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Abstract

The art of parameter induction to a parent distribution is one of the methods more
used for obtain more versatile models. The main reason for this trend is the fact that,
many times, classic models often may not be flexible enough to adjust certain lifetime
data. So, generalized or extended distributions are of great importance, mainly for two
reasons: for controlling the tails and improve the goodness-of-fit of the parent distribu-
tion. In this thesis, we propose two new families of distributions, namely the supremum
and infimum families, which induce a shape parameter to a parent distribution. We
obtain some properties and mathematical quantities of these families. In addition, we
present five particular models belonging to the supremum family and others five models
belonging to the infimum family. Other contribution is a three-parameter model called
the modified Fréchet distribution, which is obtained by inducing a shape parameter in
the Fréchet model. Using the Lambert W function, we obtain several mathematical
quantities and properties of this model. Finally, we propose a four-parameter gener-
alized model called the beta Marshall-Olkin Lomax distribution, which is obtained to
considering the Lomax distribution as the parent model in the beta Marshall-Olkin ger-
ator. We obtain several useful expansions and mathematical properties for this model.
In all cases, we prove empirically the applicability of the new models to real data.

Keywords: Generalized models. Lambert W function. Lifetime analysis. Parametric
induction.



Resumo

A arte da indução paramétrica a uma distribuição-base é um dos métodos mais us-
ados para obter modelos mais versáteis. A principal razão para esta tendência é o fato
de que, muitas vezes, modelos clássicos podem não ser suficientemente flexíveis para
ajustar certos dados de tempos de vida. Assim, distribuições generalizadas ou estendi-
das são de grande importância, principalmente por duas razões: para ter maior controle
nas caudas e para melhorar a bondade de ajuste da distribuição-base. Nesta tese, propo-
mos duas novas famílias de distribuições, denominadas de famílias do supremo e do
ínfimo, as quais acrescentam um parâmetro de forma a uma distribuição-base. Obte-
mos algumas propriedades e quantidades matemáticas dessas famílias. Além disso,
apresentamos cinco modelos particulares pertencentes à família do supremo e outros
cinco modelos pertencentes à família do ínfimo. Uma outra contribuição é um mode-
lo de três parâmetros, denominado de distribuição Fréchet modificada, a qual é obtida
acrescentando um parâmetro de forma no modelo Fréchet. Usando a função W de
Lambert, obtemos várias quantidades e propriedades matemáticas deste modelo. Final-
mente, propomos um modelo generalizado de quatro parâmetros, denominado de dis-
tribuição beta Marshall-Olkin Lomax, obtido considerando a distribuição Lomax como
modelo base no gerador beta Marshall-Olkin. Determinamos várias expansões úteis e
propriedades matemáticas para este modelo. Em todos os casos, provamos empirica-
mente a aplicabilidade dos novos modelos a dados reais.

Palavras-chave: Análise de tempo de vida. Função W de Lambert. Indução paramétrica.
Modelos generalizados.
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Chapter 1
Introduction

Concepts of lifetime describe how a component or system evolve over time. So, life-
lengths of devices or of biological organisms are the principal focus in the field of life-
time (survival) analysis. These phenomenons are generally described by nonnegative
random variables, which are often assumed to be absolutely continuous having density
functions with support in the positive real line. In this setting, distributions with such
support play a fundamental role in lifetime applications.

The theory of distributions with support in the positive real line has grown widely
in the last years, becoming one of the main statistical tools to model lifetime data. The
main reason for this approach is the fact that many basic distributions used in lifetime
analysis have a limited range of behaviour and can not represent all situations in real
applications. Therefore, at present, there is a great interest in obtaining new and more
flexible lifetime models.

Another important reason to introduce new lifetime models is the fact that hazard
rate functions (hrf’s) of lifetime variables may exhibit various shapes depending on
many factors. Some shape properties of the hrf have important implications in practice.
Thus, generalized or extended distributions allow to provide more versatile models that
present hrf’s with the classical shapes: increasing, decreasing, unimodal and bathtub.

The method more used to generate new lifetime models is by inducing one or more
additional shape parameters to a parent distribution 𝐺 in order to add more flexibil-
ity. Within this framework, the most known method of parameter induction is that one
by compounding existing distributions, usually referred as generalized 𝐺 families of
distributions.

Several generalized distributions have been studied in the literature. Some of the
best known are: the Marshall-Olkin extended (MOE) family (MARSHALL; OLKIN,
1997), exponentiated generated (exp-𝐺) family (GUPTA et al., 1998), beta-generated
(beta 𝐺) family (EUGENE et al., 2002), gamma-generated (gamma 𝐺) family (ZO-
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GRAFOS; BALAKRISHNAN, 2009; RISTIĆ; BALAKRISHNAN, 2012), Kumaras-
wamy generalized (Kw 𝐺) family (CORDEIRO; DE CASTRO, 2011), transformed-
transformer (𝑇 −𝑋) method (ALZAATREH et al., 2013) and transmutated family of
distributions (SHAW; BUCKLEY, 2009; BOURGUIGNON et al., 2016; NOFAL et al.,
2016). A detailed compilation of these families is given by Tahir & Nadarajah (2015).

Based on parameter induction, we propose new models primarily to be used in life-
time applications, although they may also be suitable for fit data of another nature. This
thesis is organized in five chapters. Chapters 2, 3 and 4 are independent and are pre-
sented in scientific manuscripts format, which means that they can be read separately.
Thus, some results and notations used are introduced more than once.

In Chapter 2, we define two new families of distributions, named the supremum and
infimum families, by inducing one additional shape parameter to a parent distribution𝐺.
The name of these new families comes from an analogy with the mathematical proper-
ties of supremum and infimum of a sequence of real numbers. Several special lifetime
distributions belonging to the proposed classes are presented and some general proper-
ties of these families are provided. Because the supremum and infimum families can
also be obtained as distributions of maximum and minimum functions of a sequence
of independent and identically distributed (i.i.d.) random variables, they have a direct
physical interpretation. In addition, the hrf of the supremum family can be expressed as
sums of hrf’s of two independent random variables. Because of this, we have the im-
portant fact that this family can induce bathtub shape in its hrf. In addition, we consider
the estimation of the parameters of these families by the maximum likelihood method.
Since a simulation study is fundamental in new distributions, we perform a Monte Carlo
simulation experiment in order to evaluate the maximum likelihood estimates (MLE’s)
of the Fréchet supremum model.

An absolutely continuous model which has wide applicability in extreme value the-
ory is the Fréchet distribution. However, this model has a limited range of behaviour
and can not represent all the situations found in applications. For example, this model
does not allow decreasing or inverted unimodal hazard rate, which is widely used in
lifetime applications by its considerable intuitive appeal. Following a similar approach
to that given in Lai et al. (2003) to define the modified Weibull model, it is introduced
in Chapter 3 the three-parameter modified Fréchet distribution by extending the Fréchet
distribution. Differently from the Fréchet model, the new distribution allows decreas-
ing and inverted unimodal hazard rate, which is useful for modeling various cases in
lifetime applications (LAI, 2013; MARSHALL; OLKIN, 1997). Several mathemati-
cal quantities and properties of the new distribution are obtained by considering the
Lambert W function (CORLESS et al., 1996; JODRÁ, 2010), which has been applied
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commonly to solve problems formulated in terms of logarithmic or exponential equa-
tions. We consider the estimation of the parameters of the new model by the maximum
likelihood method. In addition, we perform a Monte Carlo simulation experiment in
order to evaluate the MLE’s.

Chapter 4 introduces the four-parameter beta Marshall-Olkin Lomax distribution,
which is obtained by considering the Lomax distribution as the parent model in the
generated beta Marshall-Olkin family proposed by Alizadeh et al. (2015). Given that
the density function of the new distribution can be expressed as a linear combination
of Lomax and exponentiated Lomax densities, several properties of the new model can
be easily derived from the properties of those latter. In addition, we present explicit
expressions for some statistical quantities. We consider the estimation of the parameters
of the BMOL model by the maximum likelihood method and perform a Monte Carlo
simulation experiment in order to evaluate such estimates. Finally, in Chapter 5, we
offer the final conclusions and outline some future research lines.

Besides obtaining the mathematical quantities and properties of all distributions in-
troduced, we prove empirically in each chapter the potenciality of the new models by
means of applications to real data sets. In other words, they are very appropriate for
lifetime applications.



Chapter 2
The supremum and infimum families of
distributions

Resumo

Neste capítulo, definimos duas novas famílias de distribuições 𝐺-generalizadas ao in-
troduzir um parâmetro de forma a uma distribuição-base 𝐺. Essas novas famílias,
denotadas por 𝐺𝑠𝑢𝑝 e 𝐺𝑖𝑛𝑓 , têm uma interpretação física direta e expressões simples
para os momentos em termos de momentos de distribuições exp-𝐺. Provamos que a
família 𝐺𝑠𝑢𝑝 pode apresentar forma de banheira na sua função razão de risco, além de
ambas famílias proporcionar maior flexibilidade. Várias distribuições particulares per-
tencentes às famílias propostas são dadas. Consideramos a estimação dos parâmetros
destas famílias pelo método de máxima verossimilhança e realizamos uma simulação
de Monte Carlo com o objetivo de avaliar essas estimativas no modelo Fréchet supremo.
Provamos empiricamente a utilidade das novas famílias por meio de duas aplicações a
dados reais.

Palavras-chave: Análise de tempo de vida, famílias 𝐺-generalizadas, indução paramé-
trica.

Abstract

In this chapter, we introduce two new generalized 𝐺 families by inducing one addi-
tional shape parameter to a parent distribution 𝐺. These new families, named 𝐺𝑠𝑢𝑝 and
𝐺𝑖𝑛𝑓 , have a direct physical interpretation and simple expressions for moments in terms
of moments of exp-𝐺 distributions. We prove that the 𝐺𝑠𝑢𝑝 family can induce bathtub

16
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shape in its hazard rate function, besides both families provide greater flexibility. Sev-
eral particular lifetime distributions belonging to the proposed families are given. We
consider the estimation of the parameters of these families by the maximum likelihood
method and perform a Monte Carlo simulation experiment in order to evaluate these es-
timates in the Fréchet supremum model. The potentiality of the new families is proved
empirically by means of two applications to real data sets.

Keywords: Generalized 𝐺 families, lifetime analysis, parametric induction.

2.1 Introduction

Parametric induction of one or more additional shape parameters to a parent distribu-
tion 𝐺 is one of the most useful methods for obtaining new and more flexible families,
mainly for use in lifetime applications. This approach has proved to be useful in two
main situations: (i) to make the generated distribution more flexible for studying the
tail properties and (ii) to improve the goodness-of-fit of the proposed generalized fam-
ily of distributions (TAHIR; NADARAJAH, 2015). Thus, many families of distribu-
tions have been proposed in the literature, such as the exponentiated-generated, beta-
generated (EUGENE et al., 2002), gamma-generated (ZOGRAFOS; BALAKRISH-
NAN, 2009), Kumaraswamy-generated (CORDEIRO; DE CASTRO, 2011) and trans-
muted families (SHAW; BUCKLEY, 2009; BOURGUIGNON et al., 2016; NOFAL et

al., 2016), among others.
Although these families generalize a parent distribution, often they do not enjoy of

a simple physical interpretation or do not provide models that present bathtub hazard
rates, which have considerable intuitive appeal in lifetime applications. These prop-
erties have important consequences in practice, once they allow to obtain sufficiently
flexible models with a wide range of applicability.

Aiming to obtain models with such properties, we propose two new families of dis-
tributions, named 𝐺𝑠𝑢𝑝 and 𝐺𝑖𝑛𝑓 families, by inducing one additional shape parameter
to a parent distribution 𝐺. Since these families can also be obtained as distributions
of maximum and minimum functions of a sequence of independent and identically dis-
tributed (i.i.d.) random variables, they have a direct physical interpretation. The hazard
rate function (hrf) and reverse hazard rate function (rhrf) for the new families are pro-
vided and we prove that the hrf of the 𝐺𝑠𝑢𝑝 family can be expressed as sums of hrf’s of
two independent random variables. Because of this, we have the important fact that the
𝐺𝑠𝑢𝑝 family can induce bathtub shape in its hrf.

The chapter unfolds as follows. In Section 2.2, we introduce the 𝐺𝑠𝑢𝑝 and 𝐺𝑖𝑛𝑓
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families. In Section 2.3, we provide some motivations to validate these families. Sec-
tion 2.4 gives several special lifetime distributions belonging to the proposed families
and we prove how the 𝐺𝑠𝑢𝑝 family can induce bathtub shape in its hrf. Section 2.5
deals with the study of shapes of probability densities functions (pdf’s) and hrf’s of the
supremum and infimum families. In Section 2.6, we obtain some properties of the new
families. In Section 2.7, we provide a general method to generate random variates from
these families. Section 2.8 is devoted to maximum likelihood estimates (MLE’s) for
complete samples and, in Section 2.9, we carry out a simulation study to evaluate the
performance of these estimates for a special model. In Section 2.10, the potentiality
of the proposed families is proved empirically by means of two applications. Finally,
Section 2.11 concludes the chapter.

2.2 The supremum and infimum families

Based on the 𝑇−𝑋 method (ALZAATREH et al., 2013), we propose two new families
to inducing one additional shape parameter to an absolutely continuous model.

For 𝑏 > 0, consider the functions

𝑊 𝑠𝑢𝑝
𝑏 (𝑧) = 𝑧 + 𝑧𝑏 − 𝑧𝑏+1, 𝑊 𝑖𝑛𝑓

𝑏 (𝑧) = 𝑧[1 − (1 − 𝑧)𝑏].

For 0 ≤ 𝑧 ≤ 1, the functions 𝑊 𝑠𝑢𝑝
𝑏 (𝑧) and 𝑊 𝑖𝑛𝑓

𝑏 (𝑧) satisfy the following properties:

i) 𝑊 𝑠𝑢𝑝
𝑏 (0) = 𝑊 𝑖𝑛𝑓

𝑏 (0) = 0 and 𝑊 𝑠𝑢𝑝
𝑏 (1) = 𝑊 𝑖𝑛𝑓

𝑏 (1) = 1,

ii) 𝑊 𝑠𝑢𝑝
𝑏 (𝑧) and 𝑊 𝑖𝑛𝑓

𝑏 (𝑧) are continuously differentiable with derivatives

𝑤𝑠𝑢𝑝
𝑏 (𝑧) =

𝑑

𝑑𝑧
𝑊 𝑠𝑢𝑝

𝑏 (𝑧) = 1 + 𝑏 𝑧𝑏−1 − (𝑏+ 1) 𝑧𝑏,

𝑤𝑖𝑛𝑓
𝑏 (𝑧) =

𝑑

𝑑𝑧
𝑊 𝑖𝑛𝑓

𝑏 (𝑧) = 1 − (1 − 𝑧)𝑏 + 𝑏 𝑧 (1 − 𝑧)𝑏−1.

iii) 𝑊 𝑠𝑢𝑝
𝑏 (𝑧) and𝑊 𝑖𝑛𝑓

𝑏 (𝑧) are strictly increasing in [0,1), that is, 𝑤𝑠𝑢𝑝
𝑏 (𝑧),𝑤𝑖𝑛𝑓

𝑏 (𝑧) > 0

for 0 ≤ 𝑧 < 1.

From the properties above, we note that 𝑊 𝑠𝑢𝑝
𝑏 (𝑧) and 𝑊 𝑖𝑛𝑓

𝑏 (𝑧) are the cumulative dis-
tribution functions (cdf’s) of some continuous random variables, say 𝑍𝑠𝑢𝑝 and 𝑍𝑖𝑛𝑓 ,
taking values in (0,1), whose pdf’s are given by 𝑤𝑠𝑢𝑝

𝑏 (𝑧) and 𝑤𝑖𝑛𝑓
𝑏 (𝑧), respectively.

For a parent distribution𝐺(𝑥) = 𝐺(𝑥; 𝜉), where 𝜉 is a parameter vector, we propose
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the following generalized distributions:

𝐺𝑠𝑢𝑝(𝑥; 𝜉,𝑏) =

∫︁ 𝐺(𝑥)

−∞
𝑤𝑠𝑢𝑝

𝑏 (𝑧) 𝑑𝑧 = 𝑊 𝑠𝑢𝑝
𝑏 [𝐺(𝑥)] = 𝐺(𝑥) +𝐺𝑏(𝑥) −𝐺𝑏+1(𝑥) (2.1)

and

𝐺𝑖𝑛𝑓 (𝑥; 𝜉,𝑏) =

∫︁ 𝐺(𝑥)

−∞
𝑤𝑖𝑛𝑓

𝑏 (𝑧) 𝑑𝑧 = 𝑊 𝑖𝑛𝑓
𝑏 [𝐺(𝑥)] = 𝐺(𝑥)[1 −𝐺

𝑏
(𝑥)], (2.2)

where𝐺(𝑥) = 1−𝐺(𝑥) is the survival function of the parent distribution. Observe that,
if 𝑏 ∈ N, then the functions 𝐺𝑏(𝑥) and 1−𝐺

𝑏
(𝑥) represent the maximum and minimum

distributions of “𝑏” i.i.d. random variables with commom distribution 𝐺(𝑥). These
distributions are also known as type I and type II Lehmann alternatives, respectively.

If𝐺(𝑥) is absolutely continuous with pdf 𝑔(𝑥) = 𝑔(𝑥; 𝜉) and support 𝒳 = {𝑥 ∈ R :

𝑔(𝑥) > 0}, then 𝐺𝑠𝑢𝑝(𝑥) and 𝐺𝑖𝑛𝑓 (𝑥) are also absolutely continuous with support 𝒳
and pdf’s given by

𝑔𝑠𝑢𝑝(𝑥; 𝜉,𝑏) = 𝑔(𝑥)𝑤𝑠𝑢𝑝
𝑏 [𝐺(𝑥)] = 𝑔(𝑥) + ℎ𝑏(𝑥) − ℎ𝑏+1(𝑥) (2.3)

and

𝑔𝑖𝑛𝑓 (𝑥; 𝜉,𝑏) = 𝑔(𝑥)𝑤𝑖𝑛𝑓
𝑏 [𝐺(𝑥)] = 𝑔(𝑥)[1 −𝐺

𝑏
(𝑥)] +𝐺(𝑥) ℎ̄𝑏(𝑥), (2.4)

where ℎ𝑏(𝑥) = 𝑏 𝑔(𝑥)𝐺𝑏−1(𝑥) and ℎ̄𝑏(𝑥) = 𝑏 𝑔(𝑥)𝐺
𝑏−1

(𝑥) are the pdf’s corresponding
to the 𝐺𝑏(𝑥) and 1 − 𝐺

𝑏
(𝑥) distributions, respectively. In this case, 𝑔𝑠𝑢𝑝(𝑥) can be

expressed as sums of exp-G densities.
Hereafter, a random variable𝑋 with pdf given by (2.3) is denoted by𝑋 ∼ 𝐺𝑠𝑢𝑝(𝜉,𝑏).

Equivalently, a random variable𝑋 with pdf given by (2.4) is denoted by𝑋 ∼ 𝐺𝑖𝑛𝑓 (𝜉,𝑏).
As 𝑏→ ∞, we have, for any fixed value of 𝑥,

lim
𝑏→∞

𝐺𝑏(𝑥) =

{︃
1, if 𝐺(𝑥) = 1,

0, if 𝐺(𝑥) < 1,
lim
𝑏→∞

[1 −𝐺
𝑏
(𝑥)] =

{︃
1, if 𝐺(𝑥) > 0,

0, if 𝐺(𝑥) = 0.

Therefore, from (2.1), (2.2), (2.3) and (2.4) we note that, for both families, 𝐺(𝑥) is the
limiting distribution when 𝑏→ ∞, that is,

𝐺(𝑥) = lim
𝑏→∞

𝐺𝑠𝑢𝑝(𝑥) = lim
𝑏→∞

𝐺𝑖𝑛𝑓 (𝑥) and 𝑔(𝑥) = lim
𝑏→∞

𝑔𝑠𝑢𝑝(𝑥) = lim
𝑏→∞

𝑔𝑖𝑛𝑓 (𝑥). (2.5)

For reasons that will be clear later, we call the families defined by (2.1) and (2.2) as
supremum and infimum families of distributions, respectively.
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2.2.1 Hazard rate and reverse hazard rate functions

In lifetime analysis, two very useful functions are the hrf 𝑟(𝑥) = 𝑔(𝑥)/𝐺(𝑥) and the
rhrf 𝑠(𝑥) = 𝑔(𝑥)/𝐺(𝑥). Consider the functions 𝜏 𝑠𝑢𝑝𝑏 (𝑧) = 𝑤𝑠𝑢𝑝

𝑏 (𝑧)/[1 −𝑊 𝑠𝑢𝑝
𝑏 (𝑧)] and

𝜅𝑠𝑢𝑝𝑏 (𝑧) = 𝑤𝑠𝑢𝑝
𝑏 (𝑧)/𝑊 𝑠𝑢𝑝

𝑏 (𝑧). For the supremum family of distributions, the hrf and rhrf
are given by (MARSHALL; OLKIN, 1997, p. 32)

𝑟𝑠𝑢𝑝(𝑥) = 𝑔(𝑥) 𝜏 𝑠𝑢𝑝𝑏 [𝐺(𝑥)] =
𝑔(𝑥)

𝐺(𝑥)
+

ℎ𝑏(𝑥)

1 −𝐺𝑏(𝑥)
= 𝑟𝑌 (𝑥) + 𝑟𝑍(𝑥) (2.6)

and

𝑠𝑠𝑢𝑝(𝑥) = 𝑔(𝑥)𝜅𝑠𝑢𝑝𝑏 [𝐺(𝑥)] =
𝑔(𝑥) + ℎ𝑏(𝑥) − ℎ𝑏+1(𝑥)

𝐺(𝑥) +𝐺𝑏(𝑥) −𝐺𝑏+1(𝑥)
,

where 𝑟𝑌 (𝑥) and 𝑟𝑍(𝑥) are the hrf’s of 𝑌 ∼ 𝐺 and 𝑍 ∼ 𝐺𝑏, respectively.
Similarly, let 𝜏 𝑖𝑛𝑓𝑏 (𝑧) = 𝑤𝑖𝑛𝑓

𝑏 (𝑧)/[1 −𝑊 𝑖𝑛𝑓
𝑏 (𝑧)] and 𝜅𝑖𝑛𝑓𝑏 (𝑧) = 𝑤𝑖𝑛𝑓

𝑏 (𝑧)/𝑊 𝑖𝑛𝑓
𝑏 (𝑧).

Then, the hrf and rhrf of the infimum family of distributions are given by

𝑟𝑖𝑛𝑓 (𝑥) = 𝑔(𝑥) 𝜏 𝑖𝑛𝑓𝑏 [𝐺(𝑥)] =
𝑔(𝑥)[1 −𝐺

𝑏
(𝑥)] +𝐺(𝑥) ℎ̄𝑏(𝑥)

1 −𝐺(𝑥)[1 −𝐺
𝑏
(𝑥)]

(2.7)

and

𝑠𝑖𝑛𝑓 (𝑥) = 𝑔(𝑥)𝜅𝑖𝑛𝑓𝑏 [𝐺(𝑥)] =
𝑔(𝑥)

𝐺(𝑥)
+

ℎ̄𝑏(𝑥)

1 −𝐺
𝑏
(𝑥)

= 𝑠𝑌 (𝑥) + 𝑠𝑍(𝑥), (2.8)

where 𝑠𝑌 (𝑥) and 𝑠𝑍(𝑥) are the rhrf’s of 𝑌 ∼ 𝐺 and 𝑍 ∼ [1 −𝐺
𝑏
(𝑥)], respectively.

2.3 Motivations

In this section, we give some properties satisfied by the supremum and infimum families
which motivated its introduction. Some of these properties are important in practice,
since models with such characteristics have a wide range of applicability.

2.3.1 Physical motivation

From a physical view point, supremum and infimum families have the following inter-
pretations. Given a cdf 𝐺(𝑥), consider a series system composed by two independent
components such that the system fails if any of the components fail, and suppose that
𝑌 and 𝑍 denotes their life lengths. Suppose that 𝑌 ∼ 𝐺 and 𝑍 ∼ 𝐺𝑏, for 𝑏 > 0.
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This happens, for example, if 𝑏 ∈ N and the component with life length 𝑍 is composed
by 𝑏 independent parallel subcomponents such that the component fails only if all the
subcomponents fail, where each subcomponent has life length 𝑍𝑗 ∼ 𝐺, 𝑗 = 1, . . . ,𝑏

(in this case, 𝑍 = max(𝑍1, . . . ,𝑍𝑏)). Let 𝑋 = min(𝑌,𝑍). Then, 𝑋 represents the life
length of the entire system. We have that

𝑃 (𝑋 > 𝑥) = 𝑃 (𝑌 > 𝑥,𝑍 > 𝑥) = 𝑃 (𝑌 > 𝑥)𝑃 (𝑍 > 𝑥).

Thus, the cdf of 𝑋 is

𝐹𝑋(𝑥) = 1 −𝐺(𝑥)[1 −𝐺𝑏(𝑥)] = 𝑊 𝑠𝑢𝑝
𝑏 [𝐺(𝑥)],

which is given in (2.1).
Similarly, suposse a parallel system composed by two independent components and

let 𝑌 and 𝑍 be their life lengths. Suppose that 𝑌 ∼ 𝐺 and 𝑍 ∼ [1 − 𝐺
𝑏
(𝑥)], for

𝑏 > 0. This can happen if 𝑏 ∈ N and the component with life length 𝑍 is composed by
𝑏 independent series subcomponents, where each subcomponent has life length 𝑍𝑗 ∼
𝐺, 𝑗 = 1, . . . ,𝑏 (that is, 𝑍 = min(𝑍1, . . . ,𝑍𝑏)). Thus, 𝑋 = max(𝑌,𝑍) represents the
life length of the entire system. We can write

𝑃 (𝑋 ≤ 𝑥) = 𝑃 (𝑌 ≤ 𝑥,𝑍 ≤ 𝑥) = 𝑃 (𝑌 ≤ 𝑥)𝑃 (𝑍 ≤ 𝑥).

Therefore, the cdf of 𝑋 is given by

𝐹𝑋(𝑥) = 𝐺(𝑥)[1 −𝐺
𝑏
(𝑥)] = 𝑊 𝑖𝑛𝑓

𝑏 [𝐺(𝑥)],

which is given in (2.2).
In terms of order statistics, if 𝑋(𝑛) and 𝑋(1) represent the maximum and minimum

of a random sample of size 𝑛 from the distribution 𝐺(𝑥) = 𝐺(𝑥,𝜉), then

1 −𝐺(𝑛)(𝑥; 𝜉) =
1 −𝐺𝑠𝑢𝑝(𝑥; 𝜉,𝑛)

𝐺(𝑥; 𝜉)
and 𝐺(1)(𝑥; 𝜉) =

𝐺𝑖𝑛𝑓 (𝑥; 𝜉,𝑛)

𝐺(𝑥; 𝜉)
,

where

𝐺(𝑛)(𝑥) = 𝐺𝑛(𝑥) and 𝐺(1)(𝑥) = 1 − [1 −𝐺(𝑥)]𝑛

are the cdf’s of 𝑋(𝑛) and 𝑋(1), respectively.
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2.3.2 Simple expressions in terms of exp-𝐺 densities

From equation (2.3), it is clear that the pdf of the supremum family is a simple sum of
exp-𝐺 densities. To obtain an expression for the density of the infimum family given
in (2.4) in terms of exp-𝐺 densities, we consider the following power series expansion,
which converges for |𝑧| ≤ 1 and 𝜌 > −1,

(1 − 𝑧)𝜌 =
∞∑︁
𝑗=0

(−1)𝑗 (𝜌)𝑗
𝑗!

