2). The zero and one inflated simplex regression model

(ZOIS-RE) is defined by

g(µt) =
m∑
i=1

xtiβi = x>t β = ηt,

H(δ0t, δ1t) = (h0(δ0t, δ1t), h1(δ0t, δ1t)) =
(
ν>t ρ, z

>
t ϕ
)

= (ζ0t, ζ1t) ,

(2.18)

where µt = E(yt|yt ∈ (0, 1)), δ0t = P (yt = 0), δ1t = P (yt = 1) and 1 − δ0t − δ1t =

P (yt ∈ (0, 1)); ηt, ζ0t and ζ1t are linear predictors; β = (β1, . . . , βk)
>, ρ = (ρ, . . . , ρk0)

>
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and ϕ = (ϕ1, . . . , ϕk1)

> are vectors of unknown parameters, where β ∈ Rk, ρ ∈ Rk0 and

ϕ ∈ Rk1 . Here, xt = (xt1, . . . , xtk)
>, νt = (νt1, . . . , νtk0)

> and zt = (zt1, . . . , ztk1)
> are

vectors of regressors of dimension k, k0 and k1, respectively.

The link function g : (0, 1) → R is strictly monotone and twice differentiable. The

function H is a bijective from the set C = {(δ0t, δ1t) : 0 < δ0t < 1, 0 < δ1t < 1− δ0t} to

R. H is also twice differentiable. The partial derivatives of δ0t = h∗0(ζ0t, ζ1t) and δ1t =

h∗1(ζ0t, ζ1t) are continuous in R2 and δ0t and δ1t can be uniquely expressed in terms of ζ0t

and ζ1t (Rudin 1976).

2.5.1 Likelihood Inference

Let θ = (ρ>, ϕ>, β>, σ2)> be the vector of unknown parameters. The likelihood func-

tion for the zero-and-one inflated simplex distribution is given by

L(θ) =
n∏
t=1

zois(y; δ0, δ1, µ, σ
2) = L1(ρ, ϕ)L2(β, σ2), (2.19)

where zois(·; ·, ·, ·, ·) is the probability density function of the zero and one inflated simplex

distribution defined in (2.7) and

L1(ρ, ϕ) =
n∏
t=1

δ
1{0}(yt)

0t δ
1{1}(yt)

1t (1− δ0t − δ1t)
1−1{0}(yt)−1{1}(yt),

L2(β, σ2) =
∏

t:yt∈(0,1)

f(yt;µt, σ
2),

where δ0t, δ1t and µt are functions of the parameters ρ, ϕ and β, respectively, through

(2.18). The function f(yt.·, ·) is the simplex density defined in (2.3).

The function L(θ) factors into two terms: one depending solely on (ρ>, ϕ>)> and an-

other one depending just on (β>, σ2)>. The parameters are thus separable (Pace & Salvan

1997). It follows that, maximum likelihood inference on (ρ>, ϕ>)> can be performed as

if (β>, σ2)> were known and vice-versa. Note that L1(ρ, ϕ) involves only the parameters

used to model the probability of occurrence of zeros and ones (discrete component). The
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likelihood function L2(β>, σ2) only involves the parameters used to model the distribution

of the response in the interval (0, 1) – the continuous component.

Using (2.19), the log-likelihood function for θ = (ρ>, ϕ>, β>, σ2)> is given by

`(θ) = log[L(θ)] = `1(ρ, ϕ) + `2(β, σ2), (2.20)

where

`1(ρ, ϕ) =
n∑
t=1

`t(δ0t, δ1t),

`2(β, σ2) =
∑

t:yt∈(0,1)

`t(µt, σ
2).

Here,

`t(δ0t, δ1t) = 1{0}(yt) log(δ0t) + 1{1}(yt) log(δ1t)

+ [1− 1{0}(yt)− 1{1}(yt)] log(1− δ0t − δ1t),

`t(µt, σ
2) = −1

2
log(2π)− 1

2
log(σ2)− 3

2
log[yt(1− yt)]−

1

2σ2
d(yt;µt).

Note that the function `2(β, σ2) in (2.20) is the same as the one given in (2.10). It

occurs because the simplex distribution is used to model the continuous component of the

response, i.e., the part of the response that lies in the interval (0, 1).

By differentiating the log-likelihood function in (2.20) with respect to each unknown

parameter we obtain the score function. The score vector for (ρ>, ϕ>)> is

U(ρ>, ϕ>)> =
(
Uρ(ρ, ϕ)>, Uϕ(ρ, ϕ)>

)>
,

where

Uρ(ρ, ϕ) = V >T0

(
∆0y{0} −∆(0,1)y(0,1)

)
+ V >T10

(
∆1y{0} −∆(0,1)y(0,1)

)
,

Uϕ(ρ, ϕ) = Z>T01

(
∆0y{0} −∆(0,1)y(0,1)

)
+ Z>T1

(
∆1y{1} −∆(0,1)y(0,1)

)
,

(2.21)



61
where V is a n× k0 matrix of regressors whose tth line is νt and Z is a n× k1 matrix of

regressors whose tth line is zt. Furthermore,

T0 = diag{∂δ01/∂ζ01, . . . , ∂δ0n/∂ζ0n},

T1 = diag{∂δ11/∂ζ11, . . . , ∂δ1n/∂ζ1n},

T01 = diag{∂δ01/∂ζ11, . . . , ∂δ0n/∂ζ1n},

T10 = diag{∂δ11/∂ζ01, . . . , ∂δ1n/∂ζ0n},

∆0 = diag{1/δ01, . . . , 1/δ0n},

∆1 = diag{1/δ11, . . . , 1/δ1n},

∆(0,1) = diag{1/(1− δ01 − δ11), . . . , 1/(1− δ0n − δ1n)},

y{0} = (1{0}(y1), . . . ,1{0}(yn))>,

y{1} = (1{1}(y1), . . . ,1{1}(yn))>,

y(0,1) = (1(0,1)(y1), . . . ,1(0,1)(yn))>.

Note that T0, T1, T01, T10, δ0, δ1 and δ(0,1) are diagonal matrices of dimension n. The

vectors y{0}, y{1} and y(0,1) are of dimension n.

We define the augmented matrices T̃ and Z̃, of dimension 2n× 2n and 2n× (k0 + k1),

respectively, as

T̃ =

 T0 T10

T01 T1

 , Z̃ =

 V 0

0 Z


and the vector y>∆ = ((∆0y{0} − ∆(0,1)y(0,1))

>, (∆1y{1} − ∆(0,1)y(0,1))
>)>, the score vector

for (ρ>, ϕ>)> can now be written as

U(ρ>, ϕ>)> = Z̃>T̃ y∆. (2.22)

The score vector for β is

Uβ(β, σ2) = σ−2X>diagm(y(0,1))T u, (2.23)
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where the the operator diagm(·) transforms a vector into a diagonal matrix; T and u are

defined in (2.12). The score function of σ2 is

Uσ2(β, σ2) = tr(diagm(y(0,1))D
∗), (2.24)

where D∗ is defined in Equation (2.13).

Details on how the first order derivatives of the log-likelihood function in (2.20) were

obtained can be found in Appendix A (subsection A.3).

Fisher’s information matrix for θ = (ρ>, ϕ>, β>, σ2)>, K(θ), for the zero and one

inflated simplex regression model is

K(θ) =



Kρρ Kρϕ 0 0

Kϕρ Kϕϕ 0 0

0 0 Kββ 0

0 0 0 Kσ2σ2


, (2.25)

where

Kρρ = V >
{
T 2

0 ∆0 −∆(0,1)(T0 + T10)2 + ∆1T
2
10

}
V,

Kϕϕ = Z>
{
T 2

1 ∆1 −∆(0,1)(T1 + T01)2 + ∆0T
2
01

}
Z,

Kρϕ = K>ϕρ = Z>
{
T0∆0T01 − (T0 + T10)∆(0,1)(T1 + T01) + T1∆1T10

}
V,

Kββ = −σ2X>∆−1
(0,1)AX,

Kσ2σ2 = tr(∆−1
(0,1)D).

The expressions for A and D are identical to those given (2.14). The vector of param-

eters (ρ>, ϕ>)> is orthogonal to (β>, σ2)>.

We define Q̃ as a 2n× 2n matrix given by

Q̃ =

 Q0 Q01

Q>01 Q1

 , (2.26)
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where

Q0 = T 2
0 ∆0 −∆(0,1)(T0 + T10)2 + ∆1T

2
10,

Q01 = Q>01 = T0∆0T01 − (T0 + T10)∆(0,1)(T1 + T01) + T1∆1T10,

Q1 = T 2
1 ∆1 −∆(0,1)(T1 + T01)2 + ∆0T

2
01.

The second order leading principal submatrix of K(θ) (i.e., the first two lines and columns

of K(θ)) can be written as

KΥ(Υ) =

 Kρρ Kρϕ

Kϕρ Kϕϕ

 = Z̃>Q̃Z̃,

where Υ = (ρ>, ϕ>)>.

The inverse of Fisher’s information matrix for the ZOIS-RE model is given by

K(θ)−1 =



Kρρ Kρϕ 0 0

Kϕρ Kϕϕ 0 0

0 0 Kββ 0

0 0 0 Kσσ2


, (2.27)

where

Kρρ = K−1
ρρ [Ik0 +Kρϕ(Kϕϕ −KρϕK

−1
ρρ Kρϕ)−1KρϕK

−1
ρρ ],

Kρϕ = Kϕρ> = −K−1
ρρ Kρϕ(Kϕϕ −KρϕK

−1
ρρ Kρϕ)−1,

Kϕϕ = (Kϕϕ −KρϕK
−1
ρρ Kρϕ)−1,

and Ik0 is the identity matrix of dimension k0 × k0. The components Kββ, Kσσ are the

same as those given in (2.15).
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2.5.2 Estimation Process

The estimation process of the parameters that index the ZOIS-RE model uses Fisher’s

scoring method. The MLE of the vector of parameters Υ = (ρ>, ϕ>)> is obtained using

the following iterative mechanism:

Υ(m+1) = Υ(m) + (Z̃>Q̃(m)Z̃)−1Z̃>T̃ (m)y
(m)
∆

= (Z̃>Q̃(m)Z̃)−1Z̃>Q̃(m)ỹ(m),

m = 0, 1, 2, . . ., where Q̃ is as defined in (2.26) and the matrices Z̃, Q̃ and the vector y∆

are given in (2.22). The vector ỹ(m) = Z̃Υ(m) + (Q̃(m))−1T̃ (m)y
(m)
∆ is a modified response

variable. The estimation process of (β>, σ2)> is identical to that of the IS-REc model.

2.5.3 Confidence Intervals and Hypothesis Tests

Under standard regularity conditions, θ̂ = (θ̂1, . . . , θ̂k0+k1+k+1)> = (ρ̂1, . . . , ρ̂k0 , ϕ̂1, . . . ,

ϕ̂k1 , β̂1, . . . , β̂k, σ̂
2)> and K(θ̂) are consistent estimators for θ and K(θ), respectively, K(θ̂)

being Fisher’s information matrix (2.25) evaluated at θ̂. Suppose that J(θ) = lim
n→∞

K(θ)/n

exists and is not singular. It follows that

√
n(θ̂ − θ) D−→ Nk0+k1+k+1(0, J(θ)−1),

where D−→ denotes convergence in distribution and Nk0+k1+k+1 is the multivariate normal

distribution of dimension k0+k1+k+1. Asymptotic confidence intervals for the parameters

that index the simplex regression can be obtained using the asymptotic normality of the

MLE θ̂. For r = 1, . . . , k0 + k1 + k + 1, the 100(1 − ν)α% level asymptotic confidence

interval for θr is (
θ̂r − z1− ν

2
(K(θ̂)rr)1/2, θ̂r + z1− ν

2
(K(θ̂)rr)1/2

)
.