𝑧𝑗, (2.9)

where (𝜌)𝑗 = 𝜌 (𝜌 − 1) · · · (𝜌 − 𝑗 + 1) is the falling factorial. Naturally, if 𝜌 ∈ N, the
sum (2.9) ends in 𝜌 and (𝜌)𝑗/𝑗! =

(︀
𝜌
𝑗

)︀
.

Based on (2.9), we have

𝐺𝑖𝑛𝑓 (𝑥) = 𝐺(𝑥)[1 −𝐺
𝑏
(𝑥)] = 𝐺(𝑥) −

∞∑︁
𝑗=0

(−1)𝑗 (𝑏)𝑗
𝑗!

𝐺𝑗+1(𝑥).

So, differentiating term to term, we obtain

𝑔𝑖𝑛𝑓 (𝑥) = 𝑔(𝑥) −
∞∑︁
𝑗=0

(−1)𝑗 (𝑏)𝑗
𝑗!

ℎ𝑗+1(𝑥). (2.10)

Therefore, the density 𝑔𝑖𝑛𝑓 (𝑥) can be expressed as a linear combination of exp-𝐺 den-
sities.

2.3.3 Simple expressions for moments

Moments are fundamental in any statistical analysis. However, moments of generalized
models not always have simple expressions. A motivation to introducing the supremum
and infimum families is that they have simple expressions for the moments as sums of
moments of exp-𝐺 distributions.

For 𝑟 ∈ N, the 𝑟-th ordinary moment of a random variable 𝑋 ∼ 𝐺𝑠𝑢𝑝(𝜉,𝑏) is given
by

𝜇𝑠𝑢𝑝
𝑟 = E(𝑋𝑟) =

∫︁ ∞

−∞
𝑥𝑟𝑔𝑠𝑢𝑝(𝑥) 𝑑𝑥 =

∫︁ ∞

−∞
𝑥𝑟𝑔(𝑥)𝑤𝑠𝑢𝑝

𝑏 [𝐺(𝑥)] 𝑑𝑥.

From (2.3), we have

𝜇𝑠𝑢𝑝
𝑟 =

∫︁ ∞

−∞
𝑥𝑟𝑔(𝑥) 𝑑𝑥+

∫︁ ∞

−∞
𝑥𝑟ℎ𝑏(𝑥) 𝑑𝑥−

∫︁ ∞

−∞
𝑥𝑟ℎ𝑏+1(𝑥) 𝑑𝑥,
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and therefore

𝜇𝑠𝑢𝑝
𝑟 = E(𝑍𝑟

1) + E(𝑍𝑟
𝑏 ) − E(𝑍𝑟

𝑏+1),

where 𝑍𝜌 ∼ 𝐺𝜌, 𝜌 > 0.
Similarly, the 𝑟-th ordinary moment of a random variable 𝑋 ∼ 𝐺𝑖𝑛𝑓 (𝜉,𝑏) is given

by

𝜇𝑖𝑛𝑓
𝑟 = E(𝑋𝑟) =

∫︁ ∞

−∞
𝑥𝑟𝑔𝑖𝑛𝑓 (𝑥) 𝑑𝑥 =

∫︁ ∞

−∞
𝑥𝑟𝑔(𝑥)𝑤𝑖𝑛𝑓

𝑏 [𝐺(𝑥)] 𝑑𝑥

and therefore from (2.4) gives

𝜇𝑖𝑛𝑓
𝑟 =

∫︁ ∞

−∞
𝑥𝑟𝑔(𝑥)[1 −𝐺

𝑏
(𝑥)] 𝑑𝑥+

∫︁ ∞

−∞
𝑥𝑟𝐺(𝑥) ℎ̄𝑏(𝑥) 𝑑𝑥.

If E(𝑍𝑟
1) <∞, then

E(𝑍𝑟
𝑗 ) =

∫︁ ∞

−∞
𝑥𝑟ℎ𝑗(𝑥) 𝑑𝑥 ≤ 𝑗

∫︁ ∞

−∞
𝑥𝑟𝑔(𝑥) 𝑑𝑥 = 𝑗 E(𝑍𝑟

1) <∞, ∀𝑗 ≥ 1.

Thus, based on the linear combination (2.10) and assuming that E(𝑍𝑟
1) <∞, we obtain,

by an application of the dominated convergence theorem,

𝜇𝑖𝑛𝑓
𝑟 = E(𝑍𝑟

1) −
∞∑︁
𝑗=0

(−1)𝑗 (𝑏)𝑗
(𝑗 + 1)!

E(𝑍𝑟
𝑗+1) + 𝑏

∞∑︁
𝑗=0

(−1)𝑗(𝑗 + 1) (𝑏− 1)𝑗
(𝑗 + 2)!

E(𝑍𝑟
𝑗+2).

2.3.4 Inducing bathtub shape in the hrf

In lifetime analysis, some shape properties of the hrf have important implications in
practice. Many basic distributions used in lifetime analysis have a limited range of
behaviour and can not represent all the situations in real applications. Thus, generalized
distributions play a fundamental role in providing more flexible models that present
hrf’s with the classical shapes: increasing, decreasing, unimodal and bathtub. Among
them, bathtub hazard rates have considerable intuitive appeal. For example, they may
be useful for modelling lifetime rate of biological organisms (human life, for example),
devices which come from a mixture of subcomponents of varying inherent strength, or
series systems (LAI, 2013; MARSHALL; OLKIN, 1997).

Next, we will verify that the supremum family can induce bathtub shape in its hrf. It
happens because this family can be expressed as sum (mixture) of exp-G distributions,
or, from a physical approach, can be modeled as a series system. In fact, from (2.6), we
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have

𝑟𝑠𝑢𝑝(𝑥) = 𝑟𝑌 (𝑥) + 𝑟𝑍(𝑥),

where 𝑌 ∼ 𝐺 and 𝑍 ∼ 𝐺𝑏 are independent random variables. Thus, if 𝑟𝑌 (𝑥) is decreas-
ing and 𝑟𝑍(𝑥) is increasing, or vice versa, 𝑟𝑠𝑢𝑝(𝑥) can be bathub shaped. Furthermore, if
𝑟𝑌 (𝑥) and 𝑟𝑍(𝑥) are both convex, then 𝑟𝑠𝑢𝑝(𝑥) must be convex, and therefore monotone
or bathtub shaped. A more detailed discussion on bathtub hazard rates and its properties
is given in Marshall & Olkin (1997), Section 4-D.

2.4 Some special G𝑠𝑢𝑝 and G𝑖𝑛𝑓 distributions

Next, we introduce some new models obtained by applying the methods discussed in
Section 2.2 to parent distributions widely used in lifetime analysis. These parent distri-
butions have in common that their hrf’s do not have bathtub shape. We will see that the
supremum family induces, in some cases, shape bathtub, besides both methods provide
greater flexibility.

2.4.1 Supremum and infimum uniform distributions

Let 𝐺(𝑥) = 𝑥 be the cdf of the uniform (𝒰) distribution in (0,1) with pdf 𝑔(𝑥) = 1.
From (2.1), (2.3) and (2.6), a random variable 𝑋 ∼ 𝒰 𝑠𝑢𝑝(𝑏) has cdf, pdf and hrf given
by

𝐺𝑠𝑢𝑝(𝑥; 𝑏) = 𝑊 𝑠𝑢𝑝
𝑏 (𝑥) = 𝑥+ (1 − 𝑥)𝑥𝑏, (2.11)

𝑔𝑠𝑢𝑝(𝑥; 𝑏) = 𝑤𝑠𝑢𝑝
𝑏 (𝑥) = 1 − 𝑥𝑏 + 𝑏 (1 − 𝑥)𝑥𝑏−1 (2.12)

and

𝑟𝑠𝑢𝑝(𝑥; 𝑏) = 𝜏 𝑠𝑢𝑝𝑏 (𝑥) =
1

1 − 𝑥
+
𝑏 𝑥𝑏−1

1 − 𝑥𝑏
,

for 0 < 𝑥 < 1 and 𝑏 > 0. Also, from (2.2), (2.4) and (2.7), a random variable 𝑋 ∼
𝒰 𝑖𝑛𝑓 (𝑏) has cdf, pdf and hrf given by

𝐺𝑖𝑛𝑓 (𝑥; 𝑏) = 𝑊 𝑖𝑛𝑓
𝑏 (𝑥) = 𝑥 [1 − (1 − 𝑥)𝑏], (2.13)
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Figure 2.1: Plots of the pdf and hrf of the 𝒰 𝑠𝑢𝑝(𝑏) distribution for several values of 𝑏.

𝑔𝑖𝑛𝑓 (𝑥; 𝑏) = 𝑤𝑖𝑛𝑓
𝑏 (𝑥) = 1 − (1 − 𝑥)𝑏 + 𝑏 𝑥 (1 − 𝑥)𝑏−1 (2.14)

and

𝑟𝑖𝑛𝑓 (𝑥) = 𝜏 𝑖𝑛𝑓𝑏 (𝑥) =
1 − (1 − 𝑥)𝑏 + 𝑏 𝑥 (1 − 𝑥)𝑏−1

1 − 𝑥 [1 − (1 − 𝑥)𝑏]
.

In Figures 2.1 and 2.2, we display the pdf and hrf of the 𝒰 𝑠𝑢𝑝 and 𝒰 𝑖𝑛𝑓 distributions,
respectively, for several values of 𝑏. The pdf can be decreasing or increasing when 0 <

𝑏 ≤ 1 or unimodal when 𝑏 > 1. The hrf can be increasing or have the classical bathtub
shape and therefore this distribution can be appropriate for different applications in
lifetime analysis.

2.4.2 Supremum and infimum Fréchet distributions

Consider the cdf and pdf of the Fréchet (Fr) distribution, which are given by𝐺(𝑥;𝛼,𝛽) =

exp
[︁
−
(︀
𝛼
𝑥

)︀𝛽]︁ and 𝑔(𝑥;𝛼,𝛽) = 𝛽
𝑥

(︀
𝛼
𝑥

)︀𝛽
exp
[︁
−
(︀
𝛼
𝑥

)︀𝛽]︁, respectively, for 𝑥 > 0 and
𝛼,𝛽 > 0. From (2.1), (2.3) and (2.6), a random variable 𝑋 ∼ Fr𝑠𝑢𝑝(𝛼,𝛽,𝑏), 𝑏 > 0,
has cdf, pdf and hrf given, respectively, by

𝐺𝑠𝑢𝑝(𝑥;𝛼,𝛽,𝑏) = exp

[︂
−
(︁𝛼
𝑥

)︁𝛽]︂
+ exp

[︂
−𝑏
(︁𝛼
𝑥

)︁𝛽]︂{︂
1 − exp

[︂
−
(︁𝛼
𝑥

)︁𝛽]︂}︂
, (2.15)
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Figure 2.2: Plots of the pdf and hrf of the 𝒰 𝑖𝑛𝑓 (𝑏) distribution for several values of 𝑏.

𝑔𝑠𝑢𝑝(𝑥;𝛼,𝛽,𝑏) =
𝛽

𝑥

(︁𝛼
𝑥

)︁𝛽
exp

[︂
−
(︁𝛼
𝑥

)︁𝛽]︂
×
{︂

1 − exp

[︂
−𝑏
(︁𝛼
𝑥

)︁𝛽]︂
− 𝑏 exp

[︂
−𝑏
(︁𝛼
𝑥

)︁𝛽]︂{︂
1 − exp

[︂(︁𝛼
𝑥

)︁𝛽]︂}︂}︂
(2.16)

and

𝑟𝑠𝑢𝑝(𝑥;𝛼,𝛽,𝑏) =

𝛽
𝑥

(︀
𝛼
𝑥

)︀𝛽 {︁
1 − exp

[︁
−𝑏
(︀
𝛼
𝑥

)︀𝛽]︁− 𝑏 exp
[︁
−𝑏
(︀
𝛼
𝑥

)︀𝛽]︁{︁
1 − exp

[︁(︀
𝛼
𝑥

)︀𝛽]︁}︁}︁{︁
1 − exp

[︁(︀
𝛼
𝑥

)︀𝛽]︁}︁{︁
1 − exp

[︁
−𝑏
(︀
𝛼
𝑥

)︀𝛽]︁}︁ .

Equivalently, from (2.2), (2.4) and (2.7), a random variable 𝑋 ∼ Fr𝑖𝑛𝑓 (𝛼,𝛽,𝑏),
𝑏 > 0, has cdf, pdf and hrf, respectively, given by

𝐺𝑖𝑛𝑓 (𝛼,𝛽,𝑏) = exp

[︂
−
(︁𝛼
𝑥

)︁𝛽]︂{︃
1 −

{︂
1 − exp

[︂
−
(︁𝛼
𝑥

)︁𝛽]︂}︂𝑏
}︃
, (2.17)

𝑔𝑖𝑛𝑓 (𝛼,𝛽,𝑏) =
𝛽

𝑥

(︁𝛼
𝑥

)︁𝛽
exp

[︂
−2
(︁𝛼
𝑥

)︁𝛽]︂
×

{︃
𝑏

{︂
1− exp

[︂
−
(︁𝛼
𝑥

)︁𝛽]︂}︂𝑏−1

+ exp

[︂(︁𝛼
𝑥

)︁𝛽]︂{︃
1−

{︂
1− exp

[︂
−
(︁𝛼
𝑥

)︁𝛽]︂}︂𝑏
}︃}︃
(2.18)
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Figure 2.3: Plots of the pdf and hrf of the Fr𝑠𝑢𝑝(𝛼,𝛽,𝑏) distribution for selected param-
eters.

and

𝑟𝑖𝑛𝑓 (𝛼,𝛽,𝑏) =

𝛽
𝑥

(︀
𝛼
𝑥

)︀𝛽 {︂
𝑏
{︁
1− exp

[︁
−
(︀
𝛼
𝑥

)︀𝛽]︁}︁𝑏−1

+ exp
[︁(︀

𝛼
𝑥

)︀𝛽]︁{︂
1−

{︁
1− exp

[︁
−
(︀
𝛼
𝑥

)︀𝛽]︁}︁𝑏
}︂}︂

exp
[︁
2
(︀
𝛼
𝑥

)︀𝛽]︁{︂
1− exp

[︁
−
(︀
𝛼
𝑥

)︀𝛽]︁{︂
1−

{︁
1− exp

[︁
−
(︀
𝛼
𝑥

)︀𝛽]︁}︁𝑏
}︂}︂ .

In Figures 2.3 and 2.4, we display the pdf and hrf of the supremum and infimum
Fréchet distributions for selected parameters, respectively. They show that the pdf is
unimodal and the hrf can have decreasing or unimodal shapes. Therefore, these dis-
tributions can be appropriate for different applications in lifetime analysis (see Sec-
tion 2.10).

2.4.3 Supremum and infimum Weibull distributions

Let𝐺(𝑥;𝛼,𝛽) = 1−e−𝛼𝑥𝛽 be the cdf of the Weibull (W) distribution with support 𝑥 > 0

and parameters 𝛼,𝛽 > 0 and let 𝑔(𝑥;𝛼,𝛽) = 𝛼𝛽 𝑥𝛽−1 e−𝛼𝑥𝛽 be the corresponding pdf.
From (2.1), (2.3) and (2.6), a random variable 𝑋 ∼ W𝑠𝑢𝑝(𝛼,𝛽,𝑏), 𝛼,𝛽,𝑏 > 0, has cdf,
pdf and hrf, respectively, given by

𝐺𝑠𝑢𝑝(𝑥;𝛼,𝛽,𝑏) = 1 − e−𝛼𝑥𝛽

+ e−𝛼𝑥𝛽
(︁

1 − e−𝛼𝑥𝛽
)︁𝑏
, (2.19)
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Figure 2.4: Plots of the pdf and hrf of the Fr𝑖𝑛𝑓 (𝛼,𝛽,𝑏) distribution for selected param-
eters.

𝑔𝑠𝑢𝑝(𝑥;𝛼,𝛽,𝑏) = 𝛼𝛽 𝑥𝛽−1 e−𝛼𝑥𝛽

[︂
1−

(︁
1− e−𝛼𝑥𝛽

)︁𝑏
+ 𝑏 e−𝛼𝑥𝛽

(︁
1− e−𝛼𝑥𝛽

)︁𝑏−1
]︂

(2.20)

and

𝑟𝑠𝑢𝑝(𝑥;𝛼,𝛽,𝑏) = 𝛼𝛽 𝑥𝛽−1 +
𝛼𝛽 𝑏 𝑥𝛽−1 e−𝛼𝑥𝛽

(︁
1 − e−𝛼𝑥𝛽

)︁𝑏−1

1 −
(︀
1 − e−𝛼𝑥𝛽

)︀𝑏 .

Equivalently, from (2.2), (2.4) and (2.7), the infimum Weibull distribution has cdf,
pdf and hrf, respectively, given by

𝐺𝑖𝑛𝑓 (𝑥;𝛼,𝛽,𝑏) =
(︁

1 − e−𝛼𝑥𝛽
)︁(︁

1 − e−𝛼𝑏𝑥𝛽
)︁
, (2.21)

𝑔𝑖𝑛𝑓 (𝑥;𝛼,𝛽,𝑏) = 𝛼𝛽 𝑥𝛽−1 e−𝛼𝑥𝛽
[︁
1 + 𝑏 e−𝛼(𝑏−1)𝑥𝛽 − (𝑏+ 1) e−𝛼𝑏𝑥𝛽

]︁
(2.22)

and

𝑟𝑖𝑛𝑓 (𝑥;𝛼,𝛽,𝑏) =
𝛼𝛽 𝑥𝛽−1 e−𝛼𝑥𝛽

[︁
1 + 𝑏 e−𝛼(𝑏−1)𝑥𝛽 − (𝑏+ 1) e−𝛼𝑏𝑥𝛽

]︁
1 −

(︀
1 − e−𝛼𝑥𝛽

)︀ (︀
1 − e−𝛼𝑏𝑥𝛽

)︀ .

Figures 2.5 and 2.6 display the pdf and hrf of the supremum and infimum Weibull
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Figure 2.5: Plots of the pdf and hrf of the W𝑠𝑢𝑝(𝛼,𝛽,𝑏) distribution for selected param-
eters.

distributions for selected parameters, respectively. We note that the pdf can be decreas-
ing or unimodal and that the hrf can have the classical shapes: increasing, decreasing
and bathtub. Therefore, these distributions can be appropriate for different applications
in lifetime analysis.

2.4.4 Supremum and infimum Lomax distributions

If 𝐺(𝑥;𝛼,𝛽) = 1 − (1 + 𝛽𝑥)−𝛼 is the Lomax (Lo) cdf with support 𝑥 > 0, parameters
𝛼,𝛽 > 0 and corresponding pdf 𝑔(𝑥;𝛼,𝛽) = 𝛼𝛽(1 + 𝛽𝑥)−(𝛼+1), then the cdf, pdf and
hrf of the supremum and infimum Lomax distributions are given, respectively, by

𝐺𝑠𝑢𝑝(𝑥;𝛼,𝛽,𝑏) = (1 + 𝛽𝑥)−𝛼{−1 + (1 + 𝛽𝑥)𝛼 + [1 − (1 + 𝛽𝑥)−𝛼]𝑏},

𝑔𝑠𝑢𝑝(𝑥;𝛼,𝛽,𝑏) = −𝛼𝛽 (1 + 𝛽𝑥)−(𝛼+1){[1− (1 + 𝛽𝑥)𝛼]{1− [1− (1 + 𝛽𝑥)−𝛼]𝑏} − 𝑏[1− (1 + 𝛽𝑥)−𝛼]𝑏}
(1 + 𝛽𝑥)𝛼 − 1

,

𝑟𝑠𝑢𝑝(𝑥;𝛼,𝛽,𝑏) =
𝛼𝛽

1 + 𝛽𝑥
+
𝛼𝛽 𝑏 (1 + 𝛽𝑥)−(𝛼+1) [1 − (1 + 𝛽𝑥)−𝛼]𝑏−1

1 − [1 − (1 + 𝛽𝑥)−𝛼]𝑏
,

𝐺𝑖𝑛𝑓 (𝑥;𝛼,𝛽,𝑏) =
[︀
1 − (1 + 𝛽𝑥)−𝛼

]︀ [︀
1 − (1 + 𝛽𝑥)−𝑏𝛼

]︀
,



2.4. Some special G𝑠𝑢𝑝 and G𝑖𝑛𝑓 distributions 30

0 5 10 15

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0

x

p
d
f

α =0.05, β = 1.5 and b = 5.0
α =0.25, β = 1.0 and b = 2.5
α =0.1, β = 0.8 and b = 8.0
α =0.005, β = 2.6 and b = 3.0

(a) pdf

0 1 2 3 4

0
.0

0
.5

1
.0

1
.5

2
.0

x

h
rf

α =0.6, β = 0.75 and b = 1.25
α =0.02, β = 2.0 and b = 1.84
α =0.5, β = 1.45 and b = 0.2
α =0.04, β = 1.75 and b = 5.44

(b) hrf

Figure 2.6: Plots of the pdf and hrf of the W𝑖𝑛𝑓 (𝛼,𝛽,𝑏) distribution for selected param-
eters.

𝑔𝑖𝑛𝑓 (𝑥;𝛼,𝛽,𝑏) = 𝛼𝛽 (1 + 𝛽𝑥)−(𝛼+1)
[︀
1 + 𝑏 (1 + 𝛽𝑥)−(𝑏−1)𝛼 − (𝑏+ 1) (1 + 𝛽𝑥)−𝑏𝛼

]︀
and

𝑟𝑖𝑛𝑓 (𝑥;𝛼,𝛽,𝑏) =
𝛼𝛽 (1 + 𝛽𝑥)−(𝛼+1)

[︀
1 + 𝑏 (1 + 𝛽𝑥)−(𝑏−1)𝛼 − (𝑏+ 1) (1 + 𝛽𝑥)−𝑏𝛼

]︀
1 − [1 − (1 + 𝛽𝑥)−𝛼] [1 − (1 + 𝛽𝑥)−𝑏𝛼]

.

Figures 2.7 and 2.8 display the pdf and hrf of the supremum and infimum Lomax
distributions for selected parameters, respectively. The hrf can have the classical shapes
as decreasing and unimodal. Therefore, these distributions can be appropriate for dif-
ferent applications in lifetime analysis.

2.4.5 Supremum and infimum log-logistic distributions

Consider the log-logistic (LL) distribution with support 𝑥 > 0 and parameters 𝛼,𝛽 > 0,
which has cdf 𝐺(𝑥;𝛼,𝛽) = 𝑥𝛽/(𝛼𝛽 + 𝑥𝛽) and pdf 𝑔(𝑥;𝛼,𝛽) = (𝛽/𝛼)(𝑥/𝛼)𝛽−1/[1 +

(𝑥/𝛼)𝛽]2. So, the cdf, pdf and hrf of the supremum and infimum log-logistic distribu-
tions are given, respectively, by

𝐺𝑠𝑢𝑝(𝑥;𝛼,𝛽,𝑏) =
𝑥𝛽 + 𝛼𝛽

(︁
𝑥𝛽

𝛼𝛽+𝑥𝛽

)︁𝑏
𝛼𝛽 + 𝑥𝛽

,
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Figure 2.7: Plots of the pdf and hrf of the Lo𝑠𝑢𝑝(𝛼,𝛽,𝑏) distribution for selected param-
eters.
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Figure 2.8: Plots of the pdf and hrf of the Lo𝑖𝑛𝑓 (𝛼,𝛽,𝑏) distribution for selected param-
eters.
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𝑔𝑠𝑢𝑝(𝑥;𝛼,𝛽,𝑏) =

𝛼𝛽𝛽

{︂
𝑥𝛽
[︂
1 −

(︁
𝑥𝛽

𝛼𝛽+𝑥𝛽

)︁𝑏]︂
+ 𝛼𝛽𝑏

(︁
𝑥𝛽

𝛼𝛽+𝑥𝛽

)︁𝑏}︂
𝑥(𝛼𝛽 + 𝑥𝛽)2

,

𝑟𝑠𝑢𝑝(𝑥;𝛼,𝛽,𝑏) =

𝛽

{︂
𝑥𝛽
[︂
1 −

(︁
𝑥𝛽

𝛼𝛽+𝑥𝛽

)︁𝑏]︂
+ 𝛼𝛽𝑏

(︁
𝑥𝛽

𝛼𝛽+𝑥𝛽

)︁𝑏}︂
𝑥(𝛼𝛽 + 𝑥𝛽)

[︂
1 −

(︁
𝑥𝛽

𝛼𝛽+𝑥𝛽

)︁𝑏]︂ ,

𝐺𝑖𝑛𝑓 (𝑥;𝛼,𝛽,𝑏) =
𝑥𝛽

𝛼𝛽 + 𝑥𝛽

[︃
1 −

(︂
𝛼𝛽

𝛼𝛽 + 𝑥𝛽

)︂𝑏
]︃
,

𝑔𝑖𝑛𝑓 (𝑥;𝛼,𝛽,𝑏) =
𝛽 𝑥𝛽−1

(𝛼𝛽 + 𝑥𝛽)2

{︃
𝑏 𝑥𝛽

(︂
𝛼𝛽

𝛼𝛽 + 𝑥𝛽

)︂𝑏

+ 𝛼𝛽

[︃
1 −

(︂
𝛼𝛽

𝛼𝛽 + 𝑥𝛽

)︂𝑏
]︃}︃

and

𝑟𝑖𝑛𝑓 (𝑥;𝛼,𝛽,𝑏) =

𝛽 𝑥𝛽−1

{︂
𝑏 𝑥𝛽

(︁
𝛼𝛽

𝛼𝛽+𝑥𝛽

)︁𝑏
+ 𝛼𝛽

[︂
1 −

(︁
𝛼𝛽

𝛼𝛽+𝑥𝛽

)︁𝑏]︂}︂
(𝛼𝛽 + 𝑥𝛽)

[︂
𝛼𝛽 + 𝑥𝛽

(︁
𝛼𝛽

𝛼𝛽+𝑥𝛽

)︁𝑏]︂ .

Figures 2.9 and 2.10 display the pdf and hrf of the supremum and infimum log-
logistic distributions for selected parameters. The classical shapes for the hrf as increas-
ing, decreasing, bathtub and unimodal reveal that these distributions can be appropriate
for different applications in lifetime analysis (see Section 2.10).

2.5 Shapes of the density and hazard rate functions

2.5.1 Pdf and hrf of the 𝐺𝑠𝑢𝑝 family

For the absolutely continuous case, the shape of the pdf (2.3) can be described analyti-
cally by examining the roots of the equation

𝑑

𝑑𝑥
𝑔𝑠𝑢𝑝(𝑥) = 𝑔′(𝑥)𝑤𝑠𝑢𝑝

𝑏 [𝐺(𝑥)] + 𝑔2(𝑥)
𝑑

𝑑𝑥
𝑤𝑠𝑢𝑝

𝑏 [𝐺(𝑥)]

and analyzing its limits when 𝑥 → 0 or 𝑥 → ∞. Cleary, since 𝑔(𝑥) ≥ 0 is continuous
and integrable and lim𝑥→∞𝑤𝑠𝑢𝑝

𝑏 [𝐺(𝑥)] = 0, then lim𝑥→∞ 𝑔𝑠𝑢𝑝(𝑥) = 0.
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Figure 2.9: Plots of the pdf and hrf of the LL𝑠𝑢𝑝(𝛼,𝛽,𝑏) distribution for selected param-
eters.