Here, K(θ̂)rr is the (r, r)th element of the inverse of Fisher’s information matrix K(θ)

evaluated at θ̂.
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Suppose we wish to test restrictions on the parameters of ZOIS-RE model. Let ρ =

(ρ>1 , ρ
>
2 )>, ϕ = (ϕ>1 , ϕ

>
2 )> and β = (β>1 , β

>
2 )> be partitions of the parameter vectors. Here,

ρ1 = (ρ1, . . . , ρk01 )>, ρ2 = (ρk01+1, . . . , ρk0)
>, ϕ1 = (ϕ1, . . . , ϕk′)

>, ϕ2 = (ϕk′+1, . . . , ϕk1)
>,

β1 = (β1, . . . , βk′′)
> and β2 = (βk′′+1, . . . , βk)

>. The interest lies in testing H0 : ρ1 =

ρ
(0)
1 ;ϕ1 = ϕ

(0)
1 ; β1 = β

(0)
1 against H1 : at least one equality is violated. The vectors ρ(0)

1 ,

ϕ
(0)
1 and β(0)

1 are given and have dimensions k01 , k′ and k′′, respectively. We assume that

0 ≤ k01 ≤ k0, 0 ≤ k′ ≤ k1 and 0 ≤ k′′ ≤ k. The trivial case k01 = k′ = k′′ = 0 is excluded.

The log-likelihood ratio statistic is

Λ = 2{`(ρ̂, ϕ̂, β̂, σ̂2)− `(ρ̃, ϕ̃, β̃, σ̃2)},

where `(ρ, ϕ, β, σ2) is the log-likelihood function (2.20); (ρ̂, ϕ̂, β̂, σ̂2) and (ρ̃, ϕ̃, β̃, σ̃2) are

the unrestricted and restricted MLEs, the latter is obtained by imposing the null hy-

pothesis. If the restricted model is not on the boundary of the parametric space, then,

under same regularity conditions and under H0, Λ
D−→ χ2

k01+k′+k′′ . Hence, the likelihood

ratio test can be performed using asymptotic critical values from the χ2 distribution with

k01 + k′ + k′′ degrees of freedom.

The score test is an alternative to the log-likelihood ratio test. Let V = [V1, V2],

Z = [Z1, Z2] and X = [X1, X2] be matrices of regressors partitioned according to the

null hypothesis. V1, V2, Z1, Z2, X1 and X2 are full rank matrices of dimension n × k01 ,

n × (k0 − k01), n × k′, n × (k1 − k′), n × k′′ and n × (k − k′′), respectively. Note that if

k01 = k0 we have V1 = V , when k′ = k1 Z1 = Z and for k′′ = k we define X1 = X. Let

U1ρ, U1ϕ and U1β be vectors of dimensions k01 , k′ and k′′ containing the first k01 , k′ and k′′

elements of the respective score vectors Uρ(ρ, ϕ), Uϕ(ρ, ϕ) and Uβ(β, σ2). Let Kρρ
11 , K

ϕϕ
11

and Kββ
11 be matrices of dimension k01 × k01 , k′ × k′ and k′′ × k′′ having the first k01 , k′

and k′′ lines and columns of matrices Kρρ, Kϕϕ and Kββ defined in (2.27), respectively.

The partition defined according to the hypothesis H0 leads to
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U1ρ = V >1 T0(∆0y{0} −∆(0,1)y(0,1)) + V >1 T10(∆1y{0} −∆(0,1)y(0,1)),

U1ϕ = Z>1 T01(∆0y{0} −∆(0,1)y(0,1)) + Z>1 T1(∆1y{1} −∆(0,1)y(0,1)),

U1β = σ−2X>1 diagm(y(0,1))Tu.

The score statistic ξ can the be written as the sum of three quadratic forms:

ξ = Ũ>1ρK
ρρ
11 Ũ1ρ + Ũ>1ϕK

ϕϕ
11 Ũ1ϕ + Ũ>1βK

ββ
11 Ũ1β.

where “ ˜ ” indicates that the quantities are evaluated imposing the null hypothesis. Under

some regularity conditions and the null hypothesis, the score statistic is asymptotically

distributed as χ2
k01+k′+k′′ .

The Wald statistic can also be used to test the null hypothesis H0. It is given by

$ = (ρ̂1 − ρ(0)
1 )>(K̂ρρ

11 )−1(ρ̂1 − ρ(0)
1 ) + (ϕ̂1 − ϕ(0)

1 )>(K̂ϕϕ
11 )−1(ϕ̂1 − ϕ(0)

1 )

+ (β̂1 − β(0)
1 )>(K̂ββ

11 )−1(β̂1 − β(0)
1 ),

where “ ̂ ” denotes that quantities are evaluated under the unrestricted estimators. Under

the null hypothesis and under the regularity conditions, $ D−→ χ2
k01+k′+k′′ . In particular,

if we want to test the null hypothesis H0 : βi = 0 we can use the square root of the

Wald statistic, i.e., β̂i/s.e.(β̂i), where s.e.(β̂i) is the asymptotic standard error of the

MLE β̂i; it is obtained as the (i, i)th element of he matrix Kββ evaluated at the maximum

likelihood estimator. Under the null hypothesis, this statistic is asymptotically distributed

as standard normal.

2.5.4 Application to simulated data

We should now report maximum likelihood estimation of the parameters of the zero-

and-one inflated simplex regression (ZOIS-RE) model using R (R Development Core Team
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2011). We consider the model with the following structure:

g(µt) = β0 + β1xt,

h1(δ0t) = ρ0 + ρ1νt,

h2(δ1t) = ϕ0 + ϕ1zt,

t = 1, . . . , n, where g is the logit function and h1 and h2 are the logarithmic functions.

The values of xt, νt and zt are obtained as standard uniform distribution draws. The true

values of the parameters are β0 = −1.5, β1 = 1.5, ρ0 = −2, ρ1 = 0.5, ϕ0 = −2, ϕ1 = 0.7

and σ2 = 1. The sample size is n = 500.

Here, 16.2% of the values of the response variable are equal to zero and 15.0% are equal

to one. Dispersion plots of the response variable yt against xt, νt and zt are displayed in

Figure 2.3. The maximum likelihood estimates and their respective standard errors can

be found in Table 2.2. The figures indicate that the parameter estimators are noticeably

biased even when n = 500. Further analyses on the bias of the MLE are called for. Our

implementation uses the R software (R Development Core Team 2011) and can be found

in Appendix A.7.

Table 2.2: Maximum likelihood estimate and standard errors for the simulated data in
ZOIS-RE.

Parameter β0 β1 ρ0 ρ1 ϕ0 ϕ1 σ2

Estimate −1.6687 1.5536 −1.7792 0.2637 −1.9661 0.4577 0.7550
Std. error 0.0290 0.0552 0.2432 0.4077 0.2531 0.4234 0.0288

2.6 Concluding remarks

In this chapter we developed a frequentist approach to the zero-one inflated simplex re-

gression model proposed by Bandyopadhyay et al. (2014). The model allows the response

variable to assume values in [0,1), (0,1] or [0,1]. Each model parameter is related to ex-

planatory variables through a regression structure. We presented the maximum likelihood
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Figure 2.3: Dispersion diagrams of the response yt against xt (left), νt (center) and zt
(right).

estimation process for each model. We obtained matrix expressions for the score vector

and for the Fisher’s information matrix. Asymptotic confidence interval and hypothesis

tests were also presented. Simulated data were analyzed.



CHAPTER 3

Residual Analysis in Inflated Simplex Regressions

Resumo

Medidas de diagnósticos são fundamentais para avaliar a adequação de modelos de

regressão. A partir do gráfico de resíduos é possível identificar a presença de observações

atípicas e verificar se as suposições do modelo são satisfeitas. Neste capítulo, são obti-

dos os resíduos padronizados, resíduos padronizados ponderados e os resíduos quantis

aleatorizados para o modelo de regressão simplex inflacionado. Algumas medidas do tipo

pseudo-R2 são apresentadas para avaliar a qualidade do ajuste do modelo. A seleção

de modelos via AIC, SBC e GAIC e a utilização de envelopes simulados são descritas.

Uma aplicação que envolve a modelagem da proporção de uso de bebidas alcoólicas entre

estudantes de escolas públicas por meio do modelo de regressão simplex inflacionado em

zero é apresentada e discutida.

69
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3.1 Introduction

Diagnostic analysis plays an important role in regression modeling. The model residu-

als contain important information for analyzing the regression fit. Residuals can be used

to identify atipical data points and to determine whether the relevant of distributional

assumptions hold.

A residual measures the discrepancy between the observed data and fitted values.

Residual analysis can be based on ordinary residuals, on its standardized versions, on

residuals defined based on components of the deviance function (McCullagh & Nelder

1989) or on generalized residuals (Cox & Snell 1968). Belsley et al. (1980) and Cook &

Weisberg (1982) discussed the use of standardized residuals in normal linear regressions.

Pregibon (1981) introduced the deviance residual in GLMs and defined a standardization

using approximations proposed by Cox & Snell (1968). Williams (1984, 1987) found, using

simulation, evidence of agreement between the empirical distribution of the deviance and

the standard normal distribution for different GLMs. McCullagh (1987) presented an

alternative standardization for the deviance aiming eliminating asymmetry and kurtosis.

Atkinson (1981) showed how to construct confidence bands residuals in linear regression

models using simulation. Williams (1987) discussed the computation of envelopes for

residuals in GLMs. Farhrmeir & Tutz (1994) extended McCullagh’s (1987) result for

models that do not belong to the exponential family of distributions.

Residual analysis for different models have also been considered in literature. Ferrari

& Cribari-Neto (2004) introduced some diagnostic measures for the beta regression model.

Some other residuals for the same class of models were also proposed by Espinheira et al.

(2008). Ferrari et al. (2011) and Rocha & Simas (2011) presented diagnostic tools in

beta regression models with varying dispersion. Ospina & Ferrari (2012) introduced the

zero and/or one inflated beta regression model and presented some diagnostic measures

and model selection tools for that model. Tang et al. (2000) developed diagnostic tools

for nonlinear dispersion models. Jørgensen (1997) presented Pearson and Wald residuals,

score and dual score residuals, deviance and modified deviance residuals for exponential
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dispersion models. Zhang et al. (2016) provided approximate Pearson residuals for simplex

regression. Miyashiro (2008) presented the standardized weighted residual 2 (resíduos

ponderados padronizados 2, in Portuguese) for simplex regression models. Dunn & Smith

(1996) defined the (randomized) quantile residuals to check model adequacy, largely used

in GAMLSS models. In this chapter we define some residuals for the zero and/or one

simplex regression model using a similar approach to that of Ospina & Ferrari (2012)

combined with the approach in Miyashiro (2008).

Another helpful and well known tool in regression models is the global goodness-of-fit

measure known as coefficient of determination or R2. Its original definition for linear

models, however, cannot be used in zero and/or one simplex regression. Some pseudo-R2

type goodness-of-fit summary statistics should then be used. They are also described for

this model in this chapter. Some model selection procedures like the Akaike information

criterion (AIC) (Akaike 1973, 1974), the Schwarz Bayesian criterion (SBC) (Schwarz 1978)

and their generalized version (GAIC) (Lv & Liu 2014) are also described in this chapter

for choosing between competing models. Simulated envelopes are also an interesting tools

for evaluating the model at hand. An empirical application based on the zero inflated

simplex regression is also presented in the following sections.

3.2 Residuals

Residuals measure disagreements between the fitted model and the data. They can

be defined as a function r(yt, Ê(yt)) which measures the distance between the observed

value and the estimated mean response (Snell 1968). Hereafter, residuals for the inflated

simplex regression model are presented.
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3.2.1 Residuals for the zero or one inflated simplex regression

Standardized Residuals

We considered the convergence of the Fisher’s scoring method for ϕ and β in inflated

simplex regression models in Equations (B.5) and (B.4) in Appendix B.1. The standard-

ized residuals for the zero or one inflated simplex regression model can then be defined

as

r
(1)
t =

1{c}(yt)− α̂t√
α̂t(1− α̂t)(1− ĥ∗1tt)

(3.1)

and

r
(2)
t =

ût√
bt(1− α̂t)(1− ĥ∗2tt)

, (3.2)

where the terms ût and bt are given by

ût = (yt − µ̂t)
yt − 2µ̂tyt + µ̂2

t

yt(1− yt)µ̂3
t (1− µ̂t)3

(3.3)

and

bt = V̂ar(ut) = σ̂2

[
3σ̂2

µ̂t(1− µ̂t)
+

1

µ̂3
t (1− µ̂t)3

]
, (3.4)

µ̂t = g−1(x>t β̂), t = 1, . . . , n. The components ĥ∗1tt and ĥ
∗
2tt are the tth diagonal elements

of the projection matrices

Ĥ∗1 = Q̂1/2Z(Z>Q̂Z)−1Z>Q̂1/2

and

Ĥ∗2 = (∆̂Â)1/2X(X>∆̂ÂX)−1X>(∆̂Â)1/2,

respectively. Here, Z (n×M) and X (n×m) are matrices of known fixed covarites values

whose tth lines are z>t = (zt1, . . . , ztM) and x>t = (xt1, . . . , xtm), respectively. Matrices Q,

∆ and A are defined in (B.1) and (B.2).

Note that r(1)
t and r

(2)
t are, respectively, the standardized residuals for the discrete
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and the continuous components of the zero or one inflated simplex regression model.

These residuals tipically follow empirical distributions which renders the use of diagnostic

measures more dificult. However, plots of r(1)
t and r

(2)
t against α̂t and µ̂t, respectively,

may reveal outliers corresponding to each submodel.

From Equations (3.1) and (3.2), the standardized residuals of the IS-REc model can

be defined as

rt =


r

(1)
t , if yt = c,

r
(2)
t , if yt ∈ (0, 1).

(3.5)

Note that the distribution of the residuals is asymmetric due to the presence of probability

mass in y = c.

We also introduce the weighted standardized residuals

r∗t = α̂r
(1)
t + (1− α̂)r

(2)
t , (3.6)

where c = 0 or c = 1. Plots of rt and r∗t against adjusted values Ê(yt) allow us to identify

the outliers and influential points.

Randomized Quantile Residuals

For a continuous response (y), residuals can be defined using the cumulative distribu-

tion function F (y). Let U = F (y, θ), which is uniformly distributed in the unity interval,

and let Φ(·) the cumulative standard normal distribution function. Then we have that

V = Φ−1(F (y, θ)) = Φ−1(U)

is standard normal distributed. When θ is known we obtain the Cox and Snell residual

(Snell 1968). In practice, θ is unknown and it should be replaced by its maximum likeli-

hood estimate. Fortunately, θ̂ is a consistent estimator for θ and V D→ N(0, 1), i.e., V is

asymptotically distributed as standard normal. Then, E(V ) ≈ 0 and Var(V ) ≈ 1.
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The zero or one inflated simplex distribution is not absolutely continuous and it is

necessary to provide a more general definition of the residual V . Based on Dunn & Smith

(1996), the randomized quantile residual for the zero or one inflated simplex regression

model is

rqt = Φ−1(vt),

t = 1, . . . , n, where vt is a random uniform variable in (at, bt]. Here, at = limy↑yt ISc(y, α̂, µ̂,

σ̂2) and bt = ISc(y, α̂, µ̂, σ̂
2). In the zero inflated simplex regression, for y = 0, at =

limy↑0 ZIS(y, α̂, µ̂, σ̂2) = (1 − α̂) limy↑0 F (y; µ̂, φ̂) = 0 and bt = ZIS(y, α̂, µ̂, σ̂2) = α̂.

Then, vt is a uniform random variable in (0, α̂]. On the other hand, for yt ∈ (0, 1), we

have vt = ZIS(y, α̂, µ̂, σ̂2). In the one inflated simplex regression, for yt = 1 we have at =

limy↑1OIS(y, α̂, µ̂, σ̂2) = (1− α̂) limy↑1 F (y; µ̂, φ̂) = (1− α̂) and bt = OIS(1; α̂, µ̂, σ̂2) = 1.

Hence, vt is a random uniform variable in (1− α̂, 1]. For y ∈ (0, 1), vt = ZIS(yt, α̂, µ̂, σ̂
2).

Randomization of residuals is used to produce continuous normal residuals. We point

out that different values for the randomized quantile residuals should be observed in each

realization of this procedure. We then advise readers to compute these residuals at least

four times in order to detect eventual patterns.

3.2.2 Residuals for the zero and one inflated simplex regression

We shall now obtain residuals for the zero and one inflated simplex regression. Using

Fisher’s scoring method we obtained the MLEs for ρ, ϕ and β in Equations (B.10) and

(B.5) (see Appendix B.1 and B.2). The standardized residuals for the zero and one inflated

simplex regression model (rt) can be split into three terms as

rt =


r
{0}
t , if yt = 0,

r
{1}
t , if yt = 1,

r
(c)
t , if yt ∈ (0, 1).
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As one may note, each residual is associated to the submodel that models the probability

of occurrence of zeros, the probability of occurrence of ones and the occurrences of values

in (0,1). The first two terms can be expressed as

r
{0}
t =

1{0}(yt)− δ0t√
q̂1tt(1− ĥ

{0}
tt )

(3.7)

and

r
{1}
t =

1{1}(yt)− δ1t√
q̂2tt(1− ĥ

{1}
tt )

, (3.8)

where q1tt and q2tt are, respectively, the tth diagonal elements of the matrices Q1 and Q2

defined in Appendix B.2 and h{0}tt and h{1}tt are the tth diagonal elements of the projection

matrices H{0} = Ψ>0 H
∗
dΨ0 and H{1} = Ψ>1 H

∗
dΨ1, respectively. Here, Ψ0 = (In, 0n)> and

Ψ1 = (0n, In)>, In is the n × n identity matrix, 0n is an n × n matrix of zeros and

H∗d = Q1/2Z̃(Z̃>QZ̃)−1Z̃>Q1/2 is a projection matrix. The quantities are evaluated in

the maximum likelihood estimator. Residual plots can be used to identify outliers in

each submodel. We suggest plotting r{0}t against δ̂0t and r
{1}
t against δ̂1t, for t = 1, . . . , n,

separately.

For the continuous component, the same standardized weighted residual defined for

the zero or one inflated simplex regression model can be used. In this case,

r
(c)
t =

ût√
qt(1− δ̂0t − δ̂1t)(1− ĥ∗ctt)

, (3.9)

t = 1, . . . , n, where ut and qt are defined in Equations (3.3) and (3.4), respectively; ĥ∗ctt is

the tth element of the main diagonal of the projection matrix Ĥ∗c = (∆̂Â)1/2X(X>∆̂ÂX)−1

X>(∆̂Â)1/2. Here, X is an n×m matrix of known fixed values, where x>t = (xt1, . . . , xtm)

and ∆ and A are defined in Equation (B.2). Plots of r(c)
t against µ̂t may reveal outliers

in the submodel of the zero and one inflated simplex regression that models observations

in (0, 1).
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We can also define the weighted standardized residual. It is given by

r∗t = δ̂0tr
{0}
t + δ̂1tr

{1}
t + (1− δ̂0t − δ̂1t)r

(c)
t .

Note that r∗t is a weighted sum of r{0}t , r{1}t and r(c)
t . Plots of r∗t against adjusted values

can help identifying atypical observations.

Randomized Quantile Residuals

In the zero and one inflated simplex regression model we can define the randomized

quantile residual as

rqt = Φ−1(ut), t = 1, . . . , n,

where ut is a uniform random variable on the interval (at, bt], in which at = limy↑yt ZOIS(y;

δ0, δ1, µ, σ
2) and bt = ZOIS(y; δ0, δ1, µ, σ

2), respectively. Here, ZOIS(y; δ0, δ1, µ, σ
2) is de-

fined in Equation (2.7). A plot of rqt against the indices of the observations may reveal

atypical data points. A detectable trend in the plot of residuals against estimated predic-

tors may indicate link function misspecification. Normal probability plots with simulated

envelopes are also a helpful diagnostic tool (Atkinson 1985).

3.3 Global Goodness-of-fit Measure

The goodness-of-fit of a zero and/or one inflated simplex regression model can be

measured using a pseudo-R2. A simple pseudo-R2, say R2
p, is given by the square of

the correlation coefficient between the response, y1, . . . , yn, and the respective predicted

values, µ̆1, . . . , µ̆n, where µ̆t = Ê(yt) = c α̂t + (1 − α̂t)µ̂t. Perfect disagreement between

y’s and µ̆’s yields R2
p = 0, whereas perfect agreement leads to R2

p = 1. Two alternative

pseudo-R2 measures can be defined as R2∗
p = 1 − log L̂0/ log L̂ (McFadden 1974) and

R2
LR = 1 − (L̂0/L̂)2/n (Cox. & Snell 1989, p.208-209). Here, L̂0 and L̂ are, respectively,

the maximized likelihood functions of the null model and the fitted model. Note that R2∗
p
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is valid only for positive L̂0 and L̂.

3.4 Model Selection

Likelihood ratio tests, which were defined in Section 2.5.3 of Chapter 2, can be used to

compare nested zero and/or one inflated simplex regression models. Another useful ap-

proach to select the most parsimonious model, i.e., a well adjusted model with a can help

identifying atypical observations number of parameter is the generalized Akaike informa-

tion criterion (GAIC). This selection procedure can also be used in competing nonnested

models. It is defined as GAIC = −2̂̀+ (φ.df), where −2̂̀ is the fitted deviance (Rigby

& Stasinopoulos 2005), ̂̀ is the maximized log-likelihood, φ is a penalization term and df

denotes the degrees of freedom of the model. The first term of GAIC can be interpreted

as a measure of lack of fit. Tthe model that corresponds to the smallest GAIC is selected.

Special cases of the GAIC are the Akaike information criterion AIC (Akaike 1974) for

φ = 2, the Schwarz Bayesian criterion SBC (Schwarz 1978) for φ = log(n) and the consis-

tent Akaike information criterion (CAIC) for φ = log(n) + 1. For nonnested zero and/or

one inflated simplex regression models we recommend the use of J and MJ , as defined in

Section 1.3.1 of Chapter 1.

3.5 Simulated Envelopes

Normal probability plots with simulated envelopes are a helpful diagnostic tool to

evaluate a fitted model. It is based on standardized residuals. Further details can be found

in Neter et al. (1996). The simulated envelope is determined by the confidence bands.

Points that lie outside the confidence bands indicate that the model is not appropriate.

We recommend the use of the weighted standardized residuals defined in Section 3.2.1 in

simulated envelope plots.
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3.6 Application

We shall now present an empirical application of the inflated simplex regression. The

interest lies in modeling the proportion of alcohol use by public school students in the

past 30 days in California in years 2008 to 2010 (Percentage). The data consists of

1340 observations. There are five covariates: a factor with 56 levels/clusters/counties

(County); a grade level indicating 7th, 9th or 11th grade (Grade); a factor with levels

[1,2], [3,9], [10,19] and [20,30] (Days); the med point of each of the intervals defined in

Days (MedDays); a factor with levels Female and Male (Gender). The data can be found

at http://www.kidsdata.org.

The response contains observed values between 0 and 0.3330, of which 3.88% are

zeros. The mean value is 0.0656, the median is 0.0380 and the standard deviation is

0.0615. Figure 3.1 shows the histogram and the boxplot of the response. Notice that

the response is asymmetric, unimodal and there is a concentration in the smaller values.

Given the presence of zeros in the data, the zero inflated simplex regression model may

be adjusted.
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Figure 3.1: Histogram (left) and boxplot (right) for the proportion of public school stu-
dents in 4 buckets of days in which they drank alcohol in the past 30 days in California
in years 2008 to 2010.

http://www.kidsdata.org
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We consider the zero inflated simplex regression model where yt ∼ ZIS(α, µt, σ

2) and

such that

logit(α) = Zϕ,

logit(α) = Xβ,

(3.10)

where .Z is a matrix of regressors containing the factors of County, Days and Gender; X is

a matrix of regressors containing Grade and the factor of �Days; ϕ and β are the respective

parameter vectors to be estimated in each submodel. Here, we considered σ2 = exp(ν).

The model parameters were estimated by maximum likelihood using RS algorithm (Rigby

& Stasinopoulos 2005). Table 3.1 shows the maximum likelihood estimates and their

respective standard errors.

The AIC and the BIC were computed to compare the saturated model (containing

all possible covariates in each submodel) and the model given in Equation (3.10). For

the saturated model we observed AIC = −5839.126 and SBC = −5475.096. For the

model in Equation (3.10) were obtained AIC = −5860.403 and SBC = −5501.573. The

likelihood ratio test was also performed to compare both models. The test statistics equals

Λ = 0.7538 and the corresponding p-value = 0.3853. According to the AIC, the SBC and

also the likelihood ratio criteria, the model in Equation (3.10) may be used with the data

at hand. The pseudo-R2 (defined by the square of the correlation coefficient between

the response and the respective predicted values) for the fitted model equals 0.7621, thus

indicating a good fit.