0 2 4 6 8 10 12

0
.0

0
.1

0
.2

0
.3

0
.4

x

p
d
f

α = 5.0, β =4.5 and b = 3.5
α = 3.0, β =3.5 and b = 3.0
α = 1.5, β =1.2 and b = 2.5
α = 7.0, β =8.0 and b = 2.0

(a) pdf

0 2 4 6 8 10

0
1

2
3

4

x

h
rf

α = 1.0, β =5.0 and b = 6.0
α = 1.2, β =4.0 and b = 5.0
α = 0.8, β =5.5 and b = 6.5
α = 1.5, β =2.8 and b = 1.5

(b) hrf

Figure 2.10: Plots of the pdf and hrf of the LL𝑖𝑛𝑓 (𝛼,𝛽,𝑏) distribution for selected pa-
rameters.
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Alternativelly, the critical points of 𝑔𝑠𝑢𝑝(𝑥) can be obtained by examining the roots
of the equation

𝑑

𝑑𝑥
log[𝑔𝑠𝑢𝑝(𝑥)] =

𝑑

𝑑𝑥
log[𝑔(𝑥)] +

𝑑

𝑑𝑥
log{𝑤𝑠𝑢𝑝

𝑏 [𝐺(𝑥)]}. (2.23)

If 𝑥 = 𝑥0 is a root in (2.23), then it corresponds to a local maximum, a local minimum
or a point of inflexion depending on whether 𝜓(𝑥0) < 0, 𝜓(𝑥0) > 0 or 𝜓(𝑥0) = 0,
where

𝜓(𝑥) =
𝑑2

𝑑𝑥2
log[𝑔𝑠𝑢𝑝(𝑥)] =

𝑑2

𝑑𝑥2
log[𝑔(𝑥)] +

𝑑2

𝑑𝑥2
log{𝑤𝑠𝑢𝑝

𝑏 [𝐺(𝑥)]}.

From (2.6), the shape of the hrf can be described analytically by examining the roots
of the equation

𝑑

𝑑𝑥
𝑟𝑠𝑢𝑝(𝑥) = 𝑟′𝑌 (𝑥) + 𝑟′𝑍(𝑥).

Alternativelly, the critical points of 𝑟𝑠𝑢𝑝(𝑥) can be obtained by examining the roots of
the equation

𝑑

𝑑𝑥
log[𝑟𝑠𝑢𝑝(𝑥)] =

𝑑

𝑑𝑥
log[𝑔𝑠𝑢𝑝(𝑥)] + 𝑟𝑠𝑢𝑝(𝑥)

=
𝑑

𝑑𝑥
log[𝑔(𝑥)] +

𝑑

𝑑𝑥
log{𝑤𝑠𝑢𝑝

𝑏 [𝐺(𝑥)]} + 𝑟𝑠𝑢𝑝(𝑥). (2.24)

If 𝑥 = 𝑥0 is a root in (2.24), then it corresponds to a local maximum, a local minimum
or a point of inflexion depending on whether 𝜁(𝑥0) < 0, 𝜁(𝑥0) > 0 or 𝜁(𝑥0) = 0, where

𝜁(𝑥) =
𝑑2

𝑑𝑥2
log[𝑟𝑠𝑢𝑝(𝑥)] =

𝑑2

𝑑𝑥2
log[𝑔(𝑥)] +

𝑑2

𝑑𝑥2
log{𝑤𝑠𝑢𝑝

𝑏 [𝐺(𝑥)]} +
𝑑

𝑑𝑥
𝑟𝑠𝑢𝑝(𝑥).

2.5.2 Pdf and rhrf of the 𝐺𝑖𝑛𝑓 family

For the absolutely continuous case, the shape of the pdf (2.4) can be described analyti-
cally by examining the roots of the equation

𝑑

𝑑𝑥
𝑔𝑖𝑛𝑓 (𝑥) = 𝑔′(𝑥)𝑤𝑖𝑛𝑓

𝑏 [𝐺(𝑥)] + 𝑔2(𝑥)
𝑑

𝑑𝑥
𝑤𝑖𝑛𝑓

𝑏 [𝐺(𝑥)]

and analyzing its limits when 𝑥 → 0 or 𝑥 → ∞. Since 𝑔(𝑥) ≥ 0 is continuous and
integrable and lim𝑥→∞𝑤𝑖𝑛𝑓

𝑏 [𝐺(𝑥)] = 1, then lim𝑥→∞ 𝑔𝑖𝑛𝑓 (𝑥) = 0.
Alternativelly, the critical points of 𝑔𝑖𝑛𝑓 (𝑥) can be obtained by examining the roots
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of the equation

𝑑

𝑑𝑥
log[𝑔𝑖𝑛𝑓 (𝑥)] =

𝑑

𝑑𝑥
log[𝑔(𝑥)] +

𝑑

𝑑𝑥
log{𝑤𝑖𝑛𝑓

𝑏 [𝐺(𝑥)]}. (2.25)

If 𝑥 = 𝑥0 is a root in (2.25), then it corresponds to a local maximum, a local minimum
or a point of inflexion depending on whether 𝜓(𝑥0) < 0, 𝜓(𝑥0) > 0 or 𝜓(𝑥0) = 0,
where

𝜓(𝑥) =
𝑑2

𝑑𝑥2
log[𝑔𝑖𝑛𝑓 (𝑥)] =

𝑑2

𝑑𝑥2
log[𝑔(𝑥)] +

𝑑2

𝑑𝑥2
log{𝑤𝑖𝑛𝑓

𝑏 [𝐺(𝑥)]}.

From (2.8), the shape of the rhrf can be described analytically by examining the
roots of the equation

𝑑

𝑑𝑥
𝑠𝑖𝑛𝑓 (𝑥) = 𝑠′𝑌 (𝑥) + 𝑠′𝑍(𝑥).

Alternativelly, the critical points of 𝑠𝑖𝑛𝑓 (𝑥) can be obtained by examining the roots of
the equation

𝑑

𝑑𝑥
log[𝑠𝑖𝑛𝑓 (𝑥)] =

𝑑

𝑑𝑥
log[𝑔𝑖𝑛𝑓 (𝑥)] − 𝑠𝑖𝑛𝑓 (𝑥)

=
𝑑

𝑑𝑥
log[𝑔(𝑥)] +

𝑑

𝑑𝑥
log{𝑤𝑖𝑛𝑓

𝑏 [𝐺(𝑥)]} − 𝑠𝑖𝑛𝑓 (𝑥). (2.26)

If 𝑥 = 𝑥0 is a root in (2.26), then it corresponds to a local maximum, a local minimum
or a point of inflexion depending on whether 𝜁(𝑥0) < 0, 𝜁(𝑥0) > 0 or 𝜁(𝑥0) = 0, where

𝜁(𝑥) =
𝑑2

𝑑𝑥2
log[𝑠𝑖𝑛𝑓 (𝑥)] =

𝑑2

𝑑𝑥2
log[𝑔(𝑥)] +

𝑑2

𝑑𝑥2
log{𝑤𝑖𝑛𝑓

𝑏 [𝐺(𝑥)]} − 𝑑

𝑑𝑥
𝑠𝑖𝑛𝑓 (𝑥).

2.6 Properties

Next, we obtain some properties of the supremum and infimum families and provide a
formal proof of the equalities (2.5).

PROPOSITION 1 Let 𝒳 = {𝑥 ∈ R : 𝑔(𝑥; 𝜉) > 0} be the support of the parent distribu-

tion, with parameter space Θ. Then,

a) 𝐺𝑖𝑛𝑓 (𝑥; 𝜉,𝑏) ≤ 𝐺(𝑥; 𝜉) ≤ 𝐺𝑠𝑢𝑝(𝑥; 𝜉,𝑏), for all 𝑥 ∈ 𝒳 , 𝜉 ∈ Θ, 𝑏 > 0.

b) The supremum and infimum families are decreasing and increasing monotonic
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families with respect to 𝑏, respectively. That is, for all 𝑗 > 0,

𝐺𝑠𝑢𝑝(𝑥; 𝜉,𝑏+ 𝑗) ≤ 𝐺𝑠𝑢𝑝(𝑥; 𝜉,𝑏), 𝐺𝑖𝑛𝑓 (𝑥; 𝜉,𝑏) ≤ 𝐺𝑖𝑛𝑓 (𝑥; 𝜉,𝑏+ 𝑗),

for all 𝑥 ∈ 𝒳 , 𝜉 ∈ Θ and 𝑏 > 0.

c) 𝐺𝑠𝑢𝑝(𝑥; 𝜉,𝑏) ↓ 𝐺(𝑥; 𝜉) and 𝐺𝑖𝑛𝑓 (𝑥; 𝜉,𝑏) ↑ 𝐺(𝑥; 𝜉) when 𝑏 ↑ ∞, for all 𝑥 ∈ 𝒳 ,

𝜉 ∈ Θ.

Proof: From the equalities (2.1) and (2.2), we can write 𝐺𝑠𝑢𝑝(𝑥) = 𝐺(𝑥) + 𝐵𝑠𝑢𝑝
𝑏 (𝑥)

and 𝐺𝑖𝑛𝑓 (𝑥) = 𝐺(𝑥) −𝐵𝑖𝑛𝑓
𝑏 (𝑥), where

𝐵𝑠𝑢𝑝
𝑏 (𝑥) = 𝐺𝑏(𝑥) −𝐺𝑏+1(𝑥) = 𝐺(𝑥)𝐺𝑏(𝑥), 𝐵𝑖𝑛𝑓

𝑏 (𝑥) = 𝐺(𝑥)𝐺
𝑏
(𝑥).

It is clear that 𝐵𝑠𝑢𝑝
𝑏 (𝑥) ≥ 0 and 𝐵𝑖𝑛𝑓

𝑏 (𝑥) ≥ 0 for all 𝑥 ∈ 𝒳 , 𝜉 ∈ Θ and 𝑏 > 0, which
implies (a).

Next, for 𝑥 ∈ 𝒳 and 𝑏 > 0 fixed, observe that 0 ≤ 𝐺(𝑥) ≤ 1 implies in 𝐺𝑏+𝑗(𝑥) ≤
𝐺𝑏(𝑥) and 𝐺

𝑏+𝑗
(𝑥) ≤ 𝐺

𝑏
(𝑥) for all 𝑗 > 0 and, therefore, gives 𝐵𝑠𝑢𝑝

𝑏+𝑗(𝑥) ≤ 𝐵𝑠𝑢𝑝
𝑏 (𝑥) and

𝐵𝑖𝑛𝑓
𝑏+𝑗(𝑥) ≤ 𝐵𝑖𝑛𝑓

𝑏 (𝑥). Thus, these conditions imply (b).
Finally, observe that, if 𝐺(𝑥) = 0 or 𝐺(𝑥) = 1, then 𝐵𝑠𝑢𝑝

𝑏 (𝑥) = 0 and 𝐵𝑖𝑛𝑓
𝑏 (𝑥) = 0.

On the other hand, if 0 < 𝐺(𝑥) < 1, then 𝐵𝑠𝑢𝑝
𝑏 (𝑥) ↓ 0 and 𝐵𝑖𝑛𝑓

𝑏 (𝑥) ↓ 0 when 𝑏 ↑ ∞. It
proves (c).

�

2.7 Generating random variates

In this section, we present a general method to obtain random variates from the fam-
ilies 𝐺𝑠𝑢𝑝 and 𝐺𝑖𝑛𝑓 for the absolutely continuous case. Suppose first that the parent
distribution 𝐺(·) has quantile function (qf) 𝑄(·). If 𝑢 is an observation of the uniform
distribution 𝒰(0,1), by the inversion method we have that 𝑦 = 𝑄(𝑢), 𝑧 = 𝑄(𝑢1/𝑏) and
𝑧′ = 𝑄(1 − (1 − 𝑢)1/𝑏) are observations from the distributions 𝐺, 𝐺𝑏 and 1 − 𝐺

𝑏
(𝑥),

respectively. Therefore, from the results of Section 2.3.1, we can generate random vari-
ates 𝑥1, . . . ,𝑥𝑛 from the 𝐺𝑠𝑢𝑝 and 𝐺𝑖𝑛𝑓 families as detailed in the algorithms below.

If the parent distribution𝐺(·) does not have qf in closed-form, the variates 𝑦𝑖, 𝑧𝑖 and
𝑧′𝑖 in the steps 2 and 3 can be obtained by solving the following equations iteratively:

𝑢𝑖 = 𝐺(𝑦𝑖), 𝑖 = 1, . . . ,𝑛,

𝑣
1/𝑏
𝑖 = 𝐺(𝑧𝑖), 𝑖 = 1, . . . ,𝑛,

1 − (1 − 𝑣′𝑖)
1/𝑏 = 𝐺(𝑧′𝑖), 𝑖 = 1, . . . ,𝑛.
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I)Generating random variates 𝑥1, . . . ,𝑥𝑛 from the 𝐺𝑠𝑢𝑝 family:

1 For each 𝑖 = 1, . . . ,𝑛, get 𝑢𝑖 and 𝑣𝑖 independently from the uniform distribution 𝒰(0,1).
2 Calculate 𝑦𝑖 = 𝑄(𝑢𝑖).

3 Calculate 𝑧𝑖 = 𝑄(𝑣
1/𝑏
𝑖 ).

4 Finally, calculate 𝑥𝑖 = min(𝑦𝑖,𝑧𝑖).

II)Generating random variates 𝑥1, . . . ,𝑥𝑛 from the 𝐺𝑖𝑛𝑓 family:

1 For each 𝑖 = 1, . . . ,𝑛, get 𝑢𝑖 and 𝑣′𝑖 independently from the uniform distribution 𝒰(0,1).
2 Calculate 𝑦𝑖 = 𝑄(𝑢𝑖).

3 Calculate 𝑧′𝑖 = 𝑄[1− (1− 𝑣′𝑖)
1/𝑏].

4 Finally, calculate 𝑥𝑖 = max(𝑦𝑖,𝑧
′
𝑖).

2.8 Maximum Likelihood Estimation

Several approaches for parameter estimation were proposed in the statistical literature
but the maximum likelihood method is the most commonly employed. The MLE’s
enjoy desirable properties for constructing confidence intervals. In this section, we
consider the estimation of the parameters of the 𝐺𝑠𝑢𝑝 and 𝐺𝑖𝑛𝑓 families by this method.
Let 𝑥 = (𝑥1, . . . ,𝑥𝑛)⊤ be a sample of size 𝑛 from 𝑋 ∼ 𝐺𝑠𝑢𝑝(𝜉,𝑏) and let 𝜃 = (𝜉⊤,𝑏)⊤

be the parameter vector. The log-likelihood for 𝜃 based on the sample 𝑥, denoted by
ℓ𝑔𝑠𝑢𝑝(𝜃;𝑥), is given by

ℓ𝑔𝑠𝑢𝑝(𝜃;𝑥) = ℓ𝑔(𝜉;𝑥) +
𝑛∑︁

𝑖=1

log{𝑤𝑠𝑢𝑝
𝑏 [𝐺(𝑥𝑖,𝜉)]}, (2.27)

where ℓ𝑔(𝜉;𝑥) is the log-likelihood corresponding to the parent distribution.
For 0 < 𝐺(𝑥) < 1, we have that lim𝑏→∞𝑤𝑠𝑢𝑝

𝑏 [𝐺(𝑥)] = 1. Thus, it implies that
lim𝑏→∞ ℓ𝑔𝑠𝑢𝑝(𝜃;𝑥) = ℓ𝑔(𝜉;𝑥). This result coincides with the properties obtained in
Proposition 1.

The MLE 𝜃𝑛 of 𝜃 can be obtained by maximizing (2.27) directly by using the SAS
(PROC NLMIXED), R (optim and MaxLik functions) or the Ox program (sub-routine
MaxBFGS). Details for fitting univariate distributions using maximum likelihood in R
for censored or non censored data can be obtained at
http://www.inside-r.org/packages/cran/fitdistrplus/docs/mledist.

Alternatively, we can obtain the components of the score vector 𝑈 𝑠𝑢𝑝
𝜃 = (𝑈⊤

𝜉 ,𝑈𝑏)
⊤
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and set them to zero. They are given by

𝑈𝜉 = 𝑈̃𝜉 +
𝑛∑︁

𝑖=1

𝜕

𝜕𝜉
log{𝑤𝑠𝑢𝑝

𝑏 [𝐺(𝑥𝑖,𝜉)]},

𝑈𝑏 =
𝑛∑︁

𝑖=1

𝜕

𝜕𝑏
log{𝑤𝑠𝑢𝑝

𝑏 [𝐺(𝑥𝑖,𝜉)]},

where 𝑈̃𝜉 = 𝜕
𝜕𝜉
ℓ𝑔(𝜉;𝑥) is the score vector corresponding to the parent distribution.

Similarly, if 𝑋 ∼ 𝐺𝑖𝑛𝑓 (𝜉,𝑏), the log-likelihood ℓ𝑔𝑖𝑛𝑓 (𝜃;𝑥) is given by

ℓ𝑔𝑖𝑛𝑓 (𝜃;𝑥) = ℓ𝑔(𝜉;𝑥) +
𝑛∑︁

𝑖=1

log{𝑤𝑖𝑛𝑓
𝑏 [𝐺(𝑥𝑖,𝜉)]}.

Also, since lim𝑏→∞𝑤𝑖𝑛𝑓
𝑏 [𝐺(𝑥)] = 1, we have that lim𝑏→∞ ℓ𝑔𝑖𝑛𝑓 (𝜃;𝑥) = ℓ𝑔(𝜉;𝑥).

The components of the score vector 𝑈 𝑖𝑛𝑓
𝜃 = (𝑈⊤

𝜉 ,𝑈𝑏)
⊤ are given by

𝑈𝜉 = 𝑈̃𝜉 +
𝑛∑︁

𝑖=1

𝜕

𝜕𝜉
log{𝑤𝑖𝑛𝑓

𝑏 [𝐺(𝑥𝑖,𝜉)]},

𝑈𝑏 =
𝑛∑︁

𝑖=1

𝜕

𝜕𝑏
log{𝑤𝑖𝑛𝑓

𝑏 [𝐺(𝑥𝑖,𝜉)]}.

For all cases, the MLE 𝜃𝑛 can be determined by setting 𝑈𝜉 = 0 and 𝑈𝑏 = 0 and
by solving these equations simultaneously. If they can not be solved in closed-form,
numerical iterative methods, such as Newton-Raphson type algorithms, can be applied.

2.8.1 Non-nested hypotheses tests

In many situations, it is of interest analyze how significant are the induced parameters
of an extended or generalized distribution in modeling a data set. For example, we can
testing the null hypotesis that the parent distribution gives the best fit to the data set
versus the alternative that the generalized distribution is the best model. When the null
hypothesis is nested within the alternative, standard classical procedures such as the
likelihood ratio (LR) test can be used. However, this is not the case for the supremum
and infimum families. In fact, the parent family 𝐺𝜉 = {𝑔(𝑥; 𝜉) : 𝜉 ∈ Θ} and the
families 𝐺𝑠𝑢𝑝

𝜃 = {𝑔𝑠𝑢𝑝(𝑥;𝜃) : 𝜃 ∈ Θ × R+} and 𝐺𝑖𝑛𝑓
𝜃 = {𝑔𝑖𝑛𝑓 (𝑥;𝜃) : 𝜃 ∈ Θ × R+}

are strictly non-nested in the sense that

𝐺𝑠𝑢𝑝
𝜃 ∩𝐺𝜉 = ∅ and 𝐺𝑖𝑛𝑓

𝜃 ∩𝐺𝜉 = ∅.
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Several authors have proposed in the literature procedures for testing non-nested
hypotheses. Here, we consider the approach based on the generalized LR (GLR) test
introduced by Vuong (1989).

Let 𝑥1, . . . ,𝑥𝑛 be a random sample from a distribution with density 𝑓0(𝑥) unknown.
Considering the 𝐺𝑠𝑢𝑝 family, define

𝐷𝑠𝑢𝑝
𝑔 = E𝑓0{log[𝑔𝑠𝑢𝑝(𝑥;𝜃*)] − log[𝑔(𝑥; 𝜉*)]},

where E𝑓0(·) denotes the expectation with respect to the true density 𝑓0(𝑥) and

𝜃* = arg max
𝜃

E𝑓0{ℓ𝑔𝑠𝑢𝑝(𝜃)}, 𝜉* = arg max
𝜉

E𝑓0{ℓ𝑔(𝜉)}

are known as the pseudo-true values of 𝜃 and 𝜉, respectively (PESARAN; ULLOA,
2008).

Based on the Kullback-Leibler information criterion (KULLBACK, 1997), a selec-
tion criterion can be defined to using the quantity 𝐷𝑠𝑢𝑝

𝑔 . In fact, consider the following
hypotheses and their definitions:

a) ℋ0 : 𝐷𝑠𝑢𝑝
𝑔 = 0, meaning that the models 𝐺𝑠𝑢𝑝

𝜃 and 𝐺𝜉 are equivalent, against

b) ℋ𝑔𝑠𝑢𝑝 : 𝐷𝑠𝑢𝑝
𝑔 > 0, meaning that the model 𝐺𝑠𝑢𝑝

𝜃 is better than 𝐺𝜉, or

c) ℋ𝑔 : 𝐷𝑠𝑢𝑝
𝑔 < 0, meaning that the model 𝐺𝑠𝑢𝑝

𝜃 is worse than 𝐺𝜉.

To test these hypotheses, consider the GLR statistic, defined by

GLR𝑛 =
1√
𝑛 ω̂𝑛

LR𝑛(𝜃𝑛,𝜉𝑛),

where LR𝑛(𝜃𝑛,𝜉𝑛) = ℓ𝑔𝑠𝑢𝑝(𝜃𝑛) − ℓ𝑔(𝜉𝑛), 𝜃𝑛 and 𝜉𝑛 are the MLE’s of the models 𝐺𝑠𝑢𝑝
𝜃

and 𝐺𝜉, respectively, and

ω̂
2
𝑛 =

1

𝑛

𝑛∑︁
𝑖=1

{︁
log[𝑔𝑠𝑢𝑝(𝑥𝑖;𝜃𝑛)] − log[𝑔(𝑥𝑖; 𝜉𝑛)]

}︁2

−
[︂

1

𝑛
LR𝑛(𝜃𝑛,𝜉𝑛)

]︂2
.

The GLR statistic is a consistent estimator of the unknown quantity 𝐷𝑠𝑢𝑝
𝑔 . Under

certain general regularity conditions, are obtained the following results on the asymp-
totic distribution of GLR𝑛 (VUONG, 1989, Theorem 5.1):

i) under ℋ0, GLR𝑛
𝑎∼ 𝒩 (0,1),

ii) under ℋ𝑔𝑠𝑢𝑝 , GLR𝑛
a.s.−→ +∞,
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iii) under ℋ𝑔, GLR𝑛
a.s.−→ −∞,

where 𝑎∼ denotes asymptotic distribution and a.s.−→ means convergence “almost surely".
These results provide simple tests to select between the models 𝐺𝑠𝑢𝑝

𝜃 and 𝐺𝜉. Cer-
tainly, let 𝑧𝛼/2 be the 1 − 𝛼/2 quantile of the standard normal distribution, for some
significance level 𝛼. If GLR𝑛 > 𝑧𝛼/2, we reject the null hypothesis that the models are
equivalent in favor of 𝐺𝑠𝑢𝑝

𝜃 being better than 𝐺𝜉. If GLR𝑛 < −𝑧𝛼/2, we reject ℋ0 in
favor of 𝐺𝜉 being better than 𝐺𝑠𝑢𝑝

𝜃 . Finally, if |GLR𝑛| ≤ 𝑧𝛼/2, then we can not discrim-
inate between 𝐺𝑠𝑢𝑝

𝜃 and 𝐺𝜉 given the data. Similar results are obtained to considering
the 𝐺𝑖𝑛𝑓 family.

2.9 Simulation study

In this section, we consider as special case the Fr𝑠𝑢𝑝 distribution (see Section 2.4.2)
and perform a Monte Carlo simulation experiment in order to evaluate the behavior of
the MLE 𝜃𝑛 = (𝛼̂𝑛,𝛽𝑛,𝑏̂𝑛) in finite samples. We estimate the relative bias and mean
squared error (MSE) for the sample sizes 𝑛 = 50, 100, 200 and 300 and vary 𝛼 and 𝑏 in
the set {0.5, 0.75} and 𝛽 in {1.5, 1.75}. We consider 10,000 Monte Carlo replications
and use the BFGS method with analytical derivatives for maximizing the log-likelihood
function (2.27). All computations are performed using the C programming language
and the GNU Scientific Library (version 2.1). The random variates are generated from
the Fr𝑠𝑢𝑝 model according to Section 2.7.

The results, given in Table 2.1, reveal that, in general, the relative bias and MSE
values decrease when 𝑛 increases, which is to be expected since the MLE’s are asymp-
totically unbiased. The values in this table also reveal that the relative bias and MSE for
𝑏̂𝑛 decreases as the value of 𝛽 increases. We can also note that the relative bias and MSE
do not exceed, in absolute value, 0.20 and 0.13, respectively. Further, it can be noted
in Table 2.1 that the parameter 𝑏 was underestimated in some cases (negative relative
bias).

The Figures 2.11 and 2.12 display the plots of the relative bias values and the
Figures 2.13 and 2.14 display the plots of the MSE values considering the scenarios
𝛼 = 0.5, 𝛽 = 1.5, 𝑏 = 0.5 and 𝛼 = 0.75, 𝛽 = 1.75, 𝑏 = 0.75, respectively.

2.10 Applications

In this section, the potentiality of the 𝐺𝑖𝑛𝑓 and 𝐺𝑠𝑢𝑝 families is proved empirically by
means of two applications.
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Table 2.1: Relative bias and MSE values of the MLE 𝜃𝑛 = (𝛼̂𝑛,𝛽𝑛,𝑏̂𝑛) for the Fr𝑠𝑢𝑝

model

relative bias MSE

𝛼 𝛽 𝑏 𝑛 𝛼̂𝑛 𝛽𝑛 𝑏̂𝑛 𝛼̂𝑛 𝛽𝑛 𝑏̂𝑛

0.5 1.5 0.5 50 0.058 0.060 0.172 0.027 0.058 0.125
100 0.053 0.042 0.150 0.022 0.035 0.110
200 0.040 0.030 0.134 0.016 0.024 0.094
300 0.034 0.024 0.119 0.014 0.019 0.083

0.75 50 0.100 0.075 −0.036 0.023 0.062 0.108
100 0.089 0.058 −0.030 0.019 0.038 0.099
200 0.077 0.046 −0.028 0.016 0.025 0.088
300 0.069 0.040 −0.023 0.013 0.020 0.082

1.75 0.5 50 0.056 0.061 0.145 0.020 0.078 0.121
100 0.048 0.043 0.134 0.016 0.047 0.108
200 0.033 0.030 0.128 0.012 0.032 0.093
300 0.028 0.025 0.113 0.010 0.026 0.082

0.75 50 0.090 0.075 −0.051 0.017 0.086 0.110
100 0.078 0.058 −0.040 0.014 0.052 0.100
200 0.065 0.046 −0.033 0.011 0.034 0.089
300 0.057 0.040 −0.025 0.009 0.027 0.081

0.75 1.5 0.5 50 0.047 0.059 0.196 0.058 0.057 0.127
100 0.049 0.042 0.161 0.049 0.035 0.111
200 0.038 0.029 0.139 0.036 0.024 0.094
300 0.033 0.024 0.122 0.030 0.019 0.083

0.75 50 0.090 0.077 −0.022 0.050 0.063 0.106
100 0.085 0.058 −0.024 0.042 0.037 0.098
200 0.076 0.046 −0.026 0.035 0.025 0.088
300 0.068 0.040 −0.022 0.030 0.020 0.082

1.75 0.5 50 0.035 0.057 0.196 0.041 0.075 0.126
100 0.036 0.041 0.163 0.034 0.046 0.111
200 0.028 0.029 0.140 0.026 0.031 0.094
300 0.025 0.024 0.121 0.022 0.026 0.083

0.75 50 0.076 0.076 −0.028 0.034 0.084 0.106
100 0.070 0.058 −0.026 0.029 0.051 0.098
200 0.062 0.046 −0.026 0.024 0.034 0.088
300 0.055 0.039 −0.021 0.021 0.026 0.081
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Figure 2.11: Relative bias for the parameter values 𝛼 = 0.5, 𝛽 = 1.5 and 𝑏 = 0.5 in the
Fr𝑠𝑢𝑝 model.
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Figure 2.12: Relative bias for the parameter values 𝛼 = 0.75, 𝛽 = 1.75 and 𝑏 = 0.75 in
the Fr𝑠𝑢𝑝 model.
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Figure 2.13: MSE for the parameter values 𝛼 = 0.5, 𝛽 = 1.5 and 𝑏 = 0.5 in the Fr𝑠𝑢𝑝

model.
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Figure 2.14: MSE for the parameter values 𝛼 = 0.75, 𝛽 = 1.75 and 𝑏 = 0.75 in the
Fr𝑠𝑢𝑝 model.



2.10. Applications 44

a)Traffic data: As a first application, we consider a data set given in Jørgensen
(1982) corresponding to the length of 128 intervals between the times at which vehicles
pass a point on a road. The descriptive statistics for this data set are given in Table 2.2.
To adjust the data, we consider the Lindley (Li), log-logistic (LL), Lomax (Lo), Fréchet
(Fr), Weibull (W), LL𝑖𝑛𝑓 , Lo𝑖𝑛𝑓 and Fr𝑠𝑢𝑝 distributions. All computations are performed
using the R software (version 3.0.2, AdequacyModel package).

For maximizing the log-likelihood function, we use the BFGS method with nu-
merical derivatives. For purposes of comparison, we compute some goodness-of-fit
statistics: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC),
Hannan-Quinn Information Criterion (HQIC), Cramér-von Mises Criterion (W*) and
Anderson-Darling Criterion (A*) (CHEN; BALAKRISHNAN, 1995). In general, small
values of these statistics suggest a better fit. The MLE’s are given in Table 2.3 with their
standard errors in parentheses and the goodness-of-fit values for the fitted distributions
are listed in Table 2.4.

The figures in Table 2.4 reveal that the Fr𝑠𝑢𝑝 distribution has the smallest values
of all statistics among the fitted models. Therefore, based on these statistics, we can
conclude that the Fr𝑠𝑢𝑝 distribution gives the best fit to the current data. The plots in
Figure 2.15 display the Fréchet, LL𝑖𝑛𝑓 and Fr𝑠𝑢𝑝 estimated densities.

b)Strength data: The second application, which was originally reported by Bader
& Priest (1982), represents the strength measured in GPa for 63 single carbon fibers
tested under tension at gauge lengths of 10 mm. These data also are used by Kundu
& Raqab (2009). The descriptive statistics for this data set are given in Table 2.2. In
this case, we consider the Lindley (Li), log-logistic (LL), Fréchet (Fr), Weibull (W),
LL𝑖𝑛𝑓 and Fr𝑠𝑢𝑝 distributions. The MLE’s are given in Table 2.5 with their standard
errors in parentheses and the goodness-of-fit values for the fitted distributions are listed
in Table 2.6. The figures in Table 2.6 reveal that the Fr𝑠𝑢𝑝 distribution has the smallest
values of the AIC, HQIC, W* and A* statistics among the fitted models. So, these
statistics suggest that the Fr𝑠𝑢𝑝 distribution gives the best fit to the current data. The
plots in Figure 2.16 display the LL, LL𝑖𝑛𝑓 and Fr𝑠𝑢𝑝 estimated densities.

To analyze how significant is the additional parameter 𝑏 of the Fr𝑠𝑢𝑝 distribution for
modeling the current data, we use the GLR statistic, as discussed in Section 2.8.1, for
testing the Fréchet model versus the Fr𝑠𝑢𝑝 model. The results are given in Table 2.7 for
both data sets. If 𝑧𝛼/2 ≈ 2.576 is the 1−𝛼/2 quantile of the standard normal distribution
at the 1% significance level, from Table 2.7 we have GLR𝑛 > 𝑧𝛼/2 in both applications.
Thus, we reject the null hypoteses that the Fréchet and Fr𝑠𝑢𝑝 models are equivalent in
favor of the Fr𝑠𝑢𝑝 model being better than the Fréchet model. So, we have evidence of
the potencial need for including the parameter 𝑏 to model both data sets.
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Table 2.2: Descriptive statistics for the data sets

Application min. 1st quantile median mean 3rd quantile max.

Traffic data 0.200 1.975 5.850 15.810 16.550 125.300
Strength data 1.901 2.554 2.996 3.059 3.422 5.020

Table 2.3: MLE’s and standard errors for the traffic data

MLE

Distribution 𝛼̂ 𝛽 𝑏̂

Li(𝛼) 0.120 (0.008) - -
LL(𝛼,𝛽) 6.048 (0.769) 1.236 (0.089) -
Lo(𝛼,𝛽) 1.610 (0.393) 12.005 (4.426) -
Fr(𝛼,𝛽) 3.314 (0.378) 0.818 (0.054) -
W(𝛼,𝛽) 12.847 (1.615) 0.746 (0.049) -
LL𝑖𝑛𝑓 (𝛼,𝛽,𝑏) 5.752 (0.809) 1.152 (0.090) 7.757 (2.922)
Lo𝑖𝑛𝑓 (𝛼,𝛽,𝑏) 1.448 (0.354) 9.759 (3.831) 6.892 (2.378)
Fr𝑠𝑢𝑝(𝛼,𝛽,𝑏) 3.449 (0.427) 0.778 (0.059) 9.862 (4.741)

Table 2.4: Goodness-of-fit statistics for the traffic data

Statistic

Distribution AIC BIC HQIC W* A*

Li(𝛼̂) 1062.24 1065.09 1063.40 0.791 4.738

LL(𝛼̂,𝛽) 930.01 935.71 932.32 0.326 1.976

Lo(𝛼̂,𝛽) 933.30 939.00 935.62 0.360 2.208

Fr(𝛼̂,𝛽) 925.16 930.86 927.47 0.159 1.043

W(𝛼̂,𝛽) 943.38 949.09 945.70 0.526 3.206

LL𝑖𝑛𝑓 (𝛼̂,𝛽,𝑏̂) 922.24 930.79 925.71 0.215 1.289

Lo𝑖𝑛𝑓 (𝛼̂,𝛽,𝑏̂) 922.55 931.11 926.03 0.231 1.394

Fr𝑠𝑢𝑝(𝛼̂,𝛽,𝑏̂) 918.88918.88918.88 927.44927.44927.44 922.36922.36922.36 0.1210.1210.121 0.7880.7880.788

Table 2.5: MLE’s and standard errors for the strength data

MLE

Distribution 𝛼̂ 𝛽 𝑏̂

Li(𝛼) 0.539 (0.050) - -
LL(𝛼,𝛽) 2.993 (0.077) 8.646 (0.890) -
Fr(𝛼,𝛽) 2.721 (0.067) 5.434 (0.508) -
W(𝛼,𝛽) 3.315 (0.088) 5.049 (0.456) -
LL𝑖𝑛𝑓 (𝛼,𝛽,𝑏) 2.981 (0.082) 8.139 (0.899) 11.463 (7.319)
Fr𝑠𝑢𝑝(𝛼,𝛽,𝑏) 2.758 (0.081) 4.955 (0.576) 5.653 (3.368)
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Table 2.6: Goodness-of-fit statistics for the strength data

Statistic

Distribution AIC BIC HQIC W* A*

Li(𝛼̂) 244.72 246.86 245.56 0.060 0.378

LL(𝛼̂,𝛽) 119.69 123.98123.98123.98 121.38 0.089 0.502

Fr(𝛼̂,𝛽) 121.80 126.09 123.49 0.115 0.642

W(𝛼̂,𝛽) 127.91 132.20 129.60 0.128 0.892

LL𝑖𝑛𝑓 (𝛼̂,𝛽,𝑏̂) 119.07 125.50 121.59 0.069 0.362

Fr𝑠𝑢𝑝(𝛼̂,𝛽,𝑏̂) 118.55118.55118.55 124.98 121.08121.08121.08 0.0550.0550.055 0.3010.3010.301

Table 2.7: Generalized LR tests

Hypotheses Application GLR statistic 𝑝-value

𝐷𝑠𝑢𝑝
𝑔 = 0 vs 𝐷𝑠𝑢𝑝

𝑔 ̸= 0
Traffic data 5.339 4.67× 10−8

Strength data 3.928 4.28× 10−5

Traffic data

D
en

si
ty

0 10 20 30 40 50 60

0
.0

0
0
.0

5
0
.1

0
0
.1

5

Fr
LLinf

Frsup

Figure 2.15: The Fréchet, LL𝑖𝑛𝑓 and Fr𝑠𝑢𝑝 estimated densities for the traffic data.
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Figure 2.16: The LL, LL𝑖𝑛𝑓 and Fr𝑠𝑢𝑝 estimated densities for the strength data.

2.11 Conclusion and final remarks

In this chapter, we introduce two new generalized 𝐺 families, named the supremum
and infimum families of distributions, to inducing one additional shape parameter to
the parent distribution 𝐺. We present some motivations to introduce these families,
give a physical interpretation and prove these families have simple expressions for mo-
ments in terms of moments of exponentiated-𝐺 (exp-𝐺) distributions. Several special
lifetime distributions belonging to both families are present and they reveal that the
supremum family can induce bathtub shape in its hazard rate function (hrf). Asymp-
totics and shapes of the new families are given and we obtain some structural properties
of these families. Also, we provide a general method for obtain random variates from
the supremum and infimum families. In addition, maximum likelihood estimates for
complete samples from these families are also considered and we perform a Monte
Carlo simulation in order to evaluate the behavior of these estimates for the Fréchet
supremum (Fr𝑠𝑢𝑝) model. Finally, we compare the performance of some new special
lifetime distributions with other lifetime distributions by using the classical goodness-
of-fit statistics. The results confirm that the distributions belonging to the supremum
and infimum families are very appropriate for lifetime applications.



Chapter 3
The modified Fréchet distribution and its
properties

Resumo

A distribuição Fréchet é um modelo absolutamente contínuo que tem ampla aplicabili-
dade na teoria de valores extremos. Contudo, esse modelo apresenta um desempenho
limitado e não pode representar muitas das situações práticas. Assim, neste capítulo
propomos uma nova distribuição de três parâmetros, denominada Fréchet modificada,
obtida ao extender a distribuição Fréchet. Diferentemente do modelo Fréchet, a nova
distribuição apresenta função razão de risco decrescente e unimodal invertida, a qual
fornece interpretações muito intuitivas em diversas situações. Obtemos algumas pro-
priedades da nova distribuição ao fazer uso da função de Lambert. Consideramos um
estudo de simulação para ilustrar o desempenho das estimativas de máxima verossimil-
hança. A flexibilidade da distribuição introduzida é ilustrada por meio de um conjunto
de dados reais. Fazemos uso de algumas estatísticas de bondade de ajuste para verificar
a adequabilidade do novo modelo, provando assim que ele pode ser apropriado para
aplicações a dados reais.

Palavras-chave: Análise de tempo de vida, distribuição Fréchet, distribuição Fréchet
modificada, função W de Lambert.

Abstract

The Fréchet distribution is an absolutely continuous model which has wide applicability
in extreme value theory. However, this model have a limited range of behaviour and can
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not represent all the situations found in applications. Thus, in this chapter, we propose
a new three-parameter model, so-called the modified Fréchet distribution, to extend the
Fréchet distribution. Differently from the Fréchet model, the new distribution allows
decreasing and inverted unimodal hazard rate, which have considerable intuitive appeal.
By using the Lambert function, we obtain some properties of the new distribution. We
provide a simulation study to illustrate the performance of the maximum likelihood
estimates. The flexibility of the introduced distribution is illustrated by means of a real
data set. We use some goodness-of-fit statistics to verify the adequacy of the proposed
model. We prove empirically that it can be appropriated for applications to real data
sets.

Keywords: Fréchet distribution, Lambert W function, lifetime analysis, modified Fréchet
distribution.

3.1 Introduction

The type II extreme value distribution, also known as the Fréchet distribution, is a family
of continuous distributions developed within the general extreme value theory, which
deals with the stochastic behaviour of the maximum and the minimum of indepen-
dent and identically distributed (i.i.d.) random variables (KOTZ; NADARAJAH, 2000).
This distribution was introduced by Maurice Fréchet (1878-1973), who investigated it
as one possible limit distribution for a sequence of maxima of i.i.d. random variables.

Although the Fréchet distribution is used in applications involving stochastic phe-
nomena such as rainfall, floods, air pollution (KOTZ; NADARAJAH, 2000) or material
properties in engineering applications (HARLOW, 2002), this model have a limited
range of behaviour and can not represent all the situations found in applications. For
example, this model does not allow bathtub hazard rate, which is widely used in lifetime
applications by its considerable intuitive appeal.

With the aim of obtaining more flexibility, several extensions of the Fréchet distribu-
tion were proposed in the literature. Some of them are: the Kumaraswamy Fréchet (MEAD,
2014), beta Fréchet (NADARAJAH; GUPTA, 2004; BARRETO SOUZA et al., 2011),
exponentiated Fréchet (NADARAJAH; KOTZ, 2001), Marshall-Olkin Fréchet (KR-
ISHNA et al., 2013), transmuted Fréchet (MAHMOUD; MANDOUH, 2013), gamma
extended Fréchet (SILVA et al., 2013), transmuted exponentiated Fréchet (ELBATAL
et al., 2014), transmuted Marshall-Olkin Fréchet (AFIFY et al., 2015) and transmuted
exponentiated generalized Fréchet (YOUSOF et al., 2015) distributions.

In this chapter, we propose a new three-parameter extended Fréchet model named



3.2. The Lambert W function 50

the modified Fréchet (MF) distribution. Differently from the Fréchet model, the new
distribution allows decreasing and inverted unimodal hazard rate, which are useful for
modeling various cases in lifetime applications (LAI, 2013; MARSHALL; OLKIN,
1997). So, our aim is to define a more flexible model for lifetime applications. In
addition, given its simple mathematical form, several of its mathematical quantities and
properties such as the quantile function (qf) and expansions for the ordinary moments
are obtained based on the Lambert W function (CORLESS et al., 1996; CARRASCO
et al., 2008; SILVA et al., 2010; JODRÁ, 2010).

The chapter unfolds as follows. In Section 3.2, we review some main issues of the
Lambert W function. In Section 3.3, we introduce the MF model and discuss the gener-
ation of random variates from this distribution by considering the Lambert function. In
Section 3.4, we plot its density and hazard rate functions for some parameter values. In
Section 3.5, we express the qf in terms of the Lambert function. In Sections 3.6 and 3.7,
we present expansions for the ordinary and incomplete moments, generating function
and Bonferroni and Lorenz curves using an expansion for the Lambert function. In Sec-
tion 3.8, we determine the order statistics and their moments. Section 3.9 is devoted to
the maximum likelihood estimates (MLE’s) for complete samples and, in Section 3.10,
we carry out a simulation study to evaluate the performance of these estimates. In Sec-
tion 3.11, we provide an application of the MF distribution and compare it with the
Fréchet distribution and others three-parameter extended distributions including the ex-
ponentiated Weibull distribution (MUDHOLKAR; SRIVASTAVA, 1993), since it is a
widely used lifetime model. Finally, Section 3.12 concludes the chapter.

3.2 The Lambert W function

The Lambert W function (CORLESS et al., 1996; JODRÁ, 2010) has been applied to
solve several problems in mathematics, physics and engineering. It is implicitly defined
as the branches of the inverse relation of the function 𝜏(𝑧) = 𝑧 e𝑧, 𝑧 ∈ C, that is

𝑧 = 𝜏−1(𝑧 e𝑧) = 𝑊 (𝑧 e𝑧), 𝑧 ∈ C.

The Lambert function can not be expressed in terms of elementary functions. How-
ever, a feature that makes the Lambert function attractive is that it is an analytic func-
tion, that is, this function is locally given by a convergent power series. Figure 3.1
displays plots of 𝑊 (𝑥) for 𝑥 ∈ R. We note that for −e−1 ≤ 𝑥 < 0, there are two possi-
ble real values of 𝑊 (𝑥) and, therefore, two branches are defined: the branch satisfying
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𝑊 (𝑥) ≥ −1 is denoted by𝑊0(𝑥) and called the principal branch of𝑊 (·), and the other
branch satisfying 𝑊 (𝑥) ≤ −1 is denoted by 𝑊−1(𝑥) and called the negative branch of
𝑊 (·).
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Figure 3.1: Real branches of the Lambert W function.

Next, we present some properties and expansions for 𝑊0(·) (CORLESS et al.,
1996). By definition of the Lambert function, the principal branch satisfies

𝑥 = 𝑊0(𝑥 e𝑥), 𝑥 ≥ −1. (3.1)

From equation (3.1), we obtain (for 𝑥 ≥ −1)

𝑊0(𝑥 e𝑥) e𝑊0(𝑥 e𝑥) = 𝑥 e𝑥,

and, therefore, letting 𝑦 = 𝑥 e𝑥, we note that 𝑊0(·) is the solution of the equation

𝑊0(𝑦) e𝑊0(𝑦) = 𝑦, 𝑦 ≥ −e−1. (3.2)

Furthermore, for |𝑥| ≤ e−1 and 𝑟 ∈ N, the function 𝑊 𝑟
0 (𝑥) has a power series

around 𝑥0 = 0 given by

𝑊 𝑟
0 (𝑥) =

∞∑︁
𝑛=𝑟

𝑟 (−𝑛)𝑛−𝑟

𝑛 (𝑛− 𝑟)!
𝑥𝑛. (3.3)
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Other useful expansion related 𝑊0(·) with the exponential function is given by

e𝑐𝑊0(𝑥) =
∞∑︁
𝑛=0

𝑐 (𝑐− 𝑛)𝑛−1

𝑛!
𝑥𝑛, 𝑐 ∈ C, |𝑥| ≤ e−1. (3.4)

The analytical properties of the function𝑊0(𝑥) presented above will be used hence-
forth to obtain several mathematical quantities and properties of the MF distribution,
which is introduced in the following section. Since the Lambert W function is imple-
mented in various scientific libraries, computations of quantities such as quantiles and
random variates related to the MF distribution can be implemented more efficiently.

3.3 The new distribution

The Fréchet model is a special case of the generalized extreme value distribution, which
is a family of continuous distributions that includes as special cases the Gumbel, Fréchet
and Weibull distributions, also known as type I, type II and type III extreme value
distributions, respectively (KOTZ; NADARAJAH, 2000; ALVES; NEVES, 2011). Its
cumulative distribution function (cdf) and probability density function (pdf) are given
by

𝐺(𝑥;𝛼,𝛽) = exp

[︂
−
(︁𝛼
𝑥

)︁𝛽]︂
, 𝑥 > 0, 𝛼,𝛽 > 0, (3.5)

and

𝑔(𝑥;𝛼,𝛽) =
𝛽

𝑥

(︁𝛼
𝑥

)︁𝛽
exp

[︂
−
(︁𝛼
𝑥

)︁𝛽]︂
.

Generalizing distributions is an old practice and has ever been considered as pre-
cious as other practical problems in Statistics. The modern era on distribution theory
stresses on problem-solving faced by the applied researchers to propose a variety of
models so that a data can be better assessed and explored that are available in different
fields of life. In other words, there is strong need to introduce useful models for better
exploration of the real-life phenomenons.

Lai et al. (2003) have successfully defined the three-parameter modified Weibull
distribution by taking appropriate limits on the beta integrated distributions. Also, it is
obtained by extending the Weibull distribution by incluing the additional term e𝜆𝑥 in
order to decrease more rapidly the survival function. Following a similar approach, in
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this chapter we study the MF distribution by extending the cdf (3.5) to the form

𝐹 (𝑥;𝛼,𝛽,𝜆) = exp

[︂
−
(︁𝛼
𝑥

)︁𝛽
e−𝜆𝑥

]︂
, 𝑥 > 0, 𝛼,𝛽 > 0, 𝜆 ≥ 0, (3.6)

where 𝛼, 𝛽 and 𝜆 are shape parameters. It is straightforward matter to observe that
𝐹 (𝑥) is differentiable and strictly increasing in (0,∞) and that lim𝑥→0 𝐹 (𝑥) = 0 and
lim𝑥→∞ 𝐹 (𝑥) = 1. Therefore, 𝐹 (𝑥) is, in fact, a legitimate absolutely continuous cdf.
Thus, the corresponding MF density is given by

𝑓(𝑥;𝛼,𝛽,𝜆) =
1

𝑥
(𝛽 + 𝜆𝑥)

(︁𝛼
𝑥

)︁𝛽
exp

[︂
−𝜆𝑥−

(︁𝛼
𝑥

)︁𝛽
e−𝜆𝑥

]︂
. (3.7)

Note that the Fréchet distribution is a special case of the MF distribution when 𝜆 = 0.
Hereafter, a random variable 𝑋 with pdf (3.7) will be denoted by 𝑋 ∼ MF(𝛼,𝛽,𝜆).

In lifetime analysis, a very useful function is the hazard rate function (hrf) 𝑟(𝑥) =

𝑓(𝑥)/[1 − 𝐹 (𝑥)] (MARSHALL; OLKIN, 2007). The hrf of 𝑋 is given by

𝑟(𝑥;𝛼,𝛽,𝜆) =
(𝛽 + 𝜆𝑥) (𝛼

𝑥
)𝛽 e−𝜆𝑥

𝑥
{︀

exp
[︀
(𝛼
𝑥
)𝛽 e−𝜆𝑥

]︀
− 1
}︀ . (3.8)

3.3.1 Generating random variates

Inverting (3.6), a random variable 𝑋 with pdf (3.7) can be simulated as follows. Let 𝑢
be an observation of the random variable 𝑈 ∼ 𝒰(0,1). Then, an observation of 𝑋 can
be obtained as a solution of the nonlinear equation(︁𝛼

𝑥

)︁𝛽
e−𝜆𝑥 + log(𝑢) = 0. (3.9)

Numerical algorithms, such as Newton-Raphson methods, can be used for determin-
ing 𝑥 from (3.9).

It is possible to go a step further in (3.9) and simulate 𝑋 in a form computationally
more efficient by using the Lambert W function (see Section 3.2). From (3.9) and after
some algebraic manipulation, we can write

𝜆𝑥

𝛽
e

𝜆𝑥
𝛽 =

𝛼𝜆

𝛽
[︀
log
(︀
1
𝑢

)︀]︀1/𝛽 .
Applying 𝑊0(·) in both sides and using (3.1) gives

𝜆𝑥

𝛽
= 𝑊0

(︃
𝛼𝜆

𝛽
[︀
log
(︀
1
𝑢

)︀]︀1/𝛽
)︃
.
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Figure 3.2: Plots of the exact MF densities and histograms of the simulated data for
given parameters.

Thus, we obtain the following result: if 𝑈 ∼ 𝒰(0,1), then

𝑋 = 𝑄(𝑈) =
𝛽

𝜆
𝑊0

(︃
𝛼𝜆

𝛽
[︀
log
(︀
1
𝑈

)︀]︀1/𝛽
)︃

∼ MF(𝛼,𝛽,𝜆). (3.10)

In Figure 3.2, we compare the exact MF densities and histograms from two simu-
lated data sets for specified parameters by showing the consistent of the simulated val-
ues from (3.10) with the MF distribution. To simulate the data, we use the R software
(version 3.0.2, lamW package).

3.4 Shapes of the density function

The shapes of the pdf (3.7) can be described analytically by examining the roots of the
equation 𝑓 ′(𝑥) = 0 and analyzing its limits when 𝑥 → 0 or 𝑥 → ∞. Clearly, since
𝑓(𝑥) ≥ 0 is integrable, then lim

𝑥→∞
𝑓(𝑥) = 0. The following result gives the limit of 𝑓(𝑥)

when 𝑥→ 0.

PROPOSITION 2 lim
𝑥→0

𝑓(𝑥) = 0.

Proof:

From (3.7) we note that 𝑓(𝑥) can be expressed as

𝑓(𝑥) =

(︂
𝜆+

𝛽

𝑥

)︂(︁𝛼
𝑥

)︁𝛽
e−𝜆𝑥 exp

[︂
−
(︁𝛼
𝑥

)︁𝛽
e−𝜆𝑥

]︂
.
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Since 𝑥 > 0 and 𝜆 ≥ 0, then e−𝜆𝑥 ≤ 1 and, therefore,

0 ≤ 𝑓(𝑥) ≤
(︂
𝜆+

𝛽

𝑥

)︂(︁𝛼
𝑥

)︁𝛽
exp

[︂
−
(︁𝛼
𝑥

)︁𝛽
e−𝜆𝑥

]︂
.

Using the fact that lim
𝑥→0

e−𝜆𝑥 = 1, we have

0 ≤ lim
𝑥→0

𝑓(𝑥) ≤ lim
𝑥→0

(︂
𝜆+

𝛽

𝑥

)︂(︁𝛼
𝑥

)︁𝛽
e−(𝛼

𝑥 )
𝛽

. (3.11)

Next, we will prove that

lim
𝑥→0

e−(𝛼
𝑥 )

𝛽

𝑥𝛽+1
= 0. (3.12)

Indeed, we have the known result for all 𝑛 ∈ N, lim
𝑥→∞

𝑥𝑛 e−𝑥 = 0. Letting 𝑦 =
(︀
𝛼
𝑥

)︀𝛽 ,
we have 𝑥 = 𝛼

𝑦1/𝛽
. Thus, 𝑥→ 0 if and only if 𝑦 → ∞ and, therefore,

lim
𝑥→0

e−(𝛼
𝑥 )

𝛽

𝑥𝛽+1
= lim

𝑦→∞

𝑦
𝛽+1
𝛽 e−𝑦

𝛼𝛽+1
.

Let 𝑛 ∈ N such that 𝛽+1
𝛽

≤ 𝑛. Then, for 𝑦 ≥ 1, we have 𝑦
𝛽+1
𝛽 ≤ 𝑦𝑛 and then

0 ≤ lim
𝑦→∞

𝑦
𝛽+1
𝛽 e−𝑦

𝛼𝛽+1
≤ lim

𝑦→∞

𝑦𝑛 e−𝑦

𝛼𝛽+1
= 0,

which proves (3.12). Finally, using (3.12) in the inequality (3.11), we obtain lim
𝑥→0

𝑓(𝑥) =

0. �

Since lim
𝑥→0

𝑓(𝑥) = lim
𝑥→∞

𝑓(𝑥) = 0, then 𝑓(𝑥) must have at least one mode. The
following result shows that, in fact, 𝑓(𝑥) is unimodal.