In order to identify possible deviations from the model assumptions, we use plots of

rt, r∗t and rqt against the observations indices. Figure 3.2 shows standardized residuals

(Figure 3.2(a)), weighted standardized residuals (Figure 3.2(b)) and randomized quantile

residuals (Figure 3.2(c)). Such plots do not indicate the presence of outliers and there is

no clear systematic pattern.

In Figure 3.3 we plot the standardized residuals r(1)
t (for the discrete component) and

r
(1)
t (for the continuous component) against α̂t and µ̂t, respectively. Such plots do not
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Table 3.1: Maximum likelihood estimates of ZIS-RE model for the proportion of alcohol
use by public school students in the past 30 days in California in years 2008 to 2010.

Submodel for α
Covariate Estimate Std. Error Covariate Estimate Std. Error
Intercept −3.6906 0.4699 Days[3,9] 0.9855 0.5333
Grade9 −0.6601 0.3285 Days[10,19] 1.4430 0.5075
Grade11 −1.1779 0.3903 Days[20,30] 1.0634 0.5282

Submodel for µ
Covariate Estimate Std. Error Covariate Estimate Std. Error
Intercept −2.7609 0.0847 CountyRiverside 0.3001 0.1118
CountyAmador 0.4205 0.1190 CountySacramento 0.0113 0.1041
CountyButte 0.2509 0.1103 CountySanBenito 0.2577 0.1105
CountyCalaveras 0.1369 0.1156 CountySanBernardino 0.4073 0.1148
CountyColusa 0.5131 0.1177 CountySanDiego 0.3158 0.1120
CountyContraCosta 0.2289 0.1096 CountySanFrancisco −0.2682 0.0977
CountyDelNorte 0.7177 0.1258 CountySanJoaquin 0.2475 0.1102
CountyElDorado 0.1174 0.1065 CountySanLuisObispo 0.3130 0.1119
CountyFresno 0.2999 0.1114 CountySanMateo 0.0412 0.1047
CountyGlenn 0.3566 0.1225 CountySantaBarbara 0.2959 0.1119
CountyHumboldt 0.2337 0.1095 CountySantaClara −0.1273 0.1008
CountyImperial 0.4567 0.1165 CountySantaCruz 0.6065 0.1208
CountyInyo 0.6327 0.1247 CountyShasta 0.4421 0.1153
CountyKern 0.3159 0.1121 CountySiskiyou 0.1051 0.1118
CountyKings 0.4556 0.1160 CountySolano 0.3405 0.1126
CountyLake 0.8682 0.1279 CountySonoma 0.3087 0.1121
CountyLassen 0.5063 0.1602 CountyStanislaus 0.6107 0.1208
CountyLosAngeles 0.1436 0.1074 CountySutter 0.3563 0.1130
CountyMadera 0.4381 0.1156 CountyTehama 0.4844 0.1218
CountyMarin 0.2882 0.1110 CountyTrinity 0.9188 0.1317
CountyMariposa 1.2907 0.1430 CountyTulare 0.4834 0.1172
CountyMendocino 0.6012 0.1206 CountyTuolumne 0.8053 0.1271
CountyMerced 0.5098 0.1179 CountyVentura 0.3130 0.1119
CountyModoc 0.4697 0.1756 CountyYolo 0.4013 0.1145
CountyMono 0.5303 0.1565 CountyYuba 0.6139 0.1204
CountyMonterey 0.3955 0.1144 Grade9 0.8255 0.0290
CountyNapa 0.1026 0.1067 Grade11 1.1270 0.0325
CountyNevada 0.0841 0.1057 Days[10.19] −2.1198 0.0463
CountyOrange 0.0886 0.1060 Days[20.30] −1.7842 0.0475
CountyPlacer 0.0387 0.1045 Days[3.9] −1.1255 0.0512
CountyPlumas 0.8321 0.1479 GenderMale 0.0564 0.0244
σ̂2 2.3740 0.0197
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Figure 3.2: Residual plots.
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Figure 3.3: Residual plots for the discrete and the continuous component.

Normal probability plots with simulated envelopes are shown in Figure 3.4. Notice

that residuals lie inside the confidence bands. There is no evidence agaisnt the fitted zero

inflated simplex regression model. The distribution of residuals are left skewed because

of the probability mass observed in zero point.
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Figure 3.4: Normal probability plots with simulated envelopes.

3.7 Concluding remarks

In this chapter we obtained the standardized weighted residuals for the zero and/or one

inflated simplex regression model. These residuals are divided into two parts: residuals

for the continuous components of the model (i.e., when the response lies in the open

unit interval) and residuals for the discrete components of the model (when the response

assumes 0 and/or 1). Such residuals are asymmetrically distributed which may render

diagnostic analysis difficult to perform. To overcome that shortcoming we defined the

weighted standardized residuals. Randomized quantile residuals were also defined in order

to produce continuous residuals that are approximately normally ditributed.

Pseudo-R2 measures were also provided. A model selection procedure based on the

generalized Aikaike information criterion was described. We constructed normal probabil-

ity plots with simulated envelopes as a diagnostic tool. We also presented and discussed

an application with real (nor simulated) data.
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APPENDIX A

Appendices of Chapter 2

A.1 First order derivatives of the log-likelihood func-

tion for the simplex regression inflated at c = 0 or

c = 1

From the separability of the vectors of parameters ϕ and (β>, σ2)>, the score function

for ϕ can be expressed independently from the score function for (β>, σ2)>. From the

log-likelihood function in (2.10), the score function for ϕR, for R = 1, . . . ,M , is

UϕR =
∂`1(ϕ)

∂ϕR
=

n∑
t=1

∂`t(αt)

∂αt

dαt
dζt

∂ζt
∂ϕR

,

where

∂`t(αt)

∂αt
=
1{c}(yt)− αt
αt(1− αt)

,
dαt
dζt

=
dh−1(ζt)

dζt
=

1

h′(αt)
and

∂ζt
∂ϕR

=
∂h(αt)

∂ϕR
= ztR.
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Here, h′ is the first order derivative of the link function h. Therefore, the score function

for ϕR can be expressed as

UϕR =
n∑
t=1

1{c}(yt)− αt
αt(1− αt)

1

h′(αt)
ztR. (A.1)

The score function for βr, r = 1, . . . ,m, is

Uβr =
∂`2(β, σ2)

∂βr
=

∑
t:y∈(0,1)

∂`t(µt, σ
2)

∂µt

dµt
dηt

∂ηt
∂βr

,

where
∂`t(µt, σ

2)

∂µt
= − 1

2σ2
d′(yt, µt), with d′(yt;µt) =

∂d(yt;µt)

∂µt
.

Let

ut = −1

2
d′(yt;µt) =

(yt − µt)(yt − 2µtyt + µ2
t )

yt(1− yt)µ3
t (1− µ)3

. (A.2)

Then
∂`t(µt, σ

2)

∂µt
= σ−2ut.

Furthermore,
dµt
ηt

=
dg−1(ηt)

dηt
=

1

g′(µt)
and

∂ηt
∂βr

=
∂g(µt)

βr
= xtr,

where g′ is the first derivative of the link function g. The score function Uβr is then given

by

Uβr =
n∑
t=1

(
1− 1{c}(yt)

)
σ−2ut

1

g′(µt)
xtr. (A.3)

The score function for σ2 is

Uσ2 =
∂`2(β, σ2)

∂σ2
=

∑
t:y∈(0,1)

∂`t(µt, σ
2)

∂σ2
,

where
∂`t(µt, σ

2)

∂σ2
= − 1

2σ2
+

1

2σ4
d(yt;µt),
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where d(yt;µt) is given by (2.4). The score function Uσ2 is then given by

Uσ2 =
n∑
t=1

(1− 1{c}(yt))

[
− 1

2σ2
+

1

2σ4
d(yt;µt)

]
. (A.4)

The score functions in (A.1), (A.3) and (A.4) are presented in matrix form in section

2.4.1.

A.2 Second order derivatives and cumulants of the log-

likelihood function for the simplex regression in-

flated at c = 0 or c = 1

Fisher’s information matrix is obtained from the moments of the second order log-

likelihood derivatives. We use the notation of Lawley (1956), in which −κrs = κr,s denotes

the (r, s) element of Fisher’s information matrix K(θ).

The second order derivative of the log-likelihood function in (2.10) with respect to ϕR,

R = 1, . . . ,M , and ϕS is

UϕRϕS =
∂2`1(ϕ)

∂ϕRϕS
=

n∑
t=1

∂

∂αt

(
∂`t(αt)

∂αt

dαt
dζt

∂ζt
∂ϕR

)
dαt
dζt

∂ζt
∂ϕS

=
n∑
t=1

{
∂2`t(αt)

∂α2
t

(
dαt
dζt

)2

+
∂`t(αt)

∂αt

(
∂

∂αt

dαt
dζt

)
dαt
dζt

}
ztSztR

=
n∑
t=1

{(
−1(0,1)(yt)

(1− αt)2
−
1{c}(yt)

α2
t

)(
dαt
dζt

)2

+

(
1{c}(yt)

αt
−
1(0,1)(yt)

1− αt

)(
∂

∂αt

dαt
dζt

)
dαt
dζt

}
ztSztR.

Note that 1(0,1)(yt) = 1− 1{c}(yt).
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Under the regularity conditions, E(∂`t(αt))/∂αt = 0. Thus,

κϕRϕS = E(UϕRϕS) = E

[
n∑
t=1

{
∂2`t(αt)

∂α2
t

(
dαt
dζt

)2

+
∂`t(αt)

∂αt

(
∂

∂αt

dαt
dζt

)
dαt
dζt

}
ztSztR

]

=
n∑
t=1

{
E

[
∂2`t(αt)

∂α2
t

(
dαt
dζt

)2

ztSztR

]
+ E

[
∂`t(αt)

∂αt

(
∂

∂αt

dαt
dζt

)
dαt
dζt

ztSztR

]}

=
n∑
t=1

E

[
∂2`t(αt)

∂α2
t

(
dαt
dζt

)2

ztSztR

]

=
n∑
t=1

E

[(
−1(0,1)(yt)

(1− αt)2
−
1{c}(yt)

α2
t

)(
dαt
dζt

)2

ztSztR

]
.

Note that E(1{c}(yt)) = αt and E(1 − 1{c}(yt)) = 1 − αt. Then, the expression above

reduces to

κϕRϕS = −
n∑
t=1

1

αt(1− αt)

(
1

h′(αt)

)2

ztSztR.

The cross second order derivative of the log-likelihood function in (2.10) with respect

to βR, r = 1, . . . ,m, and βs is

Uβrβs =
∂2`2(β, σ2)

∂βrβs
=

∑
t:yt∈(0,1)

∂

∂µt

(
∂`t(µt, σ

2)

∂µt

dµt
dηt

∂ηt
∂βr

)
dµt
dηt

∂ηt
∂βs

=
∑

t:yt∈(0,1)

{
∂2`t(µt, σ

2)

∂µ2
t

(
dµt
dηt

)2

+
∂`t(µt, σ

2)

∂µt

(
∂

∂µt

dµt
dηt

)
dµt
dηt

}
xtsxtr,

(A.5)

where
∂2`t(µt, σ

2)

∂µ2
t

= − 1

2σ2
d′′(yt;µt),

with

1

2
d′′(yt;µt) =

1

2

∂2d(yt;µt)

∂µ2
t

=
1

µt(1− µt)
+

(1− 2µt)

µ2
t (1− µt)2

(yt − µt)d(yt;µt)

+
1

µ3
t (1− µt)3

+
1− 2µt

µ4
t (1− µt)4

(yt − µt)

− 1

µt(1− µt)
(yt − µt)d′(yt;µt)−

2(2µt − 1)

µ4
t (1− µt)4

(yt − µt),

(A.6)
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where d(yt;µt) is given in (2.4).

In order to obtain the cumulants involving β and σ2, the following proposition shall

be proved. It can be found in PhD thesis of Raydonal Ospina Martínez (Marínez 2008,

p. 108, in portuguese).

Proposition 1. Let (y1, . . . , yn)> be a vector of n independent random variables where yt

follows the inflated simplex distribution with p.d.f. given in (2.6), i.e., yt ∼ ISc(αt, µt, σ
2),

t = 1, . . . , n. Let I : (0, 1)→ R be a continuous function. Thus,

E

 ∑
t:yt∈(0,1)

I(yt)

 =
n∑
t=1

(1− αt)E
(
I(yt)|1{c}(yt) = 0

)
.

Proof. The support of the ISc(αt, µt, σ2) is set (0, 1) ∪ {c}, where c = 0 or c = 1. Let

I∗(yt) =


0, if yt = c,

I(yt), if yt ∈ (0, 1).

It then follows that

E

 ∑
t:yt∈(0,1)

I(yt)

 = E

(
n∑
t=1

I∗(yt)

)
=

n∑
t=1

E(I∗(yt)).

Thus,

E(I∗(yt)) = E
(
I∗(yt)|1{c}(yt) = 0

)
Pr
(
1{c}(yt) = 0

)
+ E

(
I∗(yt)|1{c}(yt) = 1

)
Pr
(
1{c}(yt) = 1

)
= E

(
I∗(yt)|1{c}(yt) = 0

)
Pr
(
1{c}(yt) = 0

)
= (1− αt)E

(
I(yt)|1{c}(yt) = 0

)
.

The result follows.

Under the standard regularity conditions, E(∂`t(µt, σ
2)/∂µt) = 0. Using the result in
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Proposition 1, we obtain

κβrβs = E(Uβrβs)

= E

 ∑
t:yt∈(0,1)

{
∂2`t(µt, σ

2)

∂µ2
t

(
dµt
dηt

)2

+
∂`t(µt, σ

2)

∂µt

(
∂

∂µt

dµt
dηt

)
dµt
dηt

}
xtsxtr


=

n∑
t=1

(1− αt)E
[
∂2`t(µt, σ

2)

∂µ2
t

](
dµt
dηt

)2

xtsxtr

= −
n∑
t=1

(1− αt)
1

2σ2
E [d′′(yt;µt)]

(
1

g′(µt)

)2

xtsxtr.

From Equation (A.6),

1

2
E [d′′(yt;µt)] =

1

µt(1− µt)
{E[d(yt;µt)]− E[(yt − µt)d′(yt;µt)]}

+
1− 2µt

µ2
t (1− µt)2

E[(yt − µt)d(yt;µt)] +
1

µ3
t (1− µt)3

=
3σ2

µt(1− µt)
+

1

µ3
t (1− µt)3

,

because E[d(yt;µt)] = σ2, E[(yt−µt)d′(yt;µt)] = −2σ2 and E[(yt−µt)d(yt;µt)] = 0. Then,

κβrβs = − 1

σ2

n∑
t=1

(1− αt)atxtsxtr,

where

at =

(
3σ2

µt(1− µt)
+

1

µt3(1− µt)3

)(
1

g′(µt)

)2

.

The second derivative with respect to σ2 of the log-likelihood function in (2.10) is

Uσ2σ2 =
∂2`2(β, σ2)

∂σ4
=

∑
t:yt∈(0,1)

∂2`t(µt, σ
2)

∂σ4

=
∑

t:yt∈(0,1)

∂

∂σ2

(
− 1

2σ2
+

1

2σ4
d(yt;µt)

)

=
∑

t:yt∈(0,1)

(
1

2σ4
− 1

σ6
d(yt;µt)

)
.

(A.7)



98
Since E[d(yt;µt)] = σ2 and using the result in the Proposition 1,

κσ2σ2 = E [Uσ2σ2 ] = −
n∑
t=1

(1− αt)
1

2σ4
.

By differentiating (2.10) with respect to βr and σ2, we obtain

Uβrσ2 =
∂2`2(β, σ2)

∂βr∂σ2
=

∑
t:yt∈(0,1)

∂2`t(µt, σ
2)

∂µt∂σ2

dµt
dηt

∂ηt
∂βr

= − 1

σ4

∑
t:yt∈(0,1)

ut
dµt
dηt

xtr, (A.8)

where ut is given in Equation (A.2). Then, using the result in the Proposition 1,

κβrσ2 = E(Uβrσ2) = − 1

σ4

n∑
t=1

(1− αt)E(ut)
dµt
dηt

xtr. (A.9)

We have

E(ut) = E
[

ytµt
µt(1− µt)

{
d(yt;µt) +

1

µ2(1− µ)2

}]
.

Using the fact that E[d(yt;µt)] = σ2 and E[(yt − µt)d(yt;µt)] = 0, it follows that

E(ut) =
1

µt(1− µt)

[
E[(yt − µt)d(yt;µt)] +

1

µ2(1− µ)2
E(yt − µt)

]
= 0. (A.10)

Then, using Equations (A.9) and (A.10), we obtain

κβrσ2 = 0.

From the separability of ϕ and (β>, σ2)> we have that UϕRσ2 = UβrϕR = 0 and hence

κϕRσ2 = κβrϕR = 0.



99
A.3 First order derivatives of the log-likelihood func-

tion for the zero and one inflated simplex regres-

sion model

Consider the vector of parameters (ρ>, ϕ>)>. The first order derivatives of `1(ρ, ϕ)

which is in (2.20), for r′ = 1, . . . , k0 and r′′ = 1, . . . , k1, are

Uρr′ =
∂`1(ρ, ϕ)

∂ρr′
=

n∑
t=1

{
∂`t(δ0t, δ1t)

∂δ0t

∂δ0t

∂ζ0t

∂ζ0t

∂ρr′
+
∂`t(δ0t, δ1t)

∂δ1t

∂δ1t

∂ζ0t

∂ζ0t

∂ρr′

}
=

n∑
t=1

{
1{0}(yt)

δ0t

−
1(0,1)(yt)

1− δ0t − δ1t

}
∂δ0t

∂ζ0t

νtr′ +
n∑
t=1

{
1{1}(yt)

δ1t

−
1(0,1)(yt)

1− δ0t − δ1t

}
∂δ1t

∂ζ1t

νtr′

and

Uϕr′′ =
∂`1(ρ, ϕ)

∂ϕr′′
=

n∑
t=1

{
∂`t(δ0t, δ1t)

∂δ0t

∂δ0t

∂ζ1t

∂ζ1t

∂ϕr′′
+
∂`t(δ0t, δ1t)

∂δ1t

∂δ1t

∂ζ1t

∂ζ1t

∂ϕr′′

}
=

n∑
t=1

{
1{0}(yt)

δ0t

−
1(0,1)(yt)

1− δ0t − δ1t

}
∂δ0t

∂ζ1t

ztr′′ +
n∑
t=1

{
1{1}(yt)

δ1t

−
1(0,1)(yt)

1− δ0t − δ1t

}
∂δ1t

∂ζ1t

ztr′′ .

From Equation (2.20), the first order derivatives of `2(β, σ2) are

Uβr = σ−2

n∑
t=1

1(0,1)(yt)ut
1

g′(µt)
xtr (A.11)

and

Uσ2 =
n∑
t=1

1(0,1)(yt)

[
− 1

2σ2
+

1

2σ4
d(yt;µt)

]
. (A.12)

Note that (A.11) and (A.12) are the same quantities given in Equations (A.3) and

(A.4), respectively.

Expressions for Uρr′ , Uϕr′′ , Uβr and Uσ2 in matrix form are presented in Section 2.5.1.
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A.4 Second order derivatives of the log-likelihood func-

tion for the zero and one inflated simplex regres-

sion model

The second order derivatives of the function `1(ρ, ϕ) in (2.20) are given by

Uρr′ρs′ =
∂2`1(ρ, ϕ)

∂ρr′∂ρs′
=

n∑
t=1

{[
∂2`t(δ0t, δ1t)

∂δ2
0t

∂δ0t

∂ζ0t

∂ζ0t

∂ρs′
+
∂2`t(δ0t, δ1t)

∂δ0t∂δ1t

∂δ1t

∂ζ0t

∂ζ0t

∂ρs′

]
∂δ0t

∂ζ0t

∂ζ0t

∂ρr′

+
∂`t(δ0t, δ1t)

∂δ0t

∂2δ0t

∂ζ2
0t

∂ζ0t

∂ρr′

∂ζ0t

∂ρs′
+
∂`t(δ0t, δ1t)

∂δ1t

∂δ0t

∂ζ0t

∂2ζ0t

∂ρs′∂ρr′

+

[
∂2`t(δ0t, δ1t)

∂δ1t∂δ0t

∂δ0t

∂ζ0t

∂ζ0t

∂ρs′
+
∂2`t(δ0t, δ1t)

∂δ2
1t

∂δ1t

∂ζ0t

∂ζ0t

∂ρs′

]
∂δ1t

∂ζ0t

∂ζ0t

∂ρr′

+
∂`t(δ0t, δ1t)

∂δ1t

∂2δ1t

∂ζ2
0t

∂ζ0t

∂ρr′

∂ζ0t

∂ρs′
+
∂`t(δ0t, δ1t)

∂δ1t

∂δ1t

∂δ0t

∂2ζ0t

∂ρs′∂ρr′

}
,

Ur′′s′′ =
∂2(ρ, ϕ)

∂ϕr′′∂ϕs′′
=

n∑
t=1

{[
∂2`t(δ0t, δ1t)

∂δ2
0t

∂δ0t

∂ζ1t

∂ζ1t

∂ϕs′′
+
∂2`t(δ0t, δ1t)

∂δ0t∂δ1t

∂δ1t

∂ζ1t

∂ζ1t

∂ϕs′′

]
∂δ0t

∂ζ1t

∂ζ1t

∂ϕr′′

+
∂`t(δ0t, δ1t)

∂δ0t

∂2δ0t

∂ζ2
1t

∂ζ1t

∂ϕr′′

∂ζ1t

∂ϕs′′
+
∂`t(δ0t, δ1t)

∂δ0t

∂δ0t

∂ζ1t

∂2ζ1t

∂ϕs′′∂ϕr′′

+

[
∂2`t(δ0t, δ1t)

∂δ1t∂δ0t

∂δ0t

∂ζ1t

∂ζ1t

∂ϕs′′
+
∂2`t(δ0t, δ1t)

∂δ2
1t

∂δ1t

∂ζ1t

∂ζ1t

∂ϕs′′

]
∂δ1t

∂ζ1t

∂ζ1t

∂ϕr′′

+
∂`t(δ0t, δ1t)

∂δ1t

∂2δ1t

∂ζ2
1t

∂ζ0t

∂ϕr′′

∂ζ1t

∂ϕs′′
+
∂`t(δ0t, δ1t)

∂δ1t

∂δ1t

∂δ1t

∂2ζ1t

∂ϕs′′∂ϕr′′

}
and

Uρr′ϕr′′ =
∂2`1(ρ, ϕ)

∂ρr′∂ϕr′′
=

n∑
t=1

{[
∂2`t(δ0t, δ1t)

∂δ2
0t

∂δ0t

∂ζ1t

∂ζ1t

∂ϕr′′
+
∂2`t(δ0t, δ1t)

∂δ0t∂δ1t

∂δ1t

∂ζ1t

∂ζ1t

∂ϕr′′

]
∂δ0t

∂ζ0t

∂ζ0t

∂ρr′

+
∂`t(δ0t, δ1t)

∂δ0t

∂2δ0t

∂ζ1t∂ζ0t

∂ζ1t

∂ϕr′′

∂ζ0t

∂ρr′
+
∂`t(δ0t, δ1t)

∂δ1t

∂2δ1t

∂ζ0t∂ζ1t

∂ζ1t

∂ϕr′′

∂ζ0t

∂ρr′

+

[
∂2`t(δ0t, δ1t)

∂δ1t∂δ0t

∂δ0t

∂ζ1t

∂ζ1t

∂ϕr′′
+
∂2`t(δ0t, δ1t)

∂δ2
1t

∂δ1t

∂ζ1t

∂ζ1t

∂ϕr′′

]
∂δ1t

∂ζ0t

∂ζ0t

∂ρr′

}
,
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where

∂2`t(δ0t, δ1t)

∂δ2
0t

= −
1{0}(yt)

δ2
0t

+
1(0,1)(yt)

(1− δ0t − δ1t)2
,

∂2`t(δ0t, δ1t)

∂δ2
1t

= −
1{1}(yt)

δ2
0t

+
1(0,1)(yt)

(1− δ0t − δ1t)2
,

∂2`t(δ0t, δ1t)

∂δ1tδ0t

=
1(0,1)(yt)

(1− δ0t − δ1t)2
.