PROPOSITION 3 𝑓(𝑥) is unimodal, with mode 𝑥 = 𝑥0 satisfying(︂
𝛼

𝑥0

)︂𝛽

e−𝜆𝑥0 − 𝛽

(𝛽 + 𝜆𝑥0)2
− 1 = 0. (3.13)

Sketch of the Proof:

For 𝜆 = 0, we obtain as particular case the Fréchet distribution, which is well known
to be unimodal. Suppose, then, 𝜆 > 0. Let 𝑠(𝑥) = 𝑢(𝑥) + 𝑣(𝑥) be, where

𝑢(𝑥) =
(︁𝛼
𝑥

)︁𝛽
(𝛽 + 𝜆𝑥)2 and 𝑣(𝑥) = −e𝜆𝑥

[︀
𝛽 + (𝛽 + 𝜆𝑥)2

]︀
.
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It is easy see that 𝑢(𝑥) > 0, 𝑣(𝑥) < 0 and 𝑣(𝑥) is strictly decreasing, for all 𝑥 > 0

and 𝛼, 𝛽, 𝜆 > 0. Furthermore, lim𝑥→0 𝑢(𝑥) = ∞, lim𝑥→0 𝑣(𝑥) = −𝛽(1 + 𝛽) and
lim𝑥→∞ 𝑣(𝑥) = −∞. So, lim𝑥→0 𝑠(𝑥) = ∞.

To calculate 𝑓 ′(𝑥), we obtain

𝑓 ′(𝑥) =
1

𝑥2

(︁𝛼
𝑥

)︁𝛽
exp

[︂
−
(︁𝛼
𝑥

)︁𝛽
e−𝜆𝑥 − 2𝜆𝑥

]︂
𝑠(𝑥)

and, therefore, 𝑓 ′(𝑥) = 0 if and only if 𝑠(𝑥) = 0. Since 𝑓(𝑥) must have at least one
mode, there exists 𝑥0 ∈ (0,∞) such that 𝑠(𝑥0) = 0.

We have

𝑢′(𝑥) = (𝛽 + 𝜆𝑥)
(︁𝛼
𝑥

)︁𝛽 (︂
2𝜆− 𝛽(𝛽 + 𝜆𝑥)

𝑥

)︂
.

Consider two cases: 𝛽 ≥ 2 and 0 < 𝛽 < 2. An analysis of 𝑢′(𝑥) reveals that, in the first
case, 𝑢(𝑥) is strictly decreasing in (0,∞), with lim𝑥→∞ 𝑢(𝑥) < ∞. So, 𝑠(𝑥) is strictly
decreasing in (0,∞) and lim𝑥→∞ 𝑠(𝑥) = −∞. In the second case, we have that 𝑢(𝑥) is
strictly convex, with minimum point at 𝑥* = 𝛽2

(2−𝛽)𝜆
. Since 𝑢(𝑥) is strictly decreasing

in (0,𝑥*), then 𝑠(𝑥) is also strictly decreasing in this interval. To see that 𝑠(𝑥) is strictly
decreasing in (𝑥*,∞), consider 𝑥 = 𝑥* + 𝑧, with 𝑧 > 0. Thus, 𝑥 ∈ (𝑥*,∞) and

𝑠(𝑥) = 𝑠(𝑧) =

(︂
2𝛽

2− 𝛽
+ 𝜆 𝑧

)︂2(︂ 𝛼(2− 𝛽)𝜆

𝛽2 + (2− 𝛽)𝜆 𝑧

)︂𝛽

− e𝛽
2/(2−𝛽)e𝜆𝑧

[︃(︂
2𝛽

2− 𝛽
+ 𝜆 𝑧

)︂2

+ 𝛽

]︃
.

An analysis of 𝑠(𝑧), for 𝑧 > 0, reveals that 𝑠(𝑧) is strictly decreasing and, because
of the exponential term, we have lim𝑧→∞ 𝑠(𝑧) = −∞. We conclude then that, in the
second case, 𝑠(𝑥) is strictly decreasing in (0,∞) and lim𝑥→∞ 𝑠(𝑥) = −∞, too.

Since 𝑠(𝑥0) = 0, lim𝑥→0 𝑠(𝑥) = ∞, lim𝑥→∞ 𝑠(𝑥) = −∞ and 𝑠(𝑥) is strictly de-
creasing in (0,∞), we conclude that 𝑥0 is the unique point in (0,∞) such that 𝑓 ′(𝑥0) =

0. Thus, 𝑓(𝑥) is unimodal, with mode 𝑥 = 𝑥0 satisfying

e−𝜆𝑥0

(𝛽 + 𝜆𝑥0)2
𝑠(𝑥0) =

(︂
𝛼

𝑥0

)︂𝛽

e−𝜆𝑥0 − 𝛽

(𝛽 + 𝜆𝑥0)2
− 1 = 0.

�

The shape parameters 𝛼, 𝛽 and 𝜆 allow extensive control on the right tail, providing
more light or heavy tails, according 𝛽 and 𝜆 decreases (𝛼 increases) or 𝛽 and 𝜆 increases
(𝛼 decreases), respectively.

The following corollary of the Proposition 3 gives the behavior of the mode of 𝑓(𝑥)

in function of the parameters. Hereafter, the symbol → means “tends to”.
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COROLLARY 1 Let 𝑥0 the mode of 𝑓(𝑥). then

a) 𝛼 → 0+ implies that 𝑥0 → 0+ and 𝛼 → ∞ implies that 𝑥0 → ∞.

b) 𝛽 → 0+ implies that 𝑥0 → 0+.

c) 𝜆→ 0+ implies that 𝑥0 → 𝛼
(︁

𝛽
𝛽+1

)︁1/𝛽
.

Proof:

a) Note that, from equation (3.13), we have

𝛼 = 𝑥0 e𝜆𝑥0/𝛽

[︂
𝛽

(𝛽 + 𝜆𝑥0)2
+ 1

]︂1/𝛽
Thus, 𝛼 → 0+ implies that 𝑥0 → 0+ and 𝛼 → ∞ implies that 𝑥0 → ∞.

b) From (3.13), we have that 𝛽 → 0+ implies that e−𝜆𝑥0 → 1, which implies that
𝑥0 → 0+.

c) From (3.13), we have that 𝜆 → 0+ implies that
(︁

𝛼
𝑥0

)︁𝛽
− 1

𝛽
− 1 → 0, which

implies that 𝑥0 → 𝛼
(︁

𝛽
𝛽+1

)︁1/𝛽
, the mode of the Fréchet distribution.

�

The plots in Figure 3.3 display the shapes of the pdf of𝑋 for some parameter values.
The plots of the hrf of 𝑋 displayed in Figure 3.4 reveal the classical shapes such as

decreasing, unimodal and inverted unimodal. So, the new distribution can be appropri-
ate for different applications in lifetime analysis.

3.5 Quantile function

Since the cdf 𝐹 (𝑥) given in (3.6) is continuous and strictly increasing, the qf of 𝑋 is
𝑄(𝑢) = 𝐹−1(𝑢), for 0 < 𝑢 < 1. From Section 3.3.1, we note that, for 𝜆 > 0, the
qf of the MF distribution can be given explicitly in terms of the Lambert function as
in (3.10).

Useful skewness and kurtosis measures are given by 𝛼3 = 𝜇3/𝜎
3 and 𝛼4 = 𝜇4/𝜎

4,
respectively, where 𝜇𝑗 is the 𝑗-th central moment and 𝜎 is the standard deviation. Since
for some parameter values the moments of the MF distribution can not exist, alternative
measures for the skewness and kurtosis based on quantiles, are sometimes more appro-
priate. The skewness measure 𝑆 of Bowley and the kurtosis measure 𝐾 of Moors are,
respectively, defined by
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Figure 3.3: Plots of the MF pdf (3.7) for selected parameters.
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Figure 3.4: Plots of the MF hrf (3.8) for selected parameters.
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𝑆 =
𝑄(6/8) +𝑄(2/8) − 2𝑄(4/8)

𝑄(6/8) −𝑄(2/8)
(3.14)

and

𝐾 =
𝑄(7/8) −𝑄(5/8) +𝑄(3/8) −𝑄(1/8)

𝑄(6/8) −𝑄(2/8)
. (3.15)

These measures are more robust and they exist even for distributions without moments.
Figure 3.5 displays plots of the skewness (4.18) and kurtosis (4.19) as functions of 𝜆

for some values of 𝛼 and 𝛽. For evaluating the quantiles using the Lambert function
given by (3.10), we use the R software (version 3.0.2, lamW package). These plots
reveal that, in general, the skewness and kurtosis measures are decreasing functions
of 𝜆. This fact can be verified in Figure 3.3(a) for the skewness and in Figure 3.3(b) for
the kurtosis.
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Figure 3.5: Plots of the skewness and kurtosis of the MF distribution for selected pa-
rameters.

3.6 Moments

Moments are important in any statistical analysis. Some of the most important features
of a distribution can be studied through moments. For instance, the first four moments
can be used to describe some characteristics of a distribution. For 𝑟 ∈ N, the 𝑟-th
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ordinary moment 𝜇′
𝑟 of 𝑋 is given by

𝜇′
𝑟 = E(𝑋𝑟) =

∫︁ ∞

0
𝑥𝑟𝑓(𝑥) 𝑑𝑥 =

∫︁ ∞

0
𝑥𝑟−1 (𝛽 + 𝜆𝑥)

(︁𝛼
𝑥

)︁𝛽
exp

[︂
−𝜆𝑥−

(︁𝛼
𝑥

)︁𝛽
e−𝜆𝑥

]︂
𝑑𝑥.

(3.16)

For practical purposes, 𝜇′
𝑟 can be evaluated numerically.

Also, for 𝑧 ≥ 0, the 𝑟-th incomplete moment of 𝑋 is defined by

𝑚
(𝑟)
𝑋 (𝑧) =

∫︁ 𝑧

0

𝑥𝑟 𝑓(𝑥) 𝑑𝑥 =

∫︁ 𝑧

0

𝑥𝑟−1 (𝛽 + 𝜆𝑥)
(︁𝛼
𝑥

)︁𝛽
exp

[︂
−𝜆𝑥−

(︁𝛼
𝑥

)︁𝛽
e−𝜆𝑥

]︂
𝑑𝑥.

(3.17)

Clearly, 𝑚(𝑟)
𝑋 (0) = 0 and 𝜇′

𝑟 = lim
𝑧→∞

𝑚
(𝑟)
𝑋 (𝑧). The following result gives an expansion

for the 𝑟-th incomplete moment of 𝑋 in terms of generalized exponential integrals.

PROPOSITION 4 For 𝜆 > 0 and 0 < 𝑧 ≤ 𝛽
𝜆
𝑊0(e

−1), the 𝑟-th incomplete moment of 𝑋

can be expressed as

𝑚
(𝑟)
𝑋 (𝑧) =

∞∑︁
𝑛=𝑟

𝑐𝑛(𝑧) ℰ𝑛/𝛽
[︂(︁𝛼

𝑧

)︁𝛽
e−𝜆𝑧

]︂
,

where 𝑐𝑛(𝑧) = 𝑎𝑛

[︁(︀
𝛼
𝑧

)︀𝛽
e−𝜆𝑧

]︁1−𝑛
𝛽

, 𝑎𝑛 = 𝑟 (−𝑛)𝑛−𝑟𝛼𝑛𝜆𝑛−𝑟

𝑛 (𝑛−𝑟)!𝛽𝑛−𝑟 and ℰ𝜈(𝑥) =
∫︀∞
1

e−𝑡𝑥 𝑡−𝜈 𝑑𝑡 is

the generalized exponential-integral function.

Proof: Letting 𝑡 =
(︀
𝛼
𝑥

)︀𝛽
e−𝜆𝑥 and after some algebraic manipulation, we have

𝜆𝑥

𝛽
e𝜆𝑥/𝛽 =

𝛼𝜆

𝛽 𝑡1/𝛽
.

Applying 𝑊0(·) in both sides and using (3.1) gives

𝑥 =
𝛽

𝜆
𝑊0

(︂
𝛼𝜆

𝛽 𝑡1/𝛽

)︂
.

Using the result 𝑑𝑡
𝑑𝑥

= − 1
𝑥
(𝛽 + 𝜆𝑥)

(︀
𝛼
𝑥

)︀𝛽
e−𝜆𝑥 in (3.17), we obtain

𝑚
(𝑟)
𝑋 (𝑧) =

(︂
𝛽

𝜆

)︂𝑟∫︁ ∞

(𝛼
𝑧
)𝛽e−𝜆𝑧

𝑊 𝑟
0

(︂
𝛼𝜆

𝛽 𝑡1/𝛽

)︂
e−𝑡 𝑑𝑡.
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Using (3.3) and assuming that 𝛼𝜆
𝛽 𝑡1/𝛽

≤ e−1 gives

𝑚
(𝑟)
𝑋 (𝑧) =

∫︁ ∞

(𝛼
𝑧
)𝛽e−𝜆𝑧

∞∑︁
𝑛=𝑟

𝑎𝑛
e−𝑡

𝑡𝑛/𝛽
𝑑𝑡, (3.18)

where

𝑎𝑛 =
𝑟 (−𝑛)𝑛−𝑟𝛼𝑛𝜆𝑛−𝑟

𝑛 (𝑛− 𝑟)! 𝛽𝑛−𝑟
. (3.19)

Since, for 𝑟 ∈ N, exists 𝑀 > 1 such that 𝑊 𝑟
0

(︁
𝛼𝜆

𝛽 𝑡1/𝛽

)︁
< 𝑡𝑟 in (𝑀,∞) and 𝑡𝑟e−𝑡

is integrable in (0,∞), then 𝑊 𝑟
0

(︁
𝛼𝜆

𝛽 𝑡1/𝛽

)︁
e−𝑡 is integrable in (𝑀,∞). Therefore, by

the continuity of 𝑊 𝑟
0

(︁
𝛼𝜆

𝛽 𝑡1/𝛽

)︁
e−𝑡 in [𝜀,𝑀 ] for all 0 < 𝜀 < 𝑀 , we conclude that this

function is integrable in
[︀
(𝛼
𝑧
)𝛽e−𝜆𝑧,∞

)︀
, since (𝛼

𝑧
)𝛽e−𝜆𝑧 > 0. In addition, the functions

e−𝑡

𝑡𝑛/𝛽 , 𝑛 = 𝑟,𝑟 + 1, . . ., are integrable in
[︀
(𝛼
𝑧
)𝛽e−𝜆𝑧,∞

)︀
. Thus, it is possible to exchange

in (3.18) the infinite sum and the integral using the dominated convergence theorem.
We obtain

𝑚
(𝑟)
𝑋 (𝑧) =

∞∑︁
𝑛=𝑟

𝑎𝑛

∫︁ ∞

(𝛼
𝑧
)𝛽e−𝜆𝑧

e−𝑡

𝑡𝑛/𝛽
𝑑𝑡. (3.20)

The generalized exponential-integral function is defined by (CHICCOLI et al., 1990)

ℰ𝜈(𝑥) =

∫︁ ∞

1

e−𝑡𝑥 𝑡−𝜈 𝑑𝑡, 𝑥 > 0, 𝜈 ∈ R,

which is equivalent to

ℰ𝜈(𝑥) = 𝑥𝜈−1

∫︁ ∞

𝑥

e−𝑡 𝑡−𝜈 𝑑𝑡. (3.21)

Thus, letting 𝜈 = 𝑛
𝛽

and 𝑥 = (𝛼
𝑧
)𝛽e−𝜆𝑧 in (3.21) and replacing in (3.20), we obtain

𝑚
(𝑟)
𝑋 (𝑧) =

∞∑︁
𝑛=𝑟

𝑐𝑛(𝑧) ℰ𝑛/𝛽
[︂(︁𝛼

𝑧

)︁𝛽
e−𝜆𝑧

]︂
, (3.22)

where

𝑐𝑛(𝑧) = 𝑎𝑛

[︂(︁𝛼
𝑧

)︁𝛽
e−𝜆𝑧

]︂1−𝑛
𝛽

.

We have that the radius of converge in (3.3) is e−1 and therefore we must have that
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𝛼𝜆
𝛽 𝑡1/𝛽

≤ e−1, which is equivalent to 𝑡 ≥
(︁

𝛼𝜆
𝛽

)︁𝛽
e𝛽 . Since the lower limit

(︁
𝛼𝜆
𝛽

)︁𝛽
e𝛽 is

attained in (3.18) for 𝑧 = 𝛽
𝜆
𝑊0(e

−1) and the function (𝛼
𝑧
)𝛽e−𝜆𝑧 is decreasing, expan-

sion (3.3) can be applied only for 0 < 𝑧 ≤ 𝛽
𝜆
𝑊0(e

−1), which implies that (3.22) is only
valid in this range. �

From the above proof, we obtain the following result.

COROLLARY 2 If 𝛽 > 𝑟, then 𝜇′
𝑟 <∞.

Proof: If 𝜆 = 0, we obtain the Fréchet distribution, which is a well-known result.
If 𝜆 > 0, we have that exists 𝑀 ′ > 0 such that 𝑊 𝑟

0

(︁
𝛼𝜆

𝛽 𝑡1/𝛽

)︁
< 𝑡−𝑟/𝛽 in (0,𝑀 ′) for

𝛽 > 𝑟 and since 𝑡−𝑟/𝛽e−𝑡 is integrable in (0,∞) for 𝛽 > 𝑟, then 𝑊 𝑟
0

(︁
𝛼𝜆

𝛽 𝑡1/𝛽

)︁
e−𝑡 also is

integrable in (0,𝑀 ′) for 𝛽 > 𝑟. From the proof of the Proposition 4, we conclude that
𝑊 𝑟

0

(︁
𝛼𝜆

𝛽 𝑡1/𝛽

)︁
e−𝑡 is integrable in (0,∞) for 𝛽 > 𝑟 and therefore 𝜇′

𝑟 <∞. �

The following result provides an expansion for 𝜇′
𝑟 by considering a suitable trans-

formation in (3.16).

PROPOSITION 5 For 𝜆 > 0 and 𝜇′
𝑟 <∞, an expression for 𝜇′

𝑟 is given by

𝜇′
𝑟 =

∞∑︁
𝑘=1

∞∑︁
𝑛=𝑟

𝑝1(𝑛) 𝐼𝑛(𝑘) +
∞∑︁
𝑛=𝑟

𝑝2(𝑛) ℰ𝑛/𝛽

[︃(︂
e𝛼𝜆

𝛽

)︂𝛽
]︃
, (3.23)

where

𝑝1(𝑛) =
2𝛽𝛼𝑛

𝛽2

(︂
𝜆

𝛽

)︂𝑛−𝑟
𝑟(−𝑛)𝑛−𝑟

𝑛(𝑛− 𝑟)!
, 𝑝2(𝑛) =

𝑟(−𝑛)𝑛−𝑟

𝑛(𝑛− 𝑟)!

(︂
𝛽

𝜆

)︂𝑟(︂
e𝛼𝜆

𝛽

)︂𝛽−𝑛

and

𝐼𝑛(𝑘) = (𝜗𝑘+1)
1−𝑛

𝛽 ℰ𝑛/𝛽(𝜗𝑘+1) − (𝜗𝑘)1−
𝑛
𝛽 ℰ𝑛/𝛽(𝜗𝑘), 𝜗𝑘 =

(︂
e𝛼𝜆

2𝛽𝑘𝛽

)︂𝛽 (︂
e𝛼𝜆

𝛽

)︂(1−𝛽)𝛽

.

Proof: Following the proof in Proposition 4, we can write

𝜇′
𝑟 =

(︂
𝛽

𝜆

)︂𝑟∫︁ ∞

0

𝑊 𝑟
0

(︂
𝛼𝜆

𝛽 𝑡1/𝛽

)︂
e−𝑡 𝑑𝑡.

Setting 𝑡1 = ( e𝛼𝜆
𝛽

)𝛽 and dividing the integration interval, we can write 𝜇′
𝑟 =

(︀
𝛽
𝜆

)︀𝑟
(𝐼1 +

𝐼2), where

𝐼1 =

∫︁ 𝑡1

0

𝑊 𝑟
0

(︂
𝛼𝜆

𝛽 𝑡1/𝛽

)︂
e−𝑡 𝑑𝑡, 𝐼2 =

∫︁ ∞

𝑡1

𝑊 𝑟
0

(︂
𝛼𝜆

𝛽 𝑡1/𝛽

)︂
e−𝑡 𝑑𝑡.
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Since 0 < 𝛼𝜆
𝛽 𝑡1/𝛽

< e−1 for 𝑡1 < 𝑡 <∞, applying the expansion (3.3), we obtain

𝐼2 =
∞∑︁
𝑛=𝑟

𝑟(−𝑛)𝑛−𝑟

𝑛(𝑛− 𝑟)!
𝑡
1−𝑛

𝛽

1 ℰ𝑛/𝛽(𝑡1). (3.24)

Next, we aim to find an expression for 𝐼1. Note that, since the set
{︁
𝑡𝑘 = ( e𝛼𝜆

𝑘𝛽
)𝛽 : 𝑘 ∈ N

}︁
is enumerable, it can be neglected of the integration interval of 𝐼1. Further, since
𝜇′
𝑟 < ∞, the function 𝑤(𝑡) = 𝑊 𝑟

0

(︁
𝛼𝜆

𝛽 𝑡1/𝛽

)︁
e−𝑡 is integrable in (0,𝑡1). Let 𝑤𝑘(𝑡) =

𝑤(𝑡) ℐ(𝑡𝑘+1,𝑡𝑘)(𝑡), where ℐ(𝑡𝑘+1,𝑡𝑘)(𝑡) is the indicator function of the interval (𝑡𝑘+1,𝑡𝑘).
Thus, we have 𝑤(𝑡) =

∑︀∞
𝑘=1𝑤𝑘(𝑡) almost everywhere 𝑡 ∈ (0,𝑡1). Applying the domi-

nated convergence theorem gives

𝐼1 =
∞∑︁
𝑘=1

∫︁ 𝑡1

0

𝑤𝑘(𝑡) 𝑑𝑡. (3.25)

Setting 𝑦 = tan
(︁

e𝜋𝛼𝜆
2𝛽 𝑡1/𝛽

)︁
for 𝑡 ∈ (𝑡𝑘+1,𝑡𝑘) gives

∫︁ 𝑡1

0

𝑤𝑘(𝑡) 𝑑𝑡 =
1

𝛽

(︂
e𝜋𝛼𝜆

𝛽

)︂𝛽 ∫︁ 𝑦𝑘+1

𝑦𝑘

𝑊 𝑟
0

(︂
2

e𝜋
arctan(𝑦)

)︂
exp

[︃
−
(︂

e𝜋𝛼𝜆

2𝛽 arctan(𝑦)

)︂𝛽
]︃

(1 + 𝑦2)−1

[arctan(𝑦)]𝛽+1
𝑑𝑦,

where 𝑦𝑘 = tan
[︁
𝜋𝑘𝛽

(︀
𝛽

e𝛼𝜆

)︀𝛽−1
]︁
. Note that, for 𝑡 ∈ (𝑡𝑘+1,𝑡𝑘), we have e𝜋𝛼𝜆

2𝛽𝑡1/𝛽
̸= 𝜋

2
𝑚

(𝑚 ∈ N) and, therefore, the above transformation is well-defined.
Since |arctan(𝑦)| < 𝜋/2, then

⃒⃒
2
e𝜋

arctan(𝑦)
⃒⃒
< e−1 and, using the expansion (3.3),

we obtain∫︁ 𝑡1

0

𝑤𝑘(𝑡) 𝑑𝑡 =

∞∑︁
𝑛=𝑟

𝑟(−𝑛)𝑛−𝑟

𝑛(𝑛− 𝑟)!

2𝑛

𝛽

(︂
𝛼𝜆

𝛽

)︂𝛽

(e𝜋)𝛽−𝑛

∫︁ 𝑦𝑘+1

𝑦𝑘

exp

[︃
−
(︂

e𝜋𝛼𝜆

2𝛽 arctan(𝑦)

)︂𝛽
]︃
[arctan(𝑦)]𝑛−𝛽−1

(1 + 𝑦2)
𝑑𝑦.

Setting 𝑧 = arctan(𝑦), we have

∫︁ 𝑡1

0

𝑤𝑘(𝑡) 𝑑𝑡 =
∞∑︁
𝑛=𝑟

𝑟(−𝑛)𝑛−𝑟

𝑛(𝑛− 𝑟)!

2𝑛

𝛽

(︂
𝛼𝜆

𝛽

)︂𝛽

(e𝜋)𝛽−𝑛

∫︁ 𝑧𝑘+1

𝑧𝑘

exp

[︃
−
(︂

e𝜋𝛼𝜆

2𝛽𝑧

)︂𝛽
]︃
𝑧𝑛−𝛽−1 𝑑𝑧,

(3.26)

where 𝑧𝑘 = 𝜋𝑘𝛽
(︀

𝛽
e𝛼𝜆

)︀𝛽−1
. Setting 𝜗 =

(︁
e𝜋𝛼𝜆
2𝛽𝑧

)︁𝛽
, we obtain

∫︁ 𝑧𝑘+1

𝑧𝑘

exp

[︃
−
(︂

e𝜋𝛼𝜆

2𝛽𝑧

)︂𝛽
]︃
𝑧𝑛−𝛽−1 𝑑𝑧 =

1

𝛽

(︂
e𝜋𝛼𝜆

2𝛽

)︂𝑛−𝛽 ∫︁ 𝜗𝑘

𝜗𝑘+1

e−𝜗 𝜗−𝑛/𝛽 𝑑𝜗, (3.27)
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where 𝜗𝑘 =
(︁

e𝜋𝛼𝜆
2𝛽 𝑧𝑘

)︁𝛽
.

Replacing (3.27) in equation (3.26) and considering the expression (3.25) gives

𝐼1 =
∞∑︁
𝑘=1

∞∑︁
𝑛=𝑟

𝑟(−𝑛)𝑛−𝑟

𝑛(𝑛− 𝑟)!

2𝛽

𝛽2

(︂
𝛼𝜆

𝛽

)︂𝑛

[(𝜗𝑘+1)
1−𝑛

𝛽 ℰ𝑛/𝛽(𝜗𝑘+1) − (𝜗𝑘)1−
𝑛
𝛽 ℰ𝑛/𝛽(𝜗𝑘)],

(3.28)

where ℰ𝜈(𝑥) is defined in (3.21).
Finally, we obtain from equations (3.24) and (3.28),

𝜇′
𝑟 =

∞∑︁
𝑘=1

∞∑︁
𝑛=𝑟

𝑝1(𝑛) 𝐼𝑛(𝑘) +
∞∑︁
𝑛=𝑟

𝑝2(𝑛) ℰ𝑛/𝛽(𝑡1),

where

𝑝1(𝑛) =
2𝛽𝛼𝑛

𝛽2

(︂
𝜆

𝛽

)︂𝑛−𝑟
𝑟(−𝑛)𝑛−𝑟

𝑛(𝑛− 𝑟)!
, 𝑝2(𝑛) =

𝑟(−𝑛)𝑛−𝑟

𝑛(𝑛− 𝑟)!

(︂
𝛽

𝜆

)︂𝑟

𝑡
1−𝑛

𝛽

1

and

𝐼𝑛(𝑘) = (𝜗𝑘+1)
1−𝑛

𝛽 ℰ𝑛/𝛽(𝜗𝑘+1) − (𝜗𝑘)1−
𝑛
𝛽 ℰ𝑛/𝛽(𝜗𝑘).

�

3.6.1 Generating function

The moment generating function (mgf) of 𝑋 , say 𝑀(𝑠) = E(e𝑠𝑋), 𝑠 ≥ 0, is given by

𝑀(𝑠) =

∫︁ ∞

0

1

𝑥
(𝛽 + 𝜆𝑥)

(︁𝛼
𝑥

)︁𝛽
exp

[︂
(𝑠− 𝜆)𝑥−

(︁𝛼
𝑥

)︁𝛽
e−𝜆𝑥

]︂
𝑑𝑥.

Also, for 𝑧 ≥ 0, we define the incomplete mgf of 𝑋 by

𝑀𝑧(𝑠) =

∫︁ 𝑧

0

1

𝑥
(𝛽 + 𝜆𝑥)

(︁𝛼
𝑥

)︁𝛽
exp

[︂
(𝑠− 𝜆)𝑥−

(︁𝛼
𝑥

)︁𝛽
e−𝜆𝑥

]︂
𝑑𝑥.

For 𝑟 ∈ N, we have 𝑀 (𝑟)(0) = 𝑑𝑟

𝑑𝑥𝑟𝑀(𝑠)
⎮⎮

𝑠=0
= 𝜇′

𝑟 and 𝑀 (𝑟)
𝑧 (0) = 𝑑𝑟

𝑑𝑥𝑟𝑀𝑧(𝑠)
⎮⎮

𝑠=0
=

𝑚
(𝑟)
𝑋 (𝑧).

Using the expansion (3.4) we obtain the following result.

PROPOSITION 6 For 𝜆 > 0 and 0 < 𝑧 ≤ 𝛽
𝜆
𝑊0(e

−1), the incomplete mgf of 𝑋 can be
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expanded as

𝑀𝑧(𝑠) =
∞∑︁
𝑛=0

𝑑𝑛(𝑧,𝑠) ℰ𝑛/𝛽
[︂(︁𝛼

𝑧

)︁𝛽
e−𝜆𝑧

]︂
,

where 𝑑𝑛(𝑧,𝑠) = 𝑏𝑛(𝑠)
[︁(︀

𝛼
𝑧

)︀𝛽
e−𝜆𝑧

]︁1−𝑛
𝛽

and 𝑏𝑛(𝑠) =
𝑠(𝑠−𝜆𝑛

𝛽 )
𝑛−1

𝛼𝑛

𝑛!
.

Proof: Letting 𝑡 =
(︀
𝛼
𝑥

)︀𝛽
e−𝜆𝑥 and following the proof of the Proposition 4, we obtain

𝑀𝑧(𝑠) =

∫︁ ∞

(𝛼
𝑧 )

𝛽
e−𝜆𝑧

exp

[︂
𝛽𝑠

𝜆
𝑊0

(︂
𝛼𝜆

𝛽𝑡1/𝛽

)︂
− 𝑡

]︂
𝑑𝑡.

Then, for 0 < 𝑧 ≤ 𝛽
𝜆
𝑊0(e

−1), we have from (3.4)

𝑀𝑧(𝑠) =
∞∑︁
𝑛=0

𝑏𝑛(𝑠)

∫︁ ∞

(𝛼
𝑧 )

𝛽
e−𝜆𝑧

e−𝑡

𝑡𝑛/𝛽
𝑑𝑡, (3.29)

where

𝑏𝑛(𝑠) =
𝑠
(︁
𝑠− 𝜆𝑛

𝛽

)︁𝑛−1

𝛼𝑛

𝑛!
.

Letting 𝜈 = 𝑛
𝛽

and 𝑥 =
(︀
𝛼
𝑧

)︀𝛽
e−𝜆𝑧 in equation (3.21) and replacing in (3.29), we obtain

𝑀𝑧(𝑠) =
∞∑︁
𝑛=0

𝑑𝑛(𝑧,𝑠) ℰ𝑛/𝛽
[︂(︁𝛼

𝑧

)︁𝛽
e−𝜆𝑧

]︂
, (3.30)

where

𝑑𝑛(𝑧,𝑠) = 𝑏𝑛(𝑠)

[︂(︁𝛼
𝑧

)︁𝛽
e−𝜆𝑧

]︂1−𝑛
𝛽

.

�

We can obtain an expansion for 𝑀(𝑠) using expansion (3.4) and following the in-
sights of the proof in Proposition 5. The result is given in the following proposition.

PROPOSITION 7 For 𝜆 > 0, an expression for 𝑀(𝑠), 𝑠 ≥ 0, is given by

𝑀(𝑠) =
∞∑︁
𝑘=1

∞∑︁
𝑛=0

𝑝1(𝑛,𝑠) 𝐼𝑛(𝑘) +
∞∑︁
𝑛=0

𝑝2(𝑛,𝑠) ℰ𝑛/𝛽

[︃(︂
e𝛼𝜆

𝛽

)︂𝛽
]︃
, (3.31)

where
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𝑝1(𝑛,𝑠) =
(2𝛼)𝛽𝑠(𝛽𝑠− 𝑛𝜆)𝑛−1

𝛽𝑛+2 𝑛!
, 𝑝2(𝑛,𝑠) =

𝑠(𝛽𝑠− 𝑛𝜆)𝑛−1𝛼𝑛

𝛽𝑛−1 𝑛!

(︂
e𝛼𝜆

𝛽

)︂𝛽−𝑛

and 𝐼𝑛(𝑘) is given in Proposition 5.

Proof: From the proof in Proposition 4, we have 𝑀(𝑠) =
∫︀∞
0
𝜈(𝑡) 𝑑𝑡, where

𝜈(𝑡) = exp

[︂
𝛽 𝑠

𝜆
𝑊0

(︂
𝛼𝜆

𝛽 𝑡1/𝛽

)︂
− 𝑡

]︂
.

Setting 𝑡𝑘 = ( e𝛼𝜆
𝑘𝛽

)𝛽 , 𝑘 ∈ N, and following the proof in Proposition 5, we have 𝑀(𝑠) =

𝐼1 + 𝐼2, where

𝐼1 =
∞∑︁
𝑘=1

∫︁ 𝑡1

0

𝜈𝑘(𝑡) 𝑑𝑡, 𝐼2 =

∫︁ ∞

𝑡1

𝜈(𝑡) 𝑑𝑡

and 𝜈𝑘(𝑡) = 𝜈(𝑡) ℐ(𝑡𝑘+1,𝑡𝑘)(𝑡).
From the expansion (3.4), we obtain

𝐼2 =
∞∑︁
𝑛=0

𝑝2(𝑛,𝑠) ℰ𝑛/𝛽(𝑡1),

where 𝑝2(𝑛,𝑠) = 𝑠(𝛽𝑠−𝑛𝜆)𝑛−1𝛼𝑛

𝛽𝑛−1 𝑛!
𝑡
1−𝑛/𝛽
1 .

Following the same sequence of transformations as in the proof of Proposition 5,
we can write

∫︁ 𝑡1

0

𝜈𝑘(𝑡) 𝑑𝑡 =
∞∑︁
𝑛=0

(2𝛼)𝛽𝑠(𝛽𝑠− 𝑛𝜆)𝑛−1

𝛽𝑛+2 𝑛!

∫︁ 𝜗𝑘

𝜗𝑘+1

e−𝜗 𝜗−𝑛/𝛽 𝑑𝜗,

where 𝜗𝑘 =
(︁

e𝛼𝜆
2𝛽𝑘𝛽

)︁𝛽 (︁
e𝛼𝜆
𝛽

)︁(1−𝛽)𝛽

. Thus, we have

𝐼1 =
∞∑︁
𝑘=1

∞∑︁
𝑛=0

(2𝛼)𝛽𝑠(𝛽𝑠− 𝑛𝜆)𝑛−1

𝛽𝑛+2 𝑛!
𝐼𝑛(𝑘),

where 𝐼𝑛(𝑘) is given in Proposition 5.
Finally, we have

𝑀(𝑠) =
∞∑︁
𝑘=1

∞∑︁
𝑛=0

𝑝1(𝑛,𝑠) 𝐼𝑛(𝑘) +
∞∑︁
𝑛=0

𝑝2(𝑛,𝑠) ℰ𝑛/𝛽(𝑡1),
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where 𝑝1(𝑛,𝑠) = (2𝛼)𝛽𝑠(𝛽𝑠−𝑛𝜆)𝑛−1

𝛽𝑛+2 𝑛!
. �

Equations (3.22), (3.23), (3.30) and (3.31) are the main results of this section.

3.7 Mean deviations and Bonferroni and Lorenz curves

The mean deviations of 𝑋 about the mean, 𝛿1 = E|𝑋 − 𝜇′
1|, and about the median,

𝛿2 = E|𝑋 −𝑀 |, used frequently as measures of dispersion, can be expressed as

𝛿1 = 2𝜇′
1 𝐹 (𝜇′

1) − 2𝑚
(1)
𝑋 (𝜇′

1) and 𝛿2 = 𝜇′
1 − 2𝑚

(1)
𝑋 (𝑀),

where 𝑀 = 𝑄(0.5) is the median of 𝑋 obtained from (3.10) at 𝑢 = 0.5 and the quanti-
ties 𝜇′

1 and 𝑚(1)
𝑋 (𝑧) can be evaluated numerically from (3.16) and (3.17), respectively.

The first incomplete moment can be applied to obtain the Bonferroni and Lorenz
curves, which are useful in several fields. The Bonferroni and Lorenz curves are de-
fined, respectively, by

𝐵(𝜋) =
𝑚

(1)
𝑋 (𝑞)

𝜋 𝜇′
1

and 𝐿(𝜋) = 𝜋 𝐵(𝜋),

where 𝑞 = 𝑄(𝜋) is evaluated from (3.10) for 0 < 𝜋 < 1. From the Proposition 4, we
obtain the following expansion for the Bonferroni curve.

COROLLARY 3 For 𝜆 > 0 and 0 < 𝜋 ≤ e−(𝛼𝜆
𝛽 )

𝛽
e𝛽 , the Bonferroni curve can be ex-

panded as

𝐵(𝜋) =
1

𝜋 𝜇′
1

∞∑︁
𝑛=1

𝑎𝑛 (− log 𝜋)1−
𝑛
𝛽 ℰ𝑛/𝛽(− log 𝜋) ,

where 𝑎𝑛 is given by (3.19) for 𝑟 = 1.

Proof:

From equation (3.10), we have

𝑞 = 𝑄(𝜋) =
𝛽

𝜆
𝑊0

(︃
𝛼𝜆

𝛽
[︀
log
(︀
1
𝜋

)︀]︀1/𝛽
)︃
.
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Thus, after some algebraic manipulation and using (3.2), we have

(︂
𝛼

𝑞

)︂𝛽

e−𝜆𝑞 =

⎛⎜⎜⎝𝛽 𝑊0

{︂
𝛼𝜆

𝛽[log( 1
𝜋 )]

1/𝛽

}︂
𝛼𝜆

⎞⎟⎟⎠
−𝛽

exp

(︃
−𝛽 𝑊0

{︃
𝛼𝜆

𝛽
[︀
log
(︀
1
𝜋

)︀]︀1/𝛽
}︃)︃

= − log 𝜋.

Finally, from equation (3.22), we obtain

𝐵(𝜋) =
1

𝜋 𝜇′
1

𝑚
(1)
𝑋 (𝑞) =

1

𝜋 𝜇′
1

∞∑︁
𝑛=1

𝑎𝑛 (− log 𝜋)1−
𝑛
𝛽 ℰ𝑛/𝛽(− log 𝜋) , (3.32)

where 𝑎𝑛 is given by (3.19) for 𝑟 = 1. This expansion holds only for 0 < 𝑞 ≤
𝛽
𝜆
𝑊0(e

−1), which is equivalent to 0 < 𝜋 ≤ e−(𝛼𝜆
𝛽 )

𝛽
e𝛽 . �

Equation (3.32) is the main result of this section.

3.8 Order statistics

Let 𝑋(1) ≤ 𝑋(2) ≤ . . . ≤ 𝑋(𝑛) be the order statistics of a random sample of size 𝑛 from
the distribution 𝐹 (𝑥). Then, for 𝑚 = 1,2, . . . ,𝑛, the pdf of the 𝑚-th order statistic,
𝑋(𝑚), is given by (SEVERINI, 2005, p. 218)

𝑓(𝑚)(𝑥) = 𝐾 𝐹𝑚−1(𝑥) [1 − 𝐹 (𝑥)]𝑛−𝑚 𝑓(𝑥),

where 𝐾 = 𝑛!/[(𝑚− 1)! (𝑛−𝑚)!]. The cdf of 𝑋(𝑚) is given by

𝐹(𝑚)(𝑥) =
𝑛∑︁

𝑗=𝑚

(︂
𝑛

𝑗

)︂
𝐹 𝑗(𝑥) [1 − 𝐹 (𝑥)]𝑛−𝑗.

In particular, the cdf’s of 𝑋(𝑛) and 𝑋(1) are given, respectively, by

𝐹(𝑛)(𝑥) = 𝐹 𝑛(𝑥), 𝐹(1)(𝑥) = 1 − [1 − 𝐹 (𝑥)]𝑛. (3.33)

Let 𝑄(𝑚)(𝑢) be (for 0 < 𝑢 < 1) the qf of 𝑋(𝑚). Then, we obtain from (3.33)

𝑄(𝑛)(𝑢) = 𝑄(𝑢1/𝑛), 𝑄(1)(𝑢) = 𝑄[1 − (1 − 𝑢)1/𝑛]. (3.34)

where 𝑄(·) is the qf of 𝑋 . Thus, from (3.10) and (3.34), we can write the qf’s of 𝑋(𝑛)

and 𝑋(1) in closed-form in terms of the Lambert W function.
It is possible, when 𝜇′

𝑟 < ∞, obtain an expression for the 𝑟-th ordinary moment of
the order statistics using a result given by Barakat & Abdelkader (2004) for the case of
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i.i.d. random variables. Thus, if 𝜇′
𝑟 < ∞, we can express the 𝑟-th moment of the 𝑚-th

order statistic 𝑋(𝑚) as (SILVA et al., 2010)

𝜇
(𝑟)
(𝑚) = E(𝑋𝑟

(𝑚)) =
𝑛∑︁

𝑗=𝑛−𝑚+1

(−1)𝑗−𝑛+𝑚−1

(︂
𝑗 − 1

𝑛−𝑚

)︂(︂
𝑛

𝑗

)︂
𝐼𝑗(𝑟),

where 𝐼𝑗(𝑟) = 𝑟
∫︀∞
0
𝑥𝑟−1[1 − 𝐹 (𝑥)]𝑗 𝑑𝑥. In particular, for the MF distribution, we

obtain

𝜇
(𝑟)
(𝑚) = 𝑟

𝑛∑︁
𝑗=𝑛−𝑚+1

(−1)𝑗−𝑛+𝑚−1

(︂
𝑗 − 1

𝑛−𝑚

)︂(︂
𝑛

𝑗

)︂∫︁ ∞

0

𝑥𝑟−1
[︁
1 − e−(𝛼

𝑥 )
𝛽
e−𝜆𝑥

]︁𝑗
𝑑𝑥,

where the last integral can be evaluated numerically.

3.9 Maximum Likelihood Estimation

Several approaches for parameter estimation were proposed in the statistical literature
but the maximum likelihood method is the most commonly employed. The MLE’s
enjoy desirable properties for constructing confidence intervals. In this section, we
consider the estimation of the parameters of the MF distribution by this method. Let
𝑥 = (𝑥1, . . . ,𝑥𝑛)⊤ be a sample of size 𝑛 from 𝑋 ∼ MF(𝛼,𝛽,𝜆) and let 𝜃 = (𝛼,𝛽,𝜆)⊤

be the parameter vector. The log-likelihood for the sample 𝑥, denoted by ℓ𝑓 (𝜃;𝑥), is
given by

ℓ𝑓 (𝜃;𝑥) =𝑛𝛽 log(𝛼) − (𝛽 + 1)
𝑛∑︁

𝑖=1

log(𝑥𝑖) +
𝑛∑︁

𝑖=1

log(𝛽 + 𝜆𝑥𝑖)

− 𝜆

𝑛∑︁
𝑖=1

𝑥𝑖 − 𝛼𝛽

𝑛∑︁
𝑖=1

e−𝜆𝑥𝑖

𝑥𝛽𝑖
. (3.35)

The MLE 𝜃𝑛 of 𝜃 can be obtained by maximizing (3.35) directly by using a sci-
entific library. Alternatively, we can obtain the components of the score vector 𝑈𝜃 =

(𝑈𝛼,𝑈𝛽,𝑈𝜆)⊤ and set them to zero. They are given by

𝑈𝛼 =
𝜕

𝜕𝛼
ℓ𝑓 (𝜃;𝑥) =

𝑛𝛽

𝛼
− 𝛽 𝛼𝛽−1

𝑛∑︁
𝑖=1

e−𝜆𝑥𝑖

𝑥𝛽𝑖
, (3.36)
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𝑈𝛽 =
𝜕

𝜕𝛽
ℓ𝑓 (𝜃;𝑥) =𝑛 log(𝛼) −

𝑛∑︁
𝑖=1

log(𝑥𝑖) +
𝑛∑︁

𝑖=1

1

𝛽 + 𝜆𝑥𝑖
− 𝛼𝛽 log(𝛼)

𝑛∑︁
𝑖=1

e−𝜆𝑥𝑖

𝑥𝛽𝑖

+ 𝛼𝛽

𝑛∑︁
𝑖=1

e−𝜆𝑥𝑖 log(𝑥𝑖)

𝑥𝛽𝑖
,

and

𝑈𝜆 =
𝜕

𝜕𝜆
ℓ𝑓 (𝜃;𝑥) =

𝑛∑︁
𝑖=1

𝑥𝑖
𝛽 + 𝜆𝑥𝑖

+ 𝛼𝛽

𝑛∑︁
𝑖=1

e−𝜆𝑥𝑖

𝑥𝛽−1
𝑖

−
𝑛∑︁

𝑖=1

𝑥𝑖. (3.37)

The MLE 𝜃𝑛 can be determined by setting 𝑈𝛼 = 𝑈𝛽 = 𝑈𝜆 = 0 and by solving these
equations simultaneously. Because they can not be solved in closed-form, numerical
iterative methods, such as Newton-Raphson type algorithms, can be applied.

Under general regularity conditions, we have (𝜃𝑛 − 𝜃)
𝑎∼ 𝑁3(0,𝐾(𝜃)−1), where

𝐾(𝜃) is the 3 × 3 expected information matrix and 𝑎∼ denotes the asymptotic distri-
bution. For 𝑛 large, 𝐾(𝜃) can be approximated by the observed information matrix.
This normal approximation for the MLE 𝜃𝑛 can be used for constructing approximate
confidence intervals and for testing hypotheses on the parameters 𝛼, 𝛽 and 𝜆.

In many cases, it is of interest to perform inference about some parameters of the
model by assuming that the remaining parameters are known.

PROPOSITION 8 Let 𝑥 = (𝑥1, . . . ,𝑥𝑛)⊤ be a sample of size 𝑛 from 𝑋 ∼ MF(𝛼,𝛽,𝜆),

with log-likelihood for 𝜃 given by (3.35). Then

a) If 𝛽 and 𝜆 are known, then the MLE of 𝛼 always exists and is unique, and is given

by

𝛼̂𝑛 =

(︃
1

𝑛

𝑛∑︁
𝑖=1

e−𝜆𝑥𝑖

𝑥𝛽𝑖

)︃−1/𝛽

.

b) Assume 𝛼 and 𝛽 known and let 𝑥(𝑛) = max{𝑥1, . . . ,𝑥𝑛}. If 𝛼 > 𝑥(𝑛), then the

MLE of 𝜆 exists and is unique.

Proof: Suppose 𝛽 and 𝜆 known. From (3.36) and considering that 𝛼, 𝛽 > 0 and 𝑛 > 0,
we have

𝑈𝛼 = 0 ⇐⇒ 𝛼 =

(︃
1

𝑛

𝑛∑︁
𝑖=1

e−𝜆𝑥𝑖

𝑥𝛽𝑖

)︃−1/𝛽

. (3.38)
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Differentiating 𝑈𝛼 with respect to 𝛼, we obtain

𝑈𝛼𝛼 = −𝑛𝛽
𝛼2

− 𝛽(𝛽 − 1)𝛼𝛽−2

𝑛∑︁
𝑖=1

e−𝜆𝑥𝑖

𝑥𝛽𝑖
.

To see that the critical point given in (3.38) is a point of maximum, it has to satisfy
𝑈𝛼𝛼 < 0. But

𝑈𝛼𝛼 < 0 ⇐⇒ 𝛼−𝛽 > (1 − 𝛽)
1

𝑛

𝑛∑︁
𝑖=1

e−𝜆𝑥𝑖

𝑥𝛽𝑖
.

Since the critical point cleary satisfies this condition, we conclude that the MLE of 𝛼
always exist and is unique, and is given by (3.38). It proves (a).

To prove (b), suppose 𝛼 and 𝛽 known. Differentiating 𝑈𝜆 with respect to 𝜆, we
obtain

𝑈𝜆𝜆 = −
𝑛∑︁

𝑖=1

[︃
𝑥𝑖

(𝛽 + 𝜆𝑥𝑖)2
+
𝛼𝛽e−𝜆𝑥𝑖

𝑥𝛽−2
𝑖

]︃
.

Since each term in the above sum is positive, then 𝑈𝜆𝜆 < 0. Further, from (3.37), we
have

lim
𝜆→∞

𝑈𝜆 = −
𝑛∑︁

𝑖=1

𝑥𝑖 < 0, (3.39)

and

lim
𝜆→0

𝑈𝜆 =
𝑛

𝛽
+

𝑛∑︁
𝑖=1

𝛼𝛽 − 𝑥𝛽𝑖
𝑥𝛽−1
𝑖

. (3.40)

Thus, if 𝛼 > 𝑥(𝑛), then lim𝜆→0 𝑈𝜆 > 0, which ensures the existence and uniqueness of
the MLE of 𝜆. �

Conditions for the existence of the MLE of 𝛽, given that 𝛼 and 𝜆 are known, are much
more difficult to obtain and, therefore, are omitted from the above result.

Suppose that the parameter vector is partitioned as 𝜃 = (𝜓⊤
1 ,𝜓

⊤
2 )⊤, where dim(𝜓1)+

dim(𝜓2) = dim(𝜃). The likelihood ratio (LR) statistic for testing the null hypothesis
ℋ0 : 𝜓1 = 𝜓

(0)
1 against the alternative hypothesis ℋ1 : 𝜓1 ̸= 𝜓

(0)
1 is given by

LR𝑛 = 2 {ℓ𝑓 (𝜃𝑛) − ℓ𝑓 (𝜃𝑛)}, where 𝜃𝑛 = (𝜓⊤
1 ,𝜓

⊤
2 )⊤, 𝜃𝑛 = (𝜓

(0)⊤

1 ,𝜓⊤
2 )⊤, 𝜓𝑖 and

𝜓𝑖 are the MLE’s under the alternative and null hypotheses, respectively, and 𝜓(0)
1 is

a specified parameter vector. Based on the first-order asymptotic theory, we know that
LR𝑛

𝑎∼ 𝜒2
𝑘, where 𝑘 = dim(𝜓1). Thus, we can test submodels of the MF distribution
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and analyze how significant are the parameters tested for modeling a particular data set.

3.10 Simulation study

In this section, we perform a Monte Carlo simulation experiment in order to evaluate the
behavior of the MLE 𝜃𝑛 = (𝛼̂𝑛,𝛽𝑛,𝜆̂𝑛) in finite samples and estimate the relative bias,
mean squared error (MSE), skewness and kurtosis for the sample sizes 𝑛 = 100, 200

and 300. We consider 10,000 Monte Carlo replications and use the BFGS method with
analytical derivatives for maximizing the log-likelihood function (3.35). All computa-
tions are performed using the C programming language and the GNU Scientific Library
(version 2.1).

The results, given in Table 3.1, reveal that the relative bias and MSE values decrease
when 𝑛 increases, which is to be expected since the MLE’s are asymptotically unbiased.
In addition, the skewness value decrease to zero and the kurtosis value decrease to 3.0

when 𝑛 increases, which is to be expected due to the asymptotic normality of the MLE’s.
The values in this table also reveal that the relative bias and MSE for 𝜆̂𝑛 increases as
the value of 𝛽 increases. We can also note that the relative bias and MSE do not exceed,
in absolute value, 0.2 and 0.3, respectively. Further, it can be noted in Table 3.1 that the
parameter 𝛽 was underestimated in some cases (negative relative bias).

3.11 Application

In this section, the potentiality of the MF distribution is ilustrated by means of one
application. We use a data set corresponding to 202 observations of plasma ferritin con-
centration in athletes (WEISBERG, 2005, Sec. 6.4) and fit the Fréchet (Fr), exponen-
tiated Fréchet (EF), Marshall-Olkin Fréchet (MOF) and MF distributions to these data.
The data are also used by Alizadeh et al. (2015). All computations are performed using
the R software (version 3.0.2, AdequacyModel package). The descriptive statistics
for this data set are given in Table 3.2.

For maximizing the log-likelihood function (3.35), we use the BFGS method with
numerical derivatives. Initial values 𝛼0, 𝛽0 and 𝜆0 for the BFGS method can be ob-
tained, based on Proposition 8, by taking 𝛼0 > 𝑥(𝑛) and giving arbitrary positive val-
ues for 𝛽0 and 𝜆0. For purposes of comparison, we compute some goodness-of-fit
statistics: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC),
Hannan-Quinn Information Criterion (HQIC), Cramér-von Mises Criterion (W*) and
Anderson-Darling Criterion (A*) (CHEN; BALAKRISHNAN, 1995). In general, the
smaller the values of these statistics are, the better the fit is.
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For completeness purposes, we also fit and include in the comparison the exponen-
tiated Weibull (EW) distribution (MUDHOLKAR; SRIVASTAVA, 1993), since it is a
widely used lifetime model. Its cdf and pdf are given, respectively, by

𝐻(𝑥) =
[︁
1 − e−( 𝑥

𝛼)
𝛽]︁𝜆

and ℎ(𝑥) =
𝛽𝜆

𝛼

(︁𝑥
𝛼

)︁𝛽−1 [︁
1 − e−( 𝑥

𝛼)
𝛽]︁𝜆−1

e−( 𝑥
𝛼)

𝛽

,

where 𝑥 ≥ 0 and 𝛼,𝛽,𝜆 > 0.
The MLE’s are given in Table 3.3 with their standard errors in parentheses and the

goodness-of-fit values for the fitted distributions are listed in Table 3.4.

Table 3.2: Descriptive statistics for the plasma ferritin data

min. 1st quantile median mean 3rd quantile max.

8.00 41.25 65.50 76.88 97.00 234.00

Table 3.3: MLE’s and standard errors for the plasma ferritin data

MLE

Distribution 𝛼̂ 𝛽 𝜆̂

Fr(𝛼,𝛽) 46.800 (2.301) 1.520 (0.073) -
EF(𝛼,𝛽,𝜆) 304.983 (133.421) 0.652 (0.086) 10.783 (4.547)
MOF(𝛼,𝛽,𝜆) 11.224 (2.747) 2.758 (0.162) 122.932 (93.599)
MF(𝛼,𝛽,𝜆) 181.980 (71.163) 0.704 (0.116) 0.017 (0.002)
EW(𝛼,𝛽,𝜆) 24.970 (12.537) 0.812 (0.167) 5.840 (3.174)

Table 3.4: Goodness-of-fit statistics for the plasma ferritin data

Statistic

Distribution AIC BIC HQIC W* A*

Fr(𝛼̂,𝛽) 2113.022 2119.638 2115.699 0.410 2.739

EF(𝛼̂,𝛽,𝜆̂) 2066.946 2076.870 2070.961 0.035 0.274

MOF(𝛼̂,𝛽,𝜆̂) 2069.222 2079.147 2073.238 0.064 0.408

MF(𝛼̂,𝛽,𝜆̂) 2064.734 2074.659 2068.750 0.0250.0250.025 0.2220.2220.222

EW(𝛼̂,𝛽,𝜆̂) 2063.6472063.6472063.647 2073.5722073.5722073.572 2067.6632067.6632067.663 0.032 0.244

Since the Fréchet distribution is a submodel of the MF distribution, a comparison
between them can be conducted by considering the AIC, BIC and HQIC statistics. How-
ever, since the EW, EF, MOF and MF distributions are non-nested models, a comparison
among them is more appropriate by considering the W* and A* statistics. The figures
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in Table 3.4 reveal that the MF distribution has the smallest values of the W* and A*
statistics among the fitted models and the smaller values of all statistics comparatively
with the Fréchet distribution. Therefore, we can conclude that the MF distribution gives
the best fit to the current data. The plots in Figure 3.6 display the Fréchet, EW, MOF,
EF and MF estimated densities. Based on these plots, it is possible to assess the overall
best fit of the MF and EW distributions.