The second order derivatives of the function `2(β, σ2) in (2.20), i.e., Uβrβs , Uσ2σ2 and

Uβrσ2 , are the same as those given in (A.5), (A.7) and (A.8), respectively. From the

separability of the parameters (ρ>, ϕ>)> and (β>, σ2)> we have that

Uβrρr′ =
∂`1(ρ, ϕ)

∂βr∂ρr′
= 0,

Uβrϕr′′ =
∂`1(ρ, ϕ)

∂βr∂ϕr′′
= 0,

Uσ2ρr′
=
∂`1(ρ, ϕ)

∂σ2∂ρr′
= 0,

Uσ2ϕr′′
=
∂`1(ρ, ϕ)

∂σ2∂ϕr′′
= 0.

A.5 Cumulants of the log-likelihood function for the

zero and one inflated simplex regression model

In order to obtain the cumulants, the following results are useful. Under some regu-

larity conditions (Lehmann & Casella 2002), we have

E

(
∂`t(µt, σ

2)

∂δ0t

)
= 0,

E

(
∂`t(µt, σ

2)

∂δ1t

)
= 0,

E

(
∂2`t(δ0t, δ1t)

∂δ2
0t

)
= − 1

δ0t

+
1

1− δ0t − δ1t

,

E

(
∂2`t(δ0t, δ1t)

∂δ2
1t

)
= − 1

δ1t

+
1

1− δ0t − δ1t

,

E

(
∂2`t(δ0t, δ1t)

∂δ1t∂δ0t

)
=

1

1− δ0t − δ1t

,
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Another useful result is that stated in Proposition 2. It is useful to obtain the cumu-

lants that involve (β>, σ2)>. It can be found in PhD thesis of Raydonal Ospina Martínez

(Marínez 2008, p. 115, in portuguese).

Proposition 2. Let (y1, . . . , yn)> be a vector of n independent random variables, where

yt follows the zero and one inflated simplex distribution with p.d.f. given in (2.7), i.e.,

yt ∼ ZOIS(δ0t, δ1t, µt, σ
2), t = 1, . . . , n. Let I : (0, 1)→ R is a continuous function. Thus,

E

 ∑
t:yt∈(0,1)

I(yt)

 =
n∑
t=1

(1− δ0t − δ1t)E
(
I(yt)|1{c}(yt) = 0

)
.

Proof. Let

I∗(yt) =


0, if yt ∈ {0, 1},

I(yt), if yt ∈ (0, 1).

Then

E

 ∑
t:yt∈(0,1)

I(yt)

 = E

(
n∑
t=1

I∗(yt)

)
=

n∑
t=1

E(I∗(yt)).

Additionally,

E(I∗(yt)) = E
(
I∗(yt)|1(0,1)(yt) = 0

)
Pr
(
1(0,1)(yt) = 0

)
+ E

(
I∗(yt)|1(0,1)(yt) = 1

)
Pr
(
1(0,1)(yt) = 1

)
= E

(
I∗(yt)|1(0,1)(yt) = 1

)
Pr
(
1(0,1)(yt) = 1

)
= (1− δ0t − δ1t)E

(
I(yt)|1(0,1)(yt) = 1

)
.

The result follows.
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We now obtain some log-likelihood cumulants:

κρr′ρs′ = E(Uρr′ρs′ )

=
n∑
t=1

{[(
− 1

δ0t

+
1

1− δ0t − δ1t

)
∂δ0t

∂ζ0t

νts′ +

(
1

1− δ0t − δ1t

)
∂δ1t

∂ζ0t

νts′

]
∂δ0t

∂ζ0t

νtr′

+

[(
1

1− δ0t − δ1t

)
∂δ0t

∂ζ0t

νts′ +

(
− 1

δ1t

+
1

1− δ0t − δ1t

)
∂δ1t

∂ζ0t

νts′

]
∂δ1t

∂ζ0t

νtr′

}
=

n∑
t=1

(
− 1

δ0t

+
1

1− δ0t − δ1t

)(
∂δ0t

∂ζ0t

)2

νtr′νts′

+ 2
n∑
t=1

(
1

1− δ0t − δ1t

)
∂δ1t

∂ζ0t

∂δ0t

∂ζ0t

νtr′νts′

+
n∑
t=1

(
− 1

δ1t

+
1

1− δ0t − δ1t

)(
∂δ1t

∂ζ0t

)2

νtr′νts′ ,

κϕr′′ϕs′′ = E(Uϕr′′ϕs′′ )

=
n∑
t=1

{[(
− 1

δ0t

+
1

1− δ0t − δ1t

)
∂δ0t

∂ζ0t

zts′′ +

(
1

1− δ0t − δ1t

)
∂δ1t

∂ζ1t

zts′′

]
∂δ0t

∂ζ1t

ztr′′

+

[(
1

1− δ0t − δ1t

)
∂δ0t

∂ζ1t

zts′′ +

(
− 1

δ1t

+
1

1− δ0t − δ1t

)
∂δ1t

∂ζ1t

zts′′

]
∂δ1t

∂ζ1t

ztr′′

}
=

n∑
t=1

(
− 1

δ0t

+
1

1− δ0t − δ1t

)(
∂δ0t

∂ζ1t

)2

ztr′′zts′′

+ 2
n∑
t=1

(
1

1− δ0t − δ1t

)
∂δ0t

∂ζ1t

∂δ1t

∂ζ1t

ztr′′zts′′

+
n∑
t=1

(
− 1

δ1t

+
1

1− δ0t − δ1t

)(
∂δ1t

∂ζ1t

)2

ztr′′zts′′

and

κρr′ϕs′′ = E(Uρr′ϕs′′ )

=
n∑
t=1

(
− 1

δ0t

+
1

1− δ0t − δ1t

)
∂δ0t

∂ζ0t

∂δ0t

∂ζ0t

ztr′′νr′ +
n∑
t=1

(
1

1− δ0t − δ1t

)
∂δ1t

∂ζ1t

∂δ0t

∂ζ0t

ztr′′νr′

+
n∑
t=1

(
1

1− δ0t − δ1t

)
∂δ0t

∂ζ1t

∂δ1t

∂ζ0t

zr′′νr′ +
n∑
t=1

(
− 1

δ1t

+
1

1− δ0t − δ1t

)
∂δ1t

∂ζ1t

∂δ1t

∂ζ0t

zr′′νr′ .
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Using Proposition 2, the `2(β, σ2) cumulants are

κβrβs = E(Uβrβs) =
n∑
t=1

E
(
1(0,1)(yt)

) {
−σ−2at

}
xtsxtr = −σ−2

n∑
t=1

(1− δ0t − δ1t)atxtrxts,

where

at =

(
3σ2

µt(1− µt)
+

1

µt3(1− µt)3

)(
1

g′(µt)

)2

,

κσ2σ2 = E(Uσ2σ2) =
n∑
t=1

−E
(
1(0,1)(yt)

) 1

2σ4
= −

n∑
t=1

(1− δ0t − δ1t)
1

2σ4

and

κβrσ2 = E(Uβrσ2) = − 1

σ4

n∑
t=1

E(1(0,1)(yt))E(ut)
dµt
dηt

xtr = 0.

we note that ut is given in Equation (A.2) and, using (A.10), E(ut) = 0.

It follows from the saparability of the parameters (ρ>, ϕ>)> and (β>, σ2)> that

κβrρr′ = E(Uβrρr′ ) = 0,

κβrϕr′′ = E(Uβrϕr′′ ) = 0,

κσ2ρr′
= E(Uσ2ρr′

) = 0,

κσ2ϕr′′
= E(Uσ2ϕr′′

) = 0.

A.6 Maximum likelihood estimation of Zero Inflated

Simplex regression model (ZIS-RE)

# Packages
require(simplexreg)
require(gamlss)

# Adapted distribution function of simplex
psim2 = function (q, mu, sig)
{

ll <- length(q)
pp <- rep(0, ll)
for (i in 1:ll) {

dsimp <- function(x) {
1/sqrt(2 * pi * sig[i]^2 * (x * (1 - x))^3) * exp(-1/2/sig[i]^2 *
(x - mu[i])^2/(x * (1 - x) * mu[i]^2 * (1 - mu[i])^2))
}
if (sig[i] < 0.001 | (1 - mu[i]) * sig[i] < 0.01) {

pp[i] <- psim.norm(q[i], mu[i], sig[i])
}
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else {

tem <- integrate(Vectorize(dsimp), lower = 10^{-100}, upper = q[i])
pp[i] <- tem$value

}
}
return(pp)

}

# The definition of the d, p, q, and r functions
# pdf
dZIS <- function (x, mu = 0.5, sigma = 1, nu = 0.1, log = FALSE)
{

if (any(mu <= 0) | any(mu >= 1))
stop(paste("mu must be beetwen 0 and 1 ", "\n", ""))

if (any(sigma < 0))
stop(paste("sigma must be positive", "\n", ""))

if (any(nu <= 0) | any(nu >= 1))
stop(paste("nu must be beetwen 0 and 1 ", "\n", ""))

if (any(x < 0) | any(x >= 1))
stop(paste("x must be beetwen [0, 1)", "\n", ""))

log.simplex <- log(dsim(x, mu = mu, sig = sigma))
log.lik <- ifelse(x == 0, log(nu), log(1 - nu) + log.simplex)
if (log == FALSE)

fy <- exp(log.lik)
else fy <- log.lik
fy

}

# cdf
pZIS <- function (q, mu = 0.5, sigma = 1, nu = 0.1, log.p=FALSE)
{

if (any(mu <= 0) | any(mu >= 1))
stop(paste("mu must be beetwen 0 and 1 ", "\n", ""))

if (any(sigma < 0))
stop(paste("sigma must be positive", "\n", ""))

if (any(nu <= 0) | any(nu >= 1))
stop(paste("nu must be beetwen 0 and 1 ", "\n", ""))

cdf <- ifelse((q > 0 & q < 1), (1 - nu) * psim2(q, mu = mu, sig=sigma), 0)
cdf <- ifelse((q >= 1), 1, cdf)
if (log.p == FALSE)

cdf <- cdf
else cdf <- log(cdf)
cdf

}

# quantile
qZIS <- function (p, mu = 0.5, sigma = 1, nu = 0.1)
{

if (any(mu <= 0) | any(mu >= 1))
stop(paste("mu must be beetwen 0 and 1 ", "\n", ""))

if (any(sigma < 0))
stop(paste("sigma must be positive", "\n", ""))

if (any(nu <= 0) | any(nu >= 1))
stop(paste("nu must be beetwen 0 and 1 ", "\n", ""))

if (any(p < 0) | any(p > 1))
stop(paste("p must be between 0 and 1", "\n", ""))

suppressWarnings(q <- ifelse((nu >= p), 0, qsim((p - nu)/(1 - nu), mu = mu, sig = sigma)))
q

}

# random generated
rZIS <- function (n, mu = 0.5, sigma = 1, nu = 0.1)
{

if (any(mu <= 0) | any(mu >= 1))
stop(paste("mu must be between 0 and 1", "\n", ""))

if (any(sigma < 0))
stop(paste("sigma must be positive", "\n", ""))

if (any(nu <= 0) | any(nu >= 1))
stop(paste("nu must be beetwen 0 and 1 ", "\n", ""))

if (any(n <= 0))
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stop(paste("n must be a positive integer", "\n", ""))

n <- ceiling(n)
p <- runif(n)
r <- qZIS(p, mu = mu, sigma = sigma, nu = nu)
r

}

# Distribution
ZIS <- function (mu.link = "logit", sigma.link = "log", nu.link = "logit") {

# mu = mu
# sigma = sqrt(sigma^2)
# nu = alpha

# Definition of the link function options #
mstats <- checklink("mu.link", "ZIS", substitute(mu.link), c("logit", "probit", "cloglog", "log",

"own"))
dstats <- checklink("sigma.link", "ZIS", substitute(sigma.link), c("inverse", "log", "identity"))
vstats <- checklink("nu.link", "ZIS", substitute(nu.link), c("logit", "probit", "cloglog", "log",

"own"))

# Fitting information #
structure(

list(family = c("ZIS", "Zero Inflated Simplex"),
parameters = list(mu = TRUE, sigma = TRUE, nu = TRUE),
nopar = 3,
type = "Mixed",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
nu.link = as.character(substitute(nu.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
nu.linkfun = vstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
nu.linkinv = vstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
nu.dr = vstats$mu.eta,
dldm = function(y, mu, sigma) {

amu <- (y - mu)*(y - 2*mu*y + mu^2)
bmu <- sigma^2 * y*(1-y) * (mu^3)*((1-mu)^3)
dldm <- ifelse((y == 0), 0, amu/bmu)
dldm