A graphical analysis of the quality of fit can be assessed by means of Q-Q plots.
So, in Figure 3.7 are given Q-Q plots for all current distributions. From these plots,
we can observe that the MF distribution gives the best fit to the current data among the
Fréchet, EF and MOF distributions, and a fit similar to that given by the EW distri-
bution. Figure 3.7(a) reveal a less precise fit of the MF distribution in the tail, which
can be explained by a more heavier tail comparatively with the Fréchet distribution (see
Figure 3.6). This graphical analysis is consistent with the quantitative analysis given by
the goodness-of-fit statistics listed in Table 3.4.
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Figure 3.6: The Fréchet, EW, MOF, EF and MF estimated densities for the plasma
ferritin data.

To analyze how significant is the additional parameter 𝜆 of the MF distribution for
modeling the current data, we use the LR statistic, as discussed in Section 3.9, for
testing the Fréchet model versus the MF model. The results are given in Table 3.5. We
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note that the rejection of the null hypothesis is significant. So, we have evidence of
the potential need for the inclusion of the parameter 𝜆 in the Fréchet distribution for
modeling the current data.

Table 3.5: LR test for the plasma ferritin data

Models Hypoteses LR statistic 𝑝-value

Fréchet vs MF ℋ0: 𝜆 = 0 vs ℋ1: 𝜆 > 0 50.288 1.33× 10−12

3.12 Conclusions and final remarks

In this chapter, we introduce a new three-parameter model, called the modified Fréchet
(MF) distribution, to extend the Fréchet distribution. Using the Lambert W function, we
study some of its structural properties. We can generate random variates from the new
distribution using this function. Some plots for the density and hazard rate functions
are obtained. In addition, we also obtain explicit expressions for the quantile function,
ordinary moments, generating function and Bonferroni and Lorenz curves for the new
distribution. Moments of the order statistics also are investigated. Maximum likelihood
estimates for complete samples are considered and we perform a Monte Carlo simula-
tion in order to evaluate the behavior of these estimates in finite samples. We compare
the performance of the new model with other extended Fréchet distributions including
the exponentiated Weibull distribution by using the classical goodness-of-fit statistics
and Q-Q plots. The results confirm that the new distribution can be appropriated for
applications to real data sets.
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(a) Fréchet vs MF
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(b) EF vs MF
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(c) MOF vs MF
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(d) EW vs MF

Figure 3.7: Q-Q plots for the Fréchet, EF, MOF and EW distributions (solid circles) vs
Q-Q plot for the MF distribution (open circles) for the plasma ferritin data.



Chapter 4
The beta Marshall-Olkin Lomax
distribution

Resumo

A composição de distribuições é o método mais comum para obter famílias de dis-
tribuições mais flexíveis. Considerando a família beta Marshall-Olkin generalizada,
introduzimos uma nova distribuição de quatro parâmetros, denominada beta Marshall-
Olkin Lomax, para aplicações de tempo de vida. Obtemos algumas de suas propriedades
com base nas distribuições Lomax e exp-Lomax. Realizamos um estudo de simulação
para ilustrar o desempenho das estimativas de máxima verossimilhança. Uma apli-
cação para dados não censurados é considerada e usamos estatísticas de bondade de
ajuste para avaliar a flexibilidade da nova distribuição, provando empiricamente que
este modelo pode ser apropriado para aplicações de tempo de vida.

Palavras-chave: Análise de tempo de vida, distribuições generalizadas, distribuição
Lomax, família beta-G, família Marshall-Olkin estendida.

Abstract

Compounding distributions is the most common method in lifetime analysis to obtain
more flexible families of distributions. Based on the beta Marshall-Olkin generated
family, we present a new four-parameter distribution, so-called the beta Marshall-Olkin
Lomax, for lifetime applications. We obtain some of its properties from those of well-
established distributions. We provide a simulation study to illustrate the performance
of the maximum likelihood estimates. An application to uncensored data is carried out

78
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and we use some goodness-of-fit statistics to study the flexibility of the new distribution,
proving empirically that this model can be appropriate for lifetime applications.

Keywords: Beta-G family, generalized distributions, lifetime analysis, Lomax distri-
bution, Marshall-Olkin extended family.

4.1 Introduction

In applications involving lifetime models such as survival analysis, demography, reli-
ability, actuarial study and others, the distributions with positive real supports play a
fundamental role. Because of this, in recent years, there is a growing interest in con-
structing new distributions to model ageing phenomena (LAI et al., 2006; LAI, 2013).
The method that has received most attention by researchers to generate new models
is that one by compounding existing distributions, usually referred as generalized 𝐺

families of distributions (TAHIR; NADARAJAH, 2015). The principal reason for this
is the ability of these generalized distributions to be more flexible than the parent dis-
tribution to provide better fits to skewed data and good control of the tails (PESCIM
et al., 2010). The second reason is the powerful computational and analytical facil-
ities available in several software packages, which facilitate handling and computing
complex mathematical expressions. Some of the generalized 𝐺 families best known
are: the Marshall-Olkin extended (MOE) family (MARSHALL; OLKIN, 1997), the
exponentiated-generated (exp-G) families (GUPTA et al., 1998; CORDEIRO et al.,
2013), the beta-generated (beta-G) family (EUGENE et al., 2002), the Kumaraswamy-
generated (Kw-G) family (CORDEIRO; DE CASTRO, 2011), the gamma-generated
(gamma-G) families (ZOGRAFOS; BALAKRISHNAN, 2009; RISTIĆ; BALAKRISH-
NAN, 2012; NADARAJAH et al., 2015) and the McDonald-generated (Mc-G) fami-
ly (ALEXANDER et al., 2012). A detailed compilation of these families is given
by Tahir & Nadarajah (2015).

In this chapter, we adopt the beta Marshall-Olkin generated (BMO-G) family pro-
posed by Alizadeh et al. (2015) to define the new beta Marshall-Olkin Lomax (BMOL)
distribution obtained by taking the Lomax distribution (LOMAX, 1954) as the parent
model. Given that the proposed distribution has positive real support, our objective is
to define a wide flexible distribution for real lifetime applications.

The chapter unfolds as follows. In Section 4.2, we describe some preliminaries and
introduce the BMOL distribution. In Section 4.3, we plot its density and hazard rate
functions for some parameter values. In Section 4.4, we obtain an expansion for the
BMOL density function as a linear combination of exp-Lomax and Lomax densities.
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In Sections 4.5 - 4.10, we present explicit expressions for the quantile function (qf),
moments, generating function, mean deviations, Bonferroni and Lorenz curves, Shan-
non entropy and order statistics. Section 4.11 is devoted to the maximum likelihood
estimates (MLE’s) for complete samples and, in Section 4.12, we carry out a simulation
study to study the performance of these estimates. In Section 4.13, we consider an ap-
plication of the BMOL distribution and compare it with others related distributions and
with the Exponentiated Weibull (EW) distribution (MUDHOLKAR; SRIVASTAVA,
1993) based on some goodness-of-fit statistics. Finally, Section 4.14 concludes the
chapter.

4.2 The new distribution

Marshall & Olkin (1997) pioneered a method of introducing an additional parameter
to a distribution. If 𝐺(𝑥; 𝜉) is the parent distribution with parameter vector 𝜉, then the
cumulative distribution function (cdf) given by

𝐹 (𝑥; 𝑐,𝜉) =
𝐺(𝑥; 𝜉)

𝑐+ (1 − 𝑐)𝐺(𝑥; 𝜉)
, 𝑐 > 0, (4.1)

defines a new distribution with an extra shape parameter 𝑐. As commented by the au-
thors, new parameters generally are introduced in order to expand families and add
flexibility.

The cdf of the beta-G family is defined by

𝐹 (𝑥; 𝑎,𝑏,𝜉) =
𝐵(𝐺(𝑥; 𝜉); 𝑎,𝑏)

𝐵(𝑎,𝑏)

=
1

𝐵(𝑎,𝑏)

∫︁ 𝐺(𝑥;𝜉)

0

𝑤𝑎−1(1 − 𝑤)𝑏−1 𝑑𝑤, 𝑎,𝑏 > 0, (4.2)

where𝐵(𝑎,𝑏) =
∫︀ 1

0
𝑤𝑎−1(1−𝑤)𝑏−1 𝑑𝑤 is the beta function and𝐵(𝑧; 𝑎,𝑏) =

∫︀ 𝑧

0
𝑤𝑎−1(1−

𝑤)𝑏−1 𝑑𝑤 is the incomplete beta function. The generated distribution 𝐹 (𝑥; 𝑎,𝑏,𝜉) has
two extra shape parameters 𝑎 and 𝑏. The beta 𝐺 family was introduced by Eugene et al.

(2002), who studied the properties of the beta-normal distribution. If the parent 𝐺(𝑥; 𝜉)

in (4.2) is the Lomax distribution, we obtain the beta-Lomax distribution as defined
by Rajab et al. (2013).

A generalization of these concepts, introduced by Alzaatreh et al. (2013), follows
by considering the 𝑇−𝑋 method. Let 𝑅(𝑥;𝛾) be a cdf with support [𝑑,𝑒] and den-
sity 𝑟(𝑥;𝛾). For a given parent distribution 𝐺(𝑥; 𝜉), let 𝑊 (·) be a function satisfying
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the following properties:⎧⎪⎨⎪⎩
𝑊 [𝐺(𝑥; 𝜉)] ∈ [𝑑,𝑒],

𝑊 [𝐺(𝑥; 𝜉)] is differentiable and monotonically non-decreasing,
lim𝑥→−∞𝑊 [𝐺(𝑥; 𝜉)] = 𝑑, lim𝑥→∞𝑊 [𝐺(𝑥; 𝜉)] = 𝑒.

Then, the cdf

𝐹 (𝑥; 𝛿,𝛾,𝜉) =

∫︁ 𝑊 [𝐺(𝑥;𝜉)]

𝑑

𝑟(𝑡;𝛾) 𝑑𝑡 (4.3)

defines a new distribution, where the link function 𝑊 (·) = 𝑊 (·; 𝛿) possibly depends
on a parameter vector 𝛿. We say that the distribution 𝑅(𝑥;𝛾) is ‘transformed’ by the
‘transformer’ 𝑊 [𝐺(𝑥; 𝜉)].

Following this idea, Alizadeh et al. (2015) introduced the BMO-G family by con-
sidering in (4.3) the function 𝑊 (𝑧) = 𝑧/[𝑐 + (1 − 𝑐)𝑧], 𝑐 > 0, and the beta distri-
bution as the ‘transformed’ distribution 𝑅(𝑥;𝛾). Notice that, in this case, the ‘trans-
former’ 𝑊 [𝐺(𝑥; 𝜉)] is given by (4.1).

In this chapter, we study the BMOL distribution by considering the parent 𝐺(𝑥; 𝜉)

in (4.3) as the Lomax distribution (LOMAX, 1954), which has cdf given by

𝐺(𝑥;𝛼,𝜆) = 1 −
(︁

1 +
𝑥

𝜆

)︁−𝛼

, 𝑥 ≥ 0, 𝛼 > 0, 𝜆 > 0 (4.4)

and probability density function (pdf)

𝑔(𝑥;𝛼,𝜆) =
𝛼

𝜆

(︁
1 +

𝑥

𝜆

)︁−(𝛼+1)

. (4.5)

For the sake of simplicity, we will write sometimes the Lomax distribution with cdf
𝐺(𝑥) and pdf 𝑔(𝑥), respectively, without explicit mention to the parameters 𝛼 and 𝜆.

It is clear that a generalized 𝐺 distribution has more parameters than the parent
distribution. Generally, the use of four parameters should be sufficient for most practical
purposes. In addition, notice that if 𝑋 ∼ Lomax(𝛼,𝜆), then 𝑋/𝜆 ∼ Lomax(𝛼,1)

and, consequently, 𝜆 is just a scale parameter. Henceforth, we consider the BMOL
distribution with only four parameters by taking, without loss of generality, 𝜆 = 1 in
equations (4.4) and (4.5). Thus, if 𝜃 = (𝑎,𝑏,𝑐,𝛼)⊤ is the parameter vector, we define the
BMOL cdf by

𝐹 (𝑥;𝜃) =
𝐵(𝑊 [𝐺(𝑥)]; 𝑎,𝑏)

𝐵(𝑎,𝑏)
=

1

𝐵(𝑎,𝑏)

∫︁ 𝑊 [𝐺(𝑥)]

0

𝑤𝑎−1(1 − 𝑤)𝑏−1 𝑑𝑤, (4.6)
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where 𝑊 [𝐺(𝑥)] is given by (4.1). From equations (4.1) and (4.4) (with 𝜆 = 1), we
obtain

𝑊 [𝐺(𝑥)] =
1 − (1 + 𝑥)𝛼

1 − 𝑐− (1 + 𝑥)𝛼
. (4.7)

The BMOL pdf follows from (4.6) as

𝑓(𝑥;𝜃) =
1

𝐵(𝑎,𝑏)
𝑔(𝑥)𝑤[𝐺(𝑥)] {𝑊 [𝐺(𝑥)]}𝑎−1 {1 −𝑊 [𝐺(𝑥)]}𝑏−1 , (4.8)

where 𝑤(𝑧) = 𝑊 ′(𝑧) = 𝑐/ [𝑐+ (1 − 𝑐)𝑧]2. Thus, we obtain the BMOL pdf from (4.4),
(4.7) and (4.8) as

𝑓(𝑥;𝜃) =
𝛼 𝑐𝑏 (1 + 𝑥)−𝑏𝛼−1 [︀1 − (1 + 𝑥)−𝛼]︀𝑎−1{︀
𝑐+ (1 − 𝑐)

[︀
1 − (1 + 𝑥)−𝛼]︀}︀𝑎+𝑏

𝐵(𝑎,𝑏)
. (4.9)

Hereafter, a random variable𝑋 with pdf (4.9) will be denoted by𝑋 ∼ BMOL(𝑎,𝑏,𝑐,𝛼).
In lifetime analysis, a very useful function is the hazard rate function (hrf) 𝑟(𝑥).

Therefore, the hrf of 𝑋 is given by

𝑟(𝑥) =
𝛼 𝑐𝑏 (1 + 𝑥)−𝑏𝛼−1 [︀1 − (1 + 𝑥)−𝛼]︀𝑎−1{︀

𝑐+ (1 − 𝑐)
[︀
1 − (1 + 𝑥)−𝛼]︀}︀𝑎+𝑏

[𝐵(𝑎,𝑏) −𝐵(𝑊 [𝐺(𝑥)],𝑎,𝑏)]
. (4.10)

A random variable𝑋 with pdf (4.9) is easily simulated as follows: if𝑈 ∼ Beta(𝑎,𝑏),
then

𝑋 = 𝑄(𝑈) =

[︃(︂
1 − (1 − 𝑐)𝑈

1 − 𝑈

)︂1/𝛼

− 1

]︃
∼ BMOL(𝑎,𝑏,𝑐,𝛼).

For specific values of the parameters 𝑎, 𝑏 and 𝑐, some known sub-models of the
BMOL distribution are given in Table 4.1.

4.3 Shapes of the density and hazard rate functions

The shapes of the pdf (4.9) can be described analytically by examining the roots of
the equation 𝑓 ′(𝑥) = 0 and analyzing its limits in (4.9) when 𝑥 → 0 or 𝑥 → ∞.
Cleary, since 𝑓(𝑥) ≥ 0 is integrable, then lim𝑥→∞ 𝑓(𝑥) = 0. The behavior of 𝑓(𝑥)

when 𝑥 → 0 is governed by the parameter 𝑎, which is inherited from the properties of
the beta distribution. For 𝑎 ≤ 1, we have that 𝑓(𝑥) is convex and strictly decreasing.
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Table 4.1: Some BMOL sub-models. Lo: Lomax, MOL: Marshall-Olkin Lomax, KwL:
Kumaraswamy Lomax, BL: beta Lomax

𝑎 𝑏 𝑐 Model Reference

1 1 1 Lo(𝛼,1) Lomax (1954)

1 1 - MOL(𝑐,𝛼,1) Ghitany et al. (2007)

1 - 1 KwL(1,𝑏,𝛼,1) Shams (2013)

- - 1 BL(𝑎,𝑏,𝛼,1) (with 𝜇 = 0) Rajab et al. (2013)

For 𝑎 = 1, lim𝑥→0 𝑓(𝑥) = 𝑏 𝛼/𝑐 and, for 𝑎 < 1, lim𝑥→0 𝑓(𝑥) = ∞. For 𝑎 > 1,
𝑓(0) = 0 and it is unimodal with mode at

𝑥0 = − 1 +

{︃
𝐴𝑎,𝑏,𝑐,𝛼 +

[︀
𝐴2

𝑎,𝑏,𝑐,𝛼 − 4 (𝑐− 1) (𝛼− 1) (𝑏 𝛼 + 1)
]︀1/2

2 (𝑏 𝛼 + 1)

}︃1/𝛼

,

where 𝐴𝑎,𝑏,𝑐,𝛼 = 2− 𝑐− 𝛼+ 𝑏 𝛼+ 𝑎 𝑐 𝛼. All parameters allow extensive control on the
right tail, providing, when 𝑎 > 1, more light or heavy tails, according to the parameters
decrease or increase, respectively, and conversely when 𝑎 ≤ 1. Some plots in Figure 4.1
display possible shapes of the pdf for selected parameter values. These plots confirm
the above analysis.

The corresponding hrf can have the classical shapes such as decreasing or unimodal,
as shown in Figure 4.2. Therefore, the new distribution can be appropriate for different
applications in lifetime analysis.

4.4 Useful representation

Using the generalized binomial expansion, Alizadeh et al. (2015) revealed that the cdf
(4.6) admits the following power series

𝐹 (𝑥) =
∞∑︁
𝑘=0

𝑠𝑘𝐺
𝑘(𝑥), (4.11)

where 𝐺(𝑥) is the parent cdf (4.4) (with 𝜆 = 1) and, for 𝑘 ≥ 0,

𝑠𝑘 =
∞∑︁

𝑖,𝑗=0

∞∑︁
𝑙=𝑘

(−1)𝑖+𝑙+𝑘(1 − 𝑐)𝑖
(︂
𝑏− 1

𝑖

)︂(︂
−𝑎− 𝑖

𝑗

)︂(︂
𝑎+ 𝑖+ 𝑗

𝑙

)︂(︂
𝑙

𝑘

)︂
𝑐𝑎+𝑖+𝑗 (𝑎+ 𝑖)𝐵(𝑎,𝑏)

. (4.12)



4.4. Useful representation 84

0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

x

p
d
f

a = 1.0, b = 0.5 and c = 1.0
a = 0.2, b = 2.0 and c = 3.0
a = 0.5, b = 4.0 and c = 5.0
a = 0.8, b = 6.0 and c = 7.0

(a) 𝛼 = 1.0

0 1 2 3 4 5

0
.0

0
.5

1
.0

1
.5

x

p
d
f

a = 1.5 and α = 0.8
a = 2.0 and α = 1.5
a = 2.5 and α = 2.0
a = 3.0 and α = 2.5

(b) 𝑏 = 2.0, 𝑐 = 1.0

0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

x

p
d
f

c = 3.0 and α = 5.0
c = 2.0 and α = 4.0
c = 1.5 and α = 3.0
c = 1.0 and α = 2.0

(c) 𝑎 = 7.0, 𝑏 = 0.5

0 5 10 15 20 25

0
.0

0
0
.0

5
0
.1

0
0
.1

5

x

p
d
f

b = 0.5 and c = 1.0
b = 1.5 and c = 2.5
b = 2.5 and c = 4.5
b = 4.0 and c = 7.5

(d) 𝑎 = 15.0, 𝛼 = 1.5

Figure 4.1: Plots of the BMOL pdf (4.9) for selected parameters.
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Figure 4.2: Plots of the BMOL hrf (4.10) for selected parameters.
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We note that (4.12) is valid only for 𝑐 > 1, it does not converge for 𝑐 < 1 and it is not
applicable for 𝑐 = 1. Differentiating (4.11) term by term, we obtain

𝑓(𝑥) =
∞∑︁
𝑘=0

𝑠𝑘+1 ℎ𝑘+1(𝑥), (4.13)

where ℎ𝑘+1(𝑥) = (𝑘 + 1) 𝑔(𝑥)𝐺𝑘(𝑥) denotes the exp-G density function with power
parameter 𝑘 + 1. Therefore, from (4.13), several properties of the new model can be
derived from those exp-G properties (MUDHOLKAR; SRIVASTAVA, 1993; MUD-
HOLKAR et al., 1995; GUPTA et al., 1998; GUPTA; KUNDU, 2001; CARRASCO et

al., 2008; CORDEIRO et al., 2011).
It is possible to go a step further in (4.11). Using the binomial expansion in (4.11)

gives

𝐹 (𝑥) =
∞∑︁
𝑘=0

𝑘∑︁
𝑗=0

(−1)𝑗
(︂
𝑘

𝑗

)︂
𝑠𝑘 (1 + 𝑥)−𝑗𝛼.

By exchanging the indices 𝑗 and 𝑘 in the sums, we can write

𝐹 (𝑥) =
∞∑︁
𝑗=0

∞∑︁
𝑘=𝑗

(−1)𝑗
(︂
𝑘

𝑗

)︂
𝑠𝑘 (1 + 𝑥)−𝑗𝛼. (4.14)

Finally, differentiating (4.14) term by term, we obtain

𝑓(𝑥) =
∞∑︁
𝑗=0

𝑝𝑗 𝑔(𝑥; (𝑗 + 1)𝛼,1), (4.15)

where 𝑔(𝑥; (𝑗 + 1)𝛼,1) is given in (4.5) and, for 𝑗 = 0,1, . . .,

𝑝𝑗 =
∞∑︁

𝑘=𝑗+1

(−1)𝑗
(︂

𝑘

𝑗 + 1

)︂
𝑠𝑘. (4.16)

From equation (4.15), we note that 𝑓(𝑥) is given by a linear combination of Lomax
densities. Therefore, several properties of the BMOL distribution can be obtained from
those of the Lomax distribution (LOMAX, 1954).

4.5 Quantile function

Let 𝑄𝑎,𝑏(𝑧) denote the qf of the beta distribution with parameters 𝑎 and 𝑏. Then, the qf
of the BMOL distribution is given by
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𝑄(𝑧) =

[︂
1 − (1 − 𝑐)𝑄𝑎,𝑏(𝑧)

1 −𝑄𝑎,𝑏(𝑧)

]︂1/𝛼
− 1. (4.17)

An expansion up to third order about 𝑧 = 0 for the beta qf is given by

𝑄𝑎,𝑏(𝑧) =
3∑︁

𝑖=1

𝑞𝑖 𝑧
𝑖/𝑎 + 𝒪(𝑧4/𝑎),

where 𝑞𝑖 = 𝑑𝑖 [𝑎𝐵(𝑎,𝑏)]𝑖/𝑎, 𝑖 = 1,2,3, with 𝑑1 = 1,

𝑑2 =
𝑏− 1

𝑎+ 1
, 𝑑3 =

(𝑏− 1) (𝑎2 + 3𝑎𝑏− 𝑎+ 5𝑏− 4)

2(𝑎+ 1)2(𝑎+ 2)
.

The skewness and kurtosis measures are determined by 𝛼3 = 𝜇3/𝜎
3 and 𝛼4 =

𝜇4/𝜎
4, respectively, where 𝜇𝑗 is the 𝑗-th central moment and 𝜎 is the standard deviation.

For some generalized distributions obtained by the 𝑇−𝑋 method, as noted by Alzaatreh
et al. (2013), it could be difficult to determine the third and fourth moments. Alternative
measures for the skewness and kurtosis based on the qf are sometimes more appropriate.
The measure of skewness 𝑆 of Bowley and the measure of kurtosis 𝐾 of Moors are
defined by

𝑆 =
𝑄(6/8) +𝑄(2/8) − 2𝑄(4/8)

𝑄(6/8) −𝑄(2/8)
, (4.18)

𝐾 =
𝑄(7/8) −𝑄(5/8) +𝑄(3/8) −𝑄(1/8)

𝑄(6/8) −𝑄(2/8)
. (4.19)

These measures are more robust and they exist even for distributions without moments.
The plots in Figure 4.3 display the skewness (4.18) and kurtosis (4.19) as functions

of the parameter 𝑎 for some values of the parameters 𝑏, 𝑐 and 𝛼. Note that, as pointed
in Section 4.3, the BMOL pdf does not have mode when 𝑎 ≤ 1, which implies a greater
skewness for these values of the parameter 𝑎, as ilustrated in Figure 4.3(a). Similary,
note that the skewness increases when 𝑏 > 1, obtaining negative values when 𝑏,𝛼 > 2.
In addition, note that the kurtosis decreases when the values of the parameters 𝑏 and 𝛼
increases, as ilustrated in Figures 4.3(b), 4.1(c) and 4.1(d).
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Figure 4.3: Plots of the skewness and kurtosis of the BMOL distribution for selected
parameters (𝑐 = 2.0).

4.6 Moments

The moments of 𝑋 can be expressed from the (𝑟,𝑘)-th probability weighted moment
(PWM) of a random variable 𝑌 with parent cdf 𝐺(𝑥), which is defined, for 𝑟,𝑘 =

0,1, . . ., by

𝜔𝑟,𝑘 = E
[︀
𝑌 𝑟𝐺𝑘(𝑌 )

]︀
=

∫︁ ∞

0

𝑦𝑟𝐺𝑘(𝑦) 𝑔(𝑦) 𝑑𝑦.

Setting 𝑢 = 𝐺(𝑦), we obtain

𝜔𝑟,𝑘 =

∫︁ 1

0

𝑄𝑟
𝐺(𝑢)𝑢𝑘 𝑑𝑢, (4.20)

where 𝑄𝐺(𝑢) is the qf of 𝐺(𝑥).
The 𝑟-th ordinary moment of 𝑋 , with 𝑟 ∈ N, follows from (4.13), for 𝑐 > 1, as

𝜇′
𝑟 =

∞∑︁
𝑘=0

∫︁ ∞

0

𝑥𝑟𝑠𝑘+1 ℎ𝑘+1(𝑥) 𝑑𝑥,

where it is possible to exchange the infinite sum and the integral using the dominated
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convergence theorem. By using (4.20) and ℎ𝑘+1(𝑥) = (𝑘 + 1) 𝑔(𝑥)𝐺𝑘(𝑥), we obtain

𝜇′
𝑟 =

∞∑︁
𝑘=0

(𝑘 + 1) 𝑠𝑘+1

∫︁ 1

0

𝑄𝑟
𝐺(𝑢)𝑢𝑘 𝑑𝑢 =

∞∑︁
𝑘=0

(𝑘 + 1) 𝑠𝑘+1 𝜔𝑟,𝑘. (4.21)

Equation (4.21) reveals that the moments of the BMOL distribution can be expressed
as an infinite weighted sum of the parent PWMs.