},
d2ldm2 = function(y, mu, sigma) {

cmu <- (3*sigma^2)/(mu*(1-mu))
dmu <- 1/( (mu^3)*( (1-mu)^3 ) )
d2ldm2 <- ifelse((y == 0), 0, -(1/sigma^2) * (cmu + dmu))
d2ldm2

},
dldd = function(y, mu, sigma) {

emu <- (y-mu)^2
fmu <- y*(1-y)*(mu^2)*((1-mu)^2)
dldd <- ifelse((y == 0), 0, -(1/(2*sigma^2)) + (1/(2*sigma^4))*(emu/fmu) )
dldd

},
d2ldd2 = function(y, mu, sigma) {

d2ldd2 <- ifelse((y == 0), 0, -1/(2*(sigma^4)))
d2ldd2

},
dldv = function(y, nu) {

dldv <- ifelse(y == 0, 1/nu, -1/(1 - nu))
dldv

},
d2ldv2 = function(nu) {

d2ldv2 <- -1/(nu * (1 - nu))
d2ldv2

},
d2ldmdd = function(y, mu, sigma) {

d2ldmdd <- rep(0, length = y)
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d2ldmdd

},
d2ldmdv = function(y) {

d2ldmdv <- rep(0, length = y)
d2ldmdv

},
d2ldddv = function(y) {

d2ldddv <- rep(0, length = y)
d2ldddv

},
G.dev.incr = function(y, mu, sigma, nu, ...) {

-2 * dZIS(y, mu, sigma, nu, log = TRUE)
},
rqres = expression({
uval <- ifelse(y == 0, nu * runif(length(y), 0, 1), (1 - nu) * pZIS(y, mu, sigma, nu))
rqres <- qnorm(uval)
}),
mu.initial = expression(mu <- (y + mean(y))/2),
sigma.initial = expression(sigma <- rep(1, length(y))),
nu.initial = expression(nu <- rep(length(y[y==0])/length(y), length(y))),
mu.valid = function(mu) all(mu > 0 & mu < 1),
sigma.valid = function(sigma) all(sigma > 0),
nu.valid = function(nu) all(nu > 0 & nu < 1),
y.valid = function(y) all(y >= 0 & y < 1)),
class = c("gamlss.family", "family")

)
}

## Simulating ZIS-RE model ##

set.seed(6581) # seed

n=500 # sample size

# Generating the linear preditor of mu
x1=runif(n,min=0,max=1) # covariate of mu
eta.mu=-1.5+1.5*x1 # linear predictor of mu
mu=exp(eta.mu)/(1+exp(eta.mu)) # inverse of the link function of mu

# Generating the linear preditor of nu
z1=runif(n,min=0,max=1) # covariate of nu
eta.nu=-1+.5*x3 # linear predictor of nu
nu=exp(eta.nu)/(1+exp(eta.nu)) # inverse of the link function of nu

# precision parameter (sigma)
sigma = 1 # inverse of the link function of sigma

# Generating the response variable
y = mapply(rZIS, 1, mu, sigma, nu)

# Proportion of zeros
zeros = length(which(y==0))
zeros/n # proportion of zeros

# Adjusting ZIS-RE model
fit = gamlss(y~x1, sigma.formula=~1,nu.formula=~z1, family=ZIS(mu.link = "logit", sigma.link = "identity",

nu.link = "logit"))

summary(fit)

*******************************************************************
Family: c("ZIS", "Zero Inflated Simplex")

Call: gamlss(formula = y ~ x1, sigma.formula = ~1, nu.formula = ~z1,
family = ZIS(mu.link = "logit", sigma.link = "identity",
nu.link = "logit"))

Fitting method: RS()

-------------------------------------------------------------------
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Mu link function: logit
Mu Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.51353 0.04074 -37.15 <2e-16 ***
x1 1.49886 0.07480 20.04 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-------------------------------------------------------------------
Sigma link function: identity
Sigma Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.98399 0.03791 25.96 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-------------------------------------------------------------------
Nu link function: logit
Nu Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.0066 0.1959 -5.137 4.02e-07 ***
z1 0.5522 0.3317 1.665 0.0966 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-------------------------------------------------------------------
No. of observations in the fit: 500
Degrees of Freedom for the fit: 5
Residual Deg. of Freedom: 495
at cycle: 2

Global Deviance: -75.65782
AIC: -65.65782
SBC: -44.58478
*******************************************************************

A.7 Maximum likelihood estimation of Zero and One
Inflated Simplex regression model (ZOIS-RE)

# Maximum likelihood estimation of Zero Inflated Simplex regression model (ZIS-RE)

# Packages
require(simplexreg)
require(gamlss)

# Adapted distribution function of simplex
psim2 = function (q, mu, sig)
{

ll <- length(q)
pp <- rep(0, ll)
for (i in 1:ll) {

dsimp <- function(x) {
1/sqrt(2 * pi * sig[i]^2 * (x * (1 - x))^3) * exp(-1/2/sig[i]^2 *
(x - mu[i])^2/(x * (1 - x) * mu[i]^2 * (1 - mu[i])^2))

}
if (sig[i] < 0.001 | (1 - mu[i]) * sig[i] < 0.01) {

pp[i] <- psim.norm(q[i], mu[i], sig[i])
}

else {
tem <- integrate(Vectorize(dsimp), lower = 1e-100, upper = q[i])
pp[i] <- tem$value
}

}
return(pp)

}
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# The definition of the d, p, q, and r functions
# pdf
dZIS <- function (x, mu = 0.5, sigma = 1, nu = 0.1, log = FALSE)
{

if (any(mu <= 0) | any(mu >= 1))
stop(paste("mu must be beetwen 0 and 1 ", "\n", ""))

if (any(sigma < 0))
stop(paste("sigma must be positive", "\n", ""))

if (any(nu <= 0) | any(nu >= 1))
stop(paste("nu must be beetwen 0 and 1 ", "\n", ""))

if (any(x < 0) | any(x >= 1))
stop(paste("x must be beetwen [0, 1)", "\n", ""))

log.simplex <- log(dsim(x, mu = mu, sig = sigma))
log.lik <- ifelse(x == 0, log(nu), log(1 - nu) + log.simplex)
if (log == FALSE)

fy <- exp(log.lik)
else fy <- log.lik
fy

}

# cdf
pZIS <- function (q, mu = 0.5, sigma = 1, nu = 0.1, log.p=FALSE)
{

if (any(mu <= 0) | any(mu >= 1))
stop(paste("mu must be beetwen 0 and 1 ", "\n", ""))

if (any(sigma < 0))
stop(paste("sigma must be positive", "\n", ""))

if (any(nu <= 0) | any(nu >= 1))
stop(paste("nu must be beetwen 0 and 1 ", "\n", ""))

cdf <- ifelse((q > 0 & q < 1), nu + (1 - nu) * psim2(q, mu = mu, sig=sigma), 0)
cdf <- ifelse((q == 0), nu, cdf)
cdf <- ifelse((q >= 1), 1, cdf)
if (log.p == FALSE)

cdf <- cdf
else cdf <- log(cdf)

cdf
}

# quantile
qZIS <- function (p, mu = 0.5, sigma = 1, nu = 0.1)
{

if (any(mu <= 0) | any(mu >= 1))
stop(paste("mu must be beetwen 0 and 1 ", "\n", ""))

if (any(sigma < 0))
stop(paste("sigma must be positive", "\n", ""))

if (any(nu <= 0) | any(nu >= 1))
stop(paste("nu must be beetwen 0 and 1 ", "\n", ""))

if (any(p < 0) | any(p > 1))
stop(paste("p must be between 0 and 1", "\n", ""))

suppressWarnings(q <- ifelse((nu >= p), 0, qsim((p - nu)/(1 - nu), mu = mu, sig = sigma)))
q

}

# random generated
rZIS <- function (n, mu = 0.5, sigma = 1, nu = 0.1)
{

if (any(mu <= 0) | any(mu >= 1))
stop(paste("mu must be between 0 and 1", "\n", ""))

if (any(sigma < 0))
stop(paste("sigma must be positive", "\n", ""))

if (any(nu <= 0) | any(nu >= 1))
stop(paste("nu must be beetwen 0 and 1 ", "\n", ""))

if (any(n <= 0))
stop(paste("n must be a positive integer", "\n", ""))

n <- ceiling(n)
p <- runif(n)
r <- qZIS(p, mu = mu, sigma = sigma, nu = nu)
r

}
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# Distribution
ZIS <- function (mu.link = "logit", sigma.link = "log", nu.link = "logit") {

# mu = mu
# sigma = sqrt(sigma^2)
# nu = alpha

# Definition of the link function options #
mstats <- checklink("mu.link", "ZIS", substitute(mu.link), c("logit", "probit", "cloglog", "log", "own"))
dstats <- checklink("sigma.link", "ZIS", substitute(sigma.link), c("inverse", "log", "identity"))
vstats <- checklink("nu.link", "ZIS", substitute(nu.link), c("logit", "probit", "cloglog", "log", "own"))

# Fitting information #
structure(

list(family = c("ZIS", "Zero Inflated Simplex"),
parameters = list(mu = TRUE, sigma = TRUE, nu = TRUE),
nopar = 3,
type = "Mixed",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
nu.link = as.character(substitute(nu.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
nu.linkfun = vstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
nu.linkinv = vstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
nu.dr = vstats$mu.eta,
dldm = function(y, mu, sigma) {

amu <- (y - mu)*(y - 2*mu*y + mu^2)
bmu <- sigma^2 * y*(1-y) * (mu^3)*((1-mu)^3)
dldm <- ifelse((y == 0), 0, amu/bmu)
dldm

},
d2ldm2 = function(y, mu, sigma) {

cmu <- (3*sigma^2)/(mu*(1-mu))
dmu <- 1/( (mu^3)*( (1-mu)^3 ) )
d2ldm2 <- ifelse((y == 0), 0, -(1/sigma^2) * (cmu + dmu))
d2ldm2

},
dldd = function(y, mu, sigma) {

emu <- (y-mu)^2
fmu <- y*(1-y)*(mu^2)*((1-mu)^2)
dldd <- ifelse((y == 0), 0, -(1/(2*sigma^2)) + (1/(2*sigma^4))*(emu/fmu) )
dldd

},
d2ldd2 = function(y, mu, sigma) {

d2ldd2 <- ifelse((y == 0), 0, -1/(2*(sigma^4)))
d2ldd2

},
dldv = function(y, nu) {

dldv <- ifelse(y == 0, 1/nu, -1/(1 - nu))
dldv

},
d2ldv2 = function(nu) {

d2ldv2 <- -1/(nu * (1 - nu))
d2ldv2

},
d2ldmdd = function(y, mu, sigma) {

d2ldmdd <- rep(0, length(y))
d2ldmdd

},
d2ldmdv = function(y) {

d2ldmdv <- rep(0, length(y))
d2ldmdv

},
d2ldddv = function(y) {

d2ldddv <- rep(0, length(y))
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d2ldddv

},
G.dev.incr = function(y, mu, sigma, nu, ...) {

-2 * dZIS(y, mu, sigma, nu, log = TRUE)
},
rqres = expression({

uval <- ifelse(y == 0, nu * runif(length(y), 0, 1), (1 - nu) * pZIS(y, mu, sigma, nu))
rqres <- qnorm(uval)

}),
mu.initial = expression(mu <- (y + mean(y))/2),

sigma.initial = expression(sigma <- rep(.5, length(y))),
nu.initial = expression(nu <- rep(length(y[y==0])/length(y), length(y))),
mu.valid = function(mu) all(mu > 0 & mu < 1),
sigma.valid = function(sigma) all(sigma > 0),
nu.valid = function(nu) all(nu > 0 & nu < 1),
y.valid = function(y) all(y >= 0 & y < 1)),
class = c("gamlss.family", "family")

)
}

## Simulating ZIS-RE model ##

set.seed(6581) # seed

n=500 # sample size

# Generating the linear preditor of mu
x1=runif(n,min=0,max=1) # covariate of mu
eta.mu=-1.5+1.5*x1 # linear predictor of mu
mu=exp(eta.mu)/(1+exp(eta.mu)) # inverse of the link function of mu

# Generating the linear preditor of nu
z1=runif(n,min=0,max=1) # covariate of nu
eta.nu=-1+.5*z1 # linear predictor of nu
nu=exp(eta.nu)/(1+exp(eta.nu)) # inverse of the link function of nu

# precision parameter (sigma)
sigma = 1 # inverse of the link function of sigma

# Generating the response variable
y = mapply(rZIS, 1, mu, sigma, nu)

# Proportion of zeros
zeros = length(which(y==0))
zeros/n # proportion of zeros

# Adjusting ZIS-RE model
fit = gamlss(y~x1, sigma.formula=~1,nu.formula=~z1, family=ZIS(mu.link = "logit", sigma.link = "identity", nu.link = "logit"))

summary(fit)

*******************************************************************
Family: c("ZIS", "Zero Inflated Simplex")

Call: gamlss(formula = y ~ x1, sigma.formula = ~1, nu.formula = ~z1,
family = ZIS(mu.link = "logit", sigma.link = "identity",
nu.link = "logit"))

Fitting method: RS()

-------------------------------------------------------------------
Mu link function: logit
Mu Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.51353 0.04074 -37.15 <2e-16 ***
x1 1.49886 0.07480 20.04 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-------------------------------------------------------------------
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Sigma link function: identity
Sigma Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.98397 0.03791 25.96 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-------------------------------------------------------------------
Nu link function: logit
Nu Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.0066 0.1959 -5.137 4.02e-07 ***
z1 0.5522 0.3317 1.665 0.0966 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

-------------------------------------------------------------------
No. of observations in the fit: 500
Degrees of Freedom for the fit: 5
Residual Deg. of Freedom: 495
at cycle: 2

Global Deviance: -75.65783
AIC: -65.65783
SBC: -44.58479
*******************************************************************



APPENDIX B

Appdences of Chapter 3

B.1 Residuals for the zero or one inflated simplex re-
gression

Using the general definition of residuals given by Cox & Snell (1968) the standard residuals can be defined for the zero
or one inflated simplex regression model. If σ2 is known, Fisher’ scoring algorithm is given by

ϕ(m+1) = ϕ(m) + (Z>Q(m)Z)−1Z>P (m)G(m)(yc − α∗(m))

= (Z>Q(m)Z)−1Z>Q(m)z(m),
(B.1)

m = 0, 1, 2, . . ., where, for t = 1, . . . , n,

z(m) = Zϕ(m) + (Q(m))−1P (m)G(m)(yc − α∗(m))

Q = diag{q1, . . . , qn}, qt = −pt[1/h′(αt)]2,
P = diag{1/[α1(1− α1)], . . . , 1/[αn(1− αn)]}
G = diag{1/h′(α1), . . . , 1/h′(αn)}

yc = (1{c}(y1), · · · ,1{c}(y1))>.

Fisher’ scoring method to obtain the MLE of β can be expressed as

β(m+1) = β(m) + (X>∆(m)A(m)X)−1X>T (m)H(m)u(m)

= (X>∆(m)A(m)X)−1X>∆(m)A(m)z
(m)
1 ,

(B.2)

where

z
(m)
1 = Xβ(m) + (∆(m)A(m))−1T (m)H(m)u(m),

∆ = diag{1− α1, . . . , 1− αn},
A = diag{a1, . . . , an},

at =

(
3σ2

µt(1− µt)
+

1

µ3t (1− µt)3

)(
1

g′(µt)

)2

,

T = diag{1/g′(µ1), . . . , 1/g′(µn)},
H = diag{1− 1{c}(y1), · · · , 1− 1{c}(yn)},

u> = (u1, . . . , un)>,

ut =
(yt − µt)(yt − 2µtyt + µ2t )

yt(1− yt)µ3t (1− µ)3
.
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When σ2 is known, upon convergence

ϕ̂ = (Z>Q̂Z)−1Z>Q̂τ̂1,

β̂ = (X>∆̂ÂX)−1X>∆̂Âτ̂2,

where τ̂1 = ζ̂ +G−1(yc − α̂) and τ̂2 = η̂ + (∆̂Â)−1T̂ û, where ζ̂ = (ζ̂1, . . . , ζ̂n) = Zϕ̂ and η̂ = (η̂1, . . . , η̂n) = Xβ̂. Then, let
Z∗ = Q̂1/2Z, X∗ = (∆̂Â)1/2X, τ∗1 = Q̂1/2τ̂1 and τ∗2 = (∆̂Â)1/2τ̂2. Then, let

ϕ̂ = (Z∗>Z∗)−1Z∗>τ∗1 ,

β̂ = (X∗>X∗)−1X∗>τ∗2 .
(B.3)

Thus, ϕ̂ is the least square solution of a linear regression of τ∗1 on the columns of Z∗. Similarly, β̂ is the least square
solution of a linear regression of τ∗2 on the columns of X∗. From (B.3) we have

τ̂∗1 = Z∗ϕ̂ = Q̂1/2Z(Z>Q̂Z)−1Z>Q̂1/2Q̂1/2τ̂1

= Ĥ∗1 τ
∗
1 ,

τ̂∗2 = X∗β̂ = (∆̂Â)1/2X(X>∆̂ÂX)−1X>(∆̂Â)1/2(∆̂Â)1/2τ̂2

= Ĥ∗2 τ
∗
2 ,

where Ĥ∗1 = Q̂1/2Z(Z>Q̂Z)−1Z>Q̂1/2 and Ĥ∗2 = (∆̂Â)1/2X(X>∆̂ÂX)−1X>(∆̂Â)1/2 are projection matrices. From
(B.3), the ordinary residuals can be expressed as

e∗1 = τ∗1 − τ̂∗1 = (In − Ĥ∗1 )τ∗1 , (B.4)

e∗2 = τ∗2 − τ̂∗2 = (In − Ĥ∗2 )τ∗2 , (B.5)

where In is the identity matrix of dimension n× n.
The asymptotic covariance matrices of residuals e∗1 and e∗2, evaluated at the true parameters are

Var(e∗1) = Var((In −H∗1 )τ∗1)

= (In −H∗1 )Var(Q̂1/2τ1)(In −H∗1 )

= (In −H∗1 )Q̂1/2Var(τ1)Q̂1/2(In −H∗1 )

= (In −H∗1 )Q̂1/2Q̂−1Q̂1/2(In −H∗1 )

= (In −H∗1 )

(B.6)

and

Var(e∗2) = Var((In −H∗2 )τ∗2)

= (In −H∗2 )Var((∆̂Â)1/2τ2)(In −H∗2 )

= (In −H∗2 )(∆̂Â)1/2Var(τ2)(∆̂Â)1/2(In −H∗2 )

= (In −H∗2 )(∆̂Â)1/2(∆̂Â)−1(∆̂Â)1/2(In −H∗2 )

= (In −H∗2 ).

(B.7)

Furthermore, note that if the quantities are evaluated at the true values, E(e∗1) = 0 and E(e∗2) = 0.

B.2 Residuals for the zero and one inflated simplex re-
gression

The following results are similar to the obtained by Ospina & Ferrari (2012). Consider the zero or one inflated simplex
regression model with σ2 constant. Upon convergence of the iterative process of Fisher’ scoring algorithm for Υ = (ρ>, ϕ>)>

we have
Υ̂ = (Z̃>Q̂Z̃)−1Z>Q̂τ̂d,

where τ̂d = Z̃Υ̂ + Q̂−1(yd − δ̂d), where yd = (y>{0}, y
>
{1})

>, δd = (δ>0 , δ
>
1 )> are vectors with dimension 2n × 1. Here,

δ0 = (δ01, . . . , δ0n)>, δ0 = (δ11, . . . , δ1n)>, y{0} = (1{0}(y1), . . . ,1{0}(yn))> and y{1} = (1{1}(y1), . . . ,1{1}(yn))> are
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vectors of dimension n× 1. Also,

Z̃ =

(
V 0
0 Z

)
, Q =

(
Q1 Q3

Q3 Q2

)
,

are, respectively, matrices of dimension (2n × (k0 + k1)) and 2n × 2n. V and Z are n × k0 and n × k1 matrices of
regressors whose tth lines are νt and zt, respectively. The elements of Q are Q1 = V >diag{δ01(1−δ01), . . . , δ0n(1−δ0n)}V ,
Q2 = Z>diag{δ11(1− δ11), . . . , δ1n(1− δ1n)}Z and Q3 = Z>diag{−δ01δ11 . . . ,−δ0nδ1n}V .

Let τ∗d = Q1/2τ̂d and Z∗ = Q1/2Z̃. Then,

Υ̂ = (Z∗>Z∗)−1Z∗>τ∗d . (B.8)

Therefore, Υ̂ is the least square solution of τ∗d on Z∗. From (B.8) we have

τ̂∗d = Z∗Υ̂ = Q̂1/2Z̃(Z̃>Q̃Z̃)−1Z̃>Q̂1/2Q̂1/2τ̂d

= Ĥ∗dτ
∗
d .

The ordinary residual of the regression (B.8) can be expressed as

e∗d = τ∗d − τ̂
∗
d = τ∗d − Ĥ

∗
dτ
∗
d = (I2n − Ĥ∗d )τ∗d , (B.9)

where I2n is the 2n × 2n identity matrix and Ĥ∗d = Q̂1/2Z̃(Z̃>Q̂Z̃)−1Z̃>Q̂1/2 is the projection matrix. Note that e∗d can
also be written as

e∗d = (I2n − Ĥ∗d )τ̂d = Q̂1/2τ̂d − Q̂1/2Z̃(Z̃>Q̂Z̃)−1Z̃>Q̂1/2Q̂1/2τ̂d,

= Q̂1/2Q̂−1(yd − ∆̂d)

= Q̂1/2(yd − ∆̂d).

(B.10)

Note that if the quantities are evaluated in the true values of the parameters E(e∗d) = 0 and

Var(e∗d) = Q̂−1/2Var(yd)Q̂−1/2.

On the other hand,

Var(e∗d) = Var((I2n − Ĥ∗d )τ∗d)

= (I2n − Ĥ∗d )Var(τ∗d )(I2n − Ĥ∗d )

= (I2n − Ĥ∗d )Q̂1/2Var(τ̂d)Q̂1/2(I2n − Ĥ∗d ).

Asymptotically, Var(Υ̂) = (Z̃>Q̂Z̃)−1, then Var(τ̂d) = Q̂−1 and

Var(e∗d) = (I2n − Ĥ∗d )Q̂1/2Q̂−1(τ̂d)Q̂1/2(I2n − Ĥ∗d )

= (I2n − Ĥ∗d ).

Futhermore,
Var(yd) = Q̂−1/2(I2n − Ĥ∗d )Q̂−1/2.

Then, standardized residual for the discrete component of the zero and one inflated simplex regression model (i.e., for
y = 0 and y = 1) can be defined as

rdi =
ydi − ∆̂di√
q̂ii(1− ĥdii )

, i = 1, 2, . . . , 2n,

where yd = (y>{0}, y
>
{1})

>,∆d = (δ>0, δ>1)> are 2n × 1 vectors. Here, δ0 = (δ01, . . . , δ0n)>, δ1 = (δ11, . . . , δ1n)>,

y{0} = (1{0}(y1), . . . ,1{0}(yn))> and y{1} = (1{1}(y1), . . . ,1{1}(yn))> are n × 1 vectors. Furthermore, q̂ii is the ith
diagonal element of matrix Q̂, and ĥdii is the ith diagonal element of the projection matrix.

For i = 1, . . . , n, residual rdi is the standard residual of the submodel of that models the probability of occurence of
zeros and for i = n + 1, . . . , 2n, rdi is the standard residual of the submodel that models the probability of occurence of
ones. For this reason, the graph containing rdi against ∆̂di should be separated: the first for i = 1, . . . , n, and the second
for i = n+ 1, . . . , 2n. Both plots can reveal outliers in each submodel.
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We can define the projection matrices as

H{0} = Ψ>0 H
∗
dΨ0,

H{1} = Ψ>1 H
∗
dΨ1,

where Ψ0 = (In, 0n)> and Ψ1 = (0n, In)>, In is the n×n identity matrix and 0n is a n×n matrix containing zeros. H{0}
and H{1} are the projection matrices in the submodel that models zeros and that models ones, respectively.
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