If 𝐺(𝑥) is the Lomax cdf (with 𝜆 = 1), we obtain, using the binomial expansion,

𝑄𝑟
𝐺(𝑧) =

[︂
1

(1 − 𝑧)1/𝛼
− 1

]︂𝑟
=

𝑟∑︁
𝑗=0

(︂
𝑟

𝑗

)︂
(−1)𝑟+𝑗

(1 − 𝑧)𝑗/𝛼

and therefore, from equation (4.20),

𝜔𝑟,𝑘 =
𝑟∑︁

𝑗=0

(−1)𝑟+𝑗

(︂
𝑟

𝑗

)︂∫︁ 1

0

𝑢𝑘

(1 − 𝑢)𝑗/𝛼
𝑑𝑢. (4.22)

As a result, from (4.21) and (4.22), we obtain that 𝜇′
𝑟 < ∞ for 𝑟 < 𝛼 and 𝜇′

𝑟 = ∞ for
0 < 𝛼 ≤ 𝑟, a condition that also holds for the Lomax distribution.

We can express the 𝑟-th ordinary moment of 𝑋 as a linear combination of the 𝑟-
th ordinary moments of Lomax random variables. In fact, for 𝑗 = 0,1, . . ., let 𝛼𝑗 =

(𝑗 + 1)𝛼. By applying the dominated convergence theorem and using equation (4.15),
we can write, for 𝑐 > 1,

𝜇′
𝑟 = E(𝑋𝑟) =

∞∑︁
𝑗=0

𝑝𝑗

∫︁ ∞

0

𝑥𝑟𝑔(𝑥;𝛼𝑗,1) 𝑑𝑥 =
∞∑︁
𝑗=0

𝑝𝑗 E(𝑌 𝑟
𝑗 ),

where 𝑌𝑗 ∼ Lomax(𝛼𝑗,1).
From the equality E(𝑌 𝑟

𝑗 ) = 𝛼𝑗 Γ(𝑟+1)Γ(𝛼𝑗−𝑟)/Γ(𝛼𝑗+1) (LEMONTE; CORDEIRO,
2013), we obtain

𝜇′
𝑟 = Γ(𝑟 + 1)

∞∑︁
𝑗=0

𝑝𝑗 𝛼𝑗
Γ(𝛼𝑗 − 𝑟)

Γ(𝛼𝑗 + 1)
, 𝑟 < 𝛼. (4.23)

Equations (4.21) and (4.23) are the main results of this section. However, the mo-
ments of 𝑋 can be determined from (4.23) more easily than from (4.21).
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4.7 Generating function

A formula for the moment generating function (mgf) 𝑀(𝑡) = E(etX) of 𝑋 follows
from (4.13) as

𝑀(𝑡) =
∞∑︁
𝑘=0

(𝑘 + 1) 𝑠𝑘+1 𝜌𝑘(𝑡), (4.24)

where

𝜌𝑘(𝑡) =

∫︁ 1

0

exp [𝑡𝑄𝐺(𝑢)] 𝑢𝑘 𝑑𝑢 =

∫︁ 1

0

exp
{︀
−𝑡
[︀
1 − (1 − 𝑢)−1/𝛼

]︀}︀
𝑢𝑘 𝑑𝑢.

We can obtain an expansion for 𝜌𝑘(𝑡), 𝑡 ≥ 0, using the gamma and the upper in-
complete gamma functions, which are defined, respectively, as

Γ(𝜐) =

∫︁ ∞

0

𝑥𝜐−1 e−𝑥 𝑑𝑥, Γ(𝜐,𝑧) =

∫︁ ∞

𝑧

𝑥𝜐−1 e−𝑥 𝑑𝑥, 𝜐 ∈ R, 𝑧 ≥ 0. (4.25)

In fact, setting 𝑤 = 1− (1− 𝑢)−1/𝛼, we have 𝑑𝑢 = −𝛼 (1−𝑤)−𝛼−1 𝑑𝑤 and, therefore,

𝜌𝑘(𝑡) = −𝛼
∫︁ 1

0

e−𝑡𝑤
[︀
1 − (1 − 𝑤)−𝛼

]︀𝑘
(1 − 𝑤)−𝛼−1 𝑑𝑤.

Using the binomial expansion, we obtain

[︀
1 − (1 − 𝑤)−𝛼

]︀𝑘
=

𝑘∑︁
𝑗=0

(−1)𝑗
(︂
𝑘

𝑗

)︂
(1 − 𝑤)−𝑗𝛼,

which leads to

𝜌𝑘(𝑡) = −𝛼
𝑘∑︁

𝑗=0

(−1)𝑗
(︂
𝑘

𝑗

)︂∫︁ 1

0

e−𝑡𝑤 (1 − 𝑤)−𝛼𝑗−1 𝑑𝑤, (4.26)

where 𝛼𝑗 = (𝑗 + 1)𝛼. We have 𝑤 ∈ (0,1) from (4.26) and, therefore, we can expand
(1 − 𝑤)−𝛼𝑗−1 as

(1 − 𝑤)−𝛼𝑗−1 =
∞∑︁
𝑟=0

(−1)𝑟
(︂
−𝛼𝑗 − 1

𝑟

)︂
𝑤𝑟,

where
(︀−𝛼𝑗−1

𝑟

)︀
= (−1)𝑟(𝛼𝑗 + 1)(𝛼𝑗 + 2) . . . (𝛼𝑗 + 𝑟)/𝑟!. Thus, from (4.25) and (4.26),
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we obtain

𝜌𝑘(𝑡) = 𝛼
𝑘∑︁

𝑗=0

∞∑︁
𝑟=0

(−1)𝑟+𝑗−1

(︂
𝑘

𝑗

)︂(︂
−𝛼𝑗 − 1

𝑟

)︂
𝑡−𝑟−1 [Γ(𝑟 + 1) − Γ(𝑟 + 1,𝑡)] . (4.27)

Equations (4.24) and (4.27) are the main results of this section.

4.8 Mean deviations and Bonferroni and Lorenz curves

As before, for 𝑗 = 0,1, . . . , let 𝑌𝑗 ∼ Lomax(𝛼𝑗,1). The mean deviations of 𝑋 about
the mean, 𝛿1 = E|𝑋 −𝜇′

1|, and about the median, 𝛿2 = E|𝑋 −𝑀 |, can be expressed as

𝛿1 = 2𝜇′
1 𝐹 (𝜇′

1) − 2𝑚
(1)
𝑋 (𝜇′

1) and 𝛿2 = 𝜇′
1 − 2𝑚

(1)
𝑋 (𝑀),

where 𝜇′
1 is the first ordinary moment of 𝑋 given by (4.23), 𝑚(1)

𝑋 (𝑧) =
∫︀ 𝑧

0
𝑥𝑓(𝑥) 𝑑𝑥

denotes the first incomplete moment of 𝑋 , 𝑀 = 𝑄(0.5) is the median of 𝑋 and 𝑄(·)
is given by (4.17). The mean deviations 𝛿1 and 𝛿2 are used frequently as dispersion
measures.

Using (4.15), we can write

𝑚
(1)
𝑋 (𝑧) =

∞∑︁
𝑗=0

𝑝𝑗

∫︁ 𝑧

0

𝑥 𝑔(𝑥;𝛼𝑗,1) 𝑑𝑥 =
∞∑︁
𝑗=0

𝑝𝑗 𝑚
(1)
𝑌𝑗

(𝑧), (4.28)

where 𝑚(1)
𝑌𝑗

=
∫︀ 𝑧

0
𝑥 𝑔(𝑥;𝛼𝑗,1) 𝑑𝑥 denotes the first incomplete moment of 𝑌𝑗 and 𝑝𝑗 is

given by (4.16). For computing 𝛿1 and 𝛿2, we use (4.6), (4.23) and (4.28).
The incomplete moments can be applied to obtain the Bonferroni and Lorenz curves,

which are useful in several areas. The Bonferroni and Lorenz curves are defined, re-
spectively, by

𝐵(𝜋) =
𝑚

(1)
𝑋 (𝑞)

𝜋𝜇′
1

and 𝐿(𝜋) =
𝑚

(1)
𝑋 (𝑞)

𝜇′
1

,

where 𝑞 = 𝑄(𝜋) is evaluated from (4.17) for 0 < 𝜋 < 1.

4.9 Entropy

Entropy is a measure of disorder or uncertainty. Two variants of entropy are generally
used, the Shannon and Rényi entropies. The latter is a generalization of the first.
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The Shannon entropy of a random variable 𝑋 is defined by

𝜂𝑋 = E𝑋 {− log[𝑓(𝑋)]} = −
∫︁
𝑠𝑢𝑝𝑝(𝑓)

log[𝑓(𝑥)] 𝑑𝐹 (𝑥),

where 𝐹 (𝑥) is the cdf of 𝑋 and 𝑠𝑢𝑝𝑝(𝑓) indicates the support of the density func-
tion 𝑓(𝑥).

Considering that 𝑊 [𝐺(𝑥)] is an absolutely continuous distribution with density
𝑔(𝑥)𝑤[𝐺(𝑥)], where 𝐺(𝑥) is the parent distribution and 𝑤(𝑧) = 𝑊 ′(𝑧) (see Sec-
tion 4.2), we have

−E𝑋{log (𝑊 [𝐺(𝑋)])} = 𝜉(𝑎,𝑏),

−E𝑋{1 − log (𝑊 [𝐺(𝑋)])} = 𝜉(𝑏,𝑎),

and

E𝑋{log (𝑤[𝐺(𝑋)])}+ E𝑋{log[𝑔(𝑋)]} − E𝑈{log[𝑤(𝑈)]} − E𝑈{log (𝑔[𝑄𝐺(𝑈)])} = 0,

where 𝜉(𝑎,𝑏) = − 𝜕
𝜕𝑎

log[𝐵(𝑎,𝑏)] = 𝜓(𝑎+𝑏)−𝜓(𝑎), 𝜓(·) denotes the digamma function
and 𝑈 ∼ Beta(𝑎,𝑏).

From the equalities 𝑤(𝑧) = 𝑐/[𝑐+ (1 − 𝑐)𝑧]2 and 𝑔(𝑄𝐺(𝑢)) = 𝛼(1 − 𝑢)(𝛼+1)/𝛼, we
obtain

E𝑈{log[𝑤(𝑈)]} = log 𝑐− 2E𝑈{log[𝑐+ (1 − 𝑐)𝑈 ]},

E𝑈{log(𝑔[𝑄𝐺(𝑈)])} = log𝛼 +
𝛼 + 1

𝛼
E𝑈 [log(1 − 𝑈)].

Further, we have

E𝑈{log(1 − 𝑈)} =
1

𝐵(𝑎,𝑏)

∫︁ 1

0

log(1 − 𝑢)𝑢𝑎−1 (1 − 𝑢)𝑏−1 𝑑𝑢

= − 𝜉(𝑏,𝑎),

E𝑈{log[𝑐+ (1 − 𝑐)𝑈 ]} =
1

𝐵(𝑎,𝑏)

∫︁ 1

0

log[𝑐+ (1 − 𝑐)𝑢]𝑢𝑎−1 (1 − 𝑢)𝑏−1 𝑑𝑢

= log 𝑐− 𝐼𝑎,𝑏,𝑐 3𝐹2(1,1,1 + 𝑎; 2,1 + 𝑎+ 𝑏;
𝑐− 1

𝑐
),

where 𝐼𝑎,𝑏,𝑐 = (𝑐−1)𝐵(1+𝑎,𝑏)
𝑐𝐵(𝑎,𝑏)

and 𝑝𝐹𝑞(𝑎1, . . . ,𝑎𝑝; 𝑏1, . . . ,𝑏𝑞; 𝑧) is the generalized hyperge-
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ometric function. Thus, we can write

𝜂𝑋 = log[𝐵(𝑎,𝑏)] + (𝑎− 1) 𝜉(𝑎,𝑏) +

(︂
𝑏− 1 +

𝛼 + 1

𝛼

)︂
𝜉(𝑏,𝑎) + log 𝑐− log𝛼

− 2 𝐼𝑎,𝑏,𝑐 3𝐹2

(︂
1,1,1 + 𝑎; 2,1 + 𝑎+ 𝑏;

𝑐− 1

𝑐

)︂
.

The Shannon entropy is relevant because it is related to other notions of entropy in
various areas such as probability theory, computer sciences, dynamical systems and
statistical physics.

4.10 Order statistics

Let 𝑋1, . . . ,𝑋𝑛 be a random sample of size 𝑛 from a distribution 𝐹 (𝑥). Then, the pdf
of the 𝑚-th order statistic, 𝑋(𝑚), is given by (SEVERINI, 2005, p. 218)

𝑓(𝑚)(𝑥) = 𝐾 𝐹𝑚−1(𝑥) [1 − 𝐹 (𝑥)]𝑛−𝑚𝑓(𝑥),

where 𝐾 = 𝑛!/[(𝑚− 1)! (𝑛−𝑚)!]. For 1 ≤ 𝑚 < 𝑛, we obtain

𝑓(𝑚)(𝑥) = 𝐾 𝑓(𝑥)
𝑛−𝑚∑︁
𝑗=0

(−1)𝑗
(︂
𝑛−𝑚

𝑗

)︂
𝐹𝑚+𝑗−1(𝑥).

Based on (4.11) and (4.12) and using an expansion for power series raised to pow-
ers (GRADSHTEYN; RYZHIK, 2007, p. 17), we have, for 𝑐 > 1,

𝐹𝑚+𝑗−1(𝑥) =

(︃
∞∑︁
𝑘=0

𝑠𝑘𝐺
𝑘(𝑥)

)︃𝑚+𝑗−1

=
∞∑︁
𝑘=0

𝑣𝑘𝐺
𝑘(𝑥),

where 𝐺(𝑥) is the parent distribution given in (4.4) (with 𝜆 = 1), 𝑣0 = 𝑠𝑚+𝑗−1
0 and,

for 𝑖 ≥ 1,

𝑣𝑖 =
1

𝑖 𝑠0

𝑖∑︁
𝑙=1

[(𝑚+ 𝑗)𝑙 − 𝑖] 𝑟𝑙 𝑠𝑖−𝑙.

Therefore, we obtain

𝑓(𝑚)(𝑥) = 𝐾𝑓(𝑥)
𝑛−𝑚∑︁
𝑗=0

∞∑︁
𝑘=0

(−1)𝑗
(︂
𝑛−𝑚

𝑗

)︂
𝑣𝑘𝐺

𝑘(𝑥),
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where the density 𝑓(𝑥) is given in (4.9). For 𝑛 = 𝑚, we have

𝑓(𝑛)(𝑥) = 𝐾 𝐹 𝑛−1(𝑥)𝑓(𝑥).

From (4.11) and (4.12), result

𝐹 𝑛−1(𝑥) =

(︃
∞∑︁
𝑘=0

𝑠𝑘𝐺
𝑘(𝑥)

)︃𝑛−1

=
∞∑︁
𝑘=0

𝑣𝑘𝐺
𝑘(𝑥),

where 𝑣0 = 𝑠𝑛−1
0 and, for 𝑖 ≥ 1,

𝑣𝑖 =
1

𝑖 𝑠0

𝑖∑︁
𝑙=1

(𝑛𝑙 − 𝑖) 𝑠𝑙 𝑣𝑖−𝑙.

Thus, we obtain

𝑓(𝑛)(𝑥) = 𝐾 𝑓(𝑥)
∞∑︁
𝑘=0

𝑣𝑘𝐺
𝑘(𝑥).

Alizadeh et al. (2015) proposed other expansion for 𝑓(𝑚)(𝑥), 1 ≤ 𝑚 < 𝑛, given by

𝑓(𝑚)(𝑥) =
∞∑︁

𝑟,𝑘=0

𝑝𝑟,𝑘 ℎ𝑟+𝑘+1(𝑥), (4.29)

where ℎ𝑟+𝑘+1(𝑥) denotes the exp-𝐺 density function with parameter 𝑟 + 𝑘 + 1,

𝑝𝑟,𝑘 =
𝑛! (𝑟 + 1) (𝑚− 1)! 𝑠𝑟+1

𝑟 + 𝑘 + 1

𝑛−𝑚∑︁
𝑗=0

(−1)𝑗 𝑣𝑗,𝑘
(𝑛− 𝑖− 𝑗)! 𝑗!

,

𝑠𝑟 is given in (4.12) for 𝑐 > 1 and 𝑣𝑗,𝑘 is determined recursively as 𝑣𝑗,0 = 𝑠𝑗+𝑚−1
0 and,

for 𝑘 ≥ 1,

𝑣𝑗,𝑘 =
1

𝑘 𝑠0

𝑘∑︁
𝑙=1

[(𝑗 +𝑚)𝑙 − 𝑘] 𝑠𝑙 𝑣𝑗,𝑘−𝑙.

Equation (4.29) reveals that, for 1 ≤ 𝑚 < 𝑛, the density function 𝑓(𝑚)(𝑥) of the 𝑚-th
order statistic 𝑋(𝑚) can be expressed as a linear mixture of exp-𝐺 densities. Therefore,
some structural properties of𝑋(𝑚) can be obtained from those of the exp-𝐺 distribution.
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4.11 Maximum Likelihood Estimation

Several approaches for parameter estimation were proposed in the statistical literature
but the maximum likelihood method is the most commonly employed. The MLEs enjoy
desirable properties for constructing confidence intervals. In this section, we estimate
the parameters of the BMOL distribution by maximum likelihood for complete data
sets. Let 𝑥 = (𝑥1, . . . ,𝑥𝑛)⊤ be a sample of size 𝑛 from 𝑋 ∼ BMOL(𝑎,𝑏,𝑐,𝛼) and
𝜃 = (𝑎,𝑏,𝑐,𝛼)⊤ the parameter vector. The log-likelihood for 𝜃, denoted by ℓ𝑓 (𝜃;𝑥), is
given by

ℓ𝑓 (𝜃;𝑥) = − 𝑛 log[𝐵(𝑎,𝑏)] + (𝑎− 1)
𝑛∑︁

𝑖=1

log{𝑊 [𝐺(𝑥𝑖)]}

+ (𝑏− 1)
𝑛∑︁

𝑖=1

log{1 −𝑊 [𝐺(𝑥𝑖)]} +
𝑛∑︁

𝑖=1

log{𝑤[𝐺(𝑥𝑖)]} + ℓ𝑔(𝛼;𝑥),

where ℓ𝑔(𝛼;𝑥) =
∑︀𝑛

𝑖=1 log[𝑔(𝑥𝑖)] is the log-likelihood for the Lomax parameters (with
𝜆 = 1). From (4.4) and (4.7), we can write

log{𝑊 [𝐺(𝑥𝑖)]} = log

[︂
1 − (1 + 𝑥𝑖)

𝛼

1 − 𝑐− (1 + 𝑥𝑖)𝛼

]︂
,

log{1 −𝑊 [𝐺(𝑥𝑖)]} = log

[︂
−𝑐

1 − 𝑐− (1 + 𝑥𝑖)𝛼

]︂
and

log{𝑤[𝐺(𝑥𝑖)]} = log

{︂
𝑐 (1 + 𝑥𝑖)

2𝛼

[1 − 𝑐− (1 + 𝑥𝑖)𝛼]2

}︂
.

Then,

ℓ𝑓 (𝜃;𝑥) = − 𝑛 log[𝐵(𝑎,𝑏)] + (𝑎− 1)
𝑛∑︁

𝑖=1

log

[︂
1 − (1 + 𝑥𝑖)

𝛼

1 − 𝑐− (1 + 𝑥𝑖)𝛼

]︂
+ (𝑏− 1)

𝑛∑︁
𝑖=1

log

[︂
−𝑐

1 − 𝑐− (1 + 𝑥𝑖)𝛼

]︂
+

𝑛∑︁
𝑖=1

log

{︂
𝑐 (1 + 𝑥𝑖)

2𝛼

[1 − 𝑐− (1 + 𝑥𝑖)𝛼]2

}︂
+ ℓ𝑔(𝛼;𝑥). (4.30)

The MLE 𝜃𝑛 of 𝜃 can be obtained by maximizing (4.30) directly by using a pack-
age software. Alternatively, we can obtain the components of the score vector 𝑈𝜃 =
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(𝑈𝑎,𝑈𝑏,𝑈𝑐,𝑈𝛼)⊤ and set them to zero. They are given by

𝑈𝑎 =𝑛[𝜓(𝑎+ 𝑏) − 𝜓(𝑎)] +
𝑛∑︁

𝑖=1

log

[︂
1 − (1 + 𝑥𝑖)

𝛼

1 − 𝑐− (1 + 𝑥𝑖)𝛼

]︂
,

𝑈𝑏 =𝑛[𝜓(𝑎+ 𝑏) − 𝜓(𝑏)] +
𝑛∑︁

𝑖=1

log

[︂
−𝑐

1 − 𝑐− (1 + 𝑥𝑖)𝛼

]︂
,

𝑈𝑐 =
1

𝑐

𝑛∑︁
𝑖=1

1 + 𝑐− (1 + 𝑥𝑖)
𝛼

1 − 𝑐− (1 + 𝑥𝑖)𝛼
+

(𝑏− 1)

𝑐

𝑛∑︁
𝑖=1

1 − (1 + 𝑥𝑖)
𝛼

1 − 𝑐− (1 + 𝑥𝑖)𝛼

− (𝑎− 1)
𝑛∑︁

𝑖=1

(1 + 𝑥𝑖)
−𝛼

𝑐+ (1 − 𝑐) [1 − (1 + 𝑥𝑖)−𝛼]

and

𝑈𝛼 =𝑛 log𝛼− (𝛼 + 1)
𝑛∑︁

𝑖=1

log(1 + 𝑥𝑖) − 2(𝑐− 1)
𝑛∑︁

𝑖=1

log(1 + 𝑥𝑖)

1 − 𝑐− (1 + 𝑥𝑖)𝛼

+ 𝑐(𝑎− 1)
𝑛∑︁

𝑖=1

(1 + 𝑥𝑖)
𝛼 log(1 + 𝑥𝑖)

[1 − (1 + 𝑥𝑖)𝛼] [1 − 𝑐− (1 + 𝑥𝑖)𝛼]

+ (𝑏− 1)
𝑛∑︁

𝑖=1

(1 + 𝑥𝑖)
𝛼 log(1 + 𝑥𝑖)

1 − 𝑐− (1 + 𝑥𝑖)𝛼
.

The MLE 𝜃𝑛 is obtained by solving the equations 𝑈𝑎 = 𝑈𝑏 = 𝑈𝑐 = 𝑈𝛼 = 0 simulta-
neously. Because they can not be solved in closed-form, numerical iterative Newton-
Raphson type algorithms can be applied.

Under general regularity conditions, we have (𝜃𝑛 − 𝜃)
𝑎∼ 𝑁4(0,𝐾(𝜃)−1), where

𝐾(𝜃) is the 4 × 4 expected information matrix and 𝑎∼ denotes asymptotic distribution.
For 𝑛 large, 𝐾(𝜃) can be approximated by the observed information matrix. This nor-
mal approximation for the MLE 𝜃𝑛 can be used for construing approximate confidence
intervals and for testing hypotheses on the parameters 𝑎,𝑏,𝑐 and 𝛼.

Suposse that the parameter vector is particioned as 𝜃 = (𝜓⊤
1 ,𝜓

⊤
2 )⊤, where dim(𝜓1)+

dim(𝜓2) = dim(𝜃). The likelihood ratio (LR) statistic for testing the null hypothesis
ℋ0 : 𝜓1 = 𝜓

(0)
1 against the alternative hypothesis ℋ1 : 𝜓1 ̸= 𝜓

(0)
1 is given by

LR𝑛 = 2 {ℓ𝑓 (𝜃𝑛) − ℓ𝑓 (𝜃𝑛)}, where 𝜃𝑛 = (𝜓⊤
1 ,𝜓

⊤
2 )⊤, 𝜃𝑛 = (𝜓

(0)⊤

1 ,𝜓⊤
2 )⊤, 𝜓𝑖 and

𝜓𝑖 are the MLE’s under the alternative and null hypotheses, respectively, and 𝜓(0)
1 is

a specified parameter vector. Based on the first-order asymptotic theory, we know that
LR𝑛

𝑎∼ 𝜒2
𝑘, where 𝑘 = dim(𝜓1). Thus, we can compute the maximum values of the
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unrestricted and restricted log-likelihoods to obtain LR statistics for testing some sub-
models of the BMOL distribution (see Table 4.1).

4.12 Simulation study

In this section, we perform a Monte Carlo simulation experiment to evaluate the behav-
ior of the MLE 𝜃𝑛 = (𝑎̂𝑛,𝑏̂𝑛,𝑐𝑛,𝛼̂𝑛) in finite samples and estimate the relative bias and
mean squared error (MSE) of the estimates for the sample sizes 𝑛 = 100, 200 and 300.
We consider 10,000 Monte Carlo replications and use the BFGS method with analytical
derivatives to maximize the log-likelihood function (4.30). We set the parameter val-
ues 𝑎 = 0.5, 𝑐 = 0.25 and vary 𝑏 in the set {0.5, 0.75, 1.0} and 𝛼 in {0.5, 0.75}. All
computations are performed using the C programming language and the GNU Scientific
Library (version 2.1).

The results given in Table 4.2 reveal that, generally, the relative bias and MSE values
decrease when 𝑛 increases, which is to be expected since the MLE’s are asymptotically
unbiased. The minimum absolute values for the relative biases and MSEs are equal to
0.003. In counterpart, the maximum absolute values for the relative biases and MSEs
are, respectively, 0.927 and 2.276. Further, it can be noted in Table 4.2 that the param-
eter 𝑐 was underestimated in some cases (negative relative bias).

4.13 Application

In this section, the potentiality of the BMOL distribution is proved empirically by means
of one lifetime application. We use an uncensored data set corresponding to 84 data on
service times for failured windshields (MURTHY et al., 2004, Table 16.11) and fit the
BMOL distribution and its sub-models (see Table 4.1) to these data. All computations
are done using the R software (version 3.0.2, AdequacyModel package). The de-
scriptive statistics for this data set are given in Table 4.3.

For maximizing the log-likelihood function (4.30), we use the BFGS method with
numerical derivatives. The MLE’s are given in Table 4.4 (with standard errors in
parentheses). For purposes of comparison, we compute some goodness-of-fit statistics:
Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Hannan-
Quinn Information Criterion (HQIC), Cramér-von Mises Criterion (W*) and Anderson-
Darling Criterion (A*) (CHEN; BALAKRISHNAN, 1995). In general, the smaller the
values of these statistics are, the better the fit is. We also include in the comparison
the EW distribution (MUDHOLKAR; SRIVASTAVA, 1993), since it is a widely used



4.13. Application 98

Table 4.2: Relative bias and MSE values of the MLE 𝜃𝑛 = (𝑎̂𝑛,𝑏̂𝑛,𝑐𝑛,𝛼̂𝑛) for the BMOL
model (with 𝑎 = 0.5 and 𝑐 = 0.25)

relative bias MSE

𝑏 𝛼 𝑛 𝑎̂𝑛 𝑏̂𝑛 𝑐𝑛 𝛼̂𝑛 𝑎̂𝑛 𝑏̂𝑛 𝑐𝑛 𝛼̂𝑛

0.5 0.5 100 0.112 0.166 −0.003 0.320 0.032 0.179 0.040 0.256
200 0.053 0.116 −0.019 0.170 0.008 0.098 0.016 0.121
300 0.034 0.082 −0.015 0.115 0.005 0.060 0.010 0.076

0.75 100 0.113 0.191 0.029 0.297 0.046 0.296 0.105 0.546
200 0.050 0.120 −0.013 0.161 0.008 0.099 0.016 0.261
300 0.034 0.086 −0.013 0.110 0.004 0.064 0.010 0.167

0.75 0.5 100 0.093 0.092 0.080 0.598 0.035 0.382 0.170 0.602
200 0.044 0.061 −0.018 0.336 0.006 0.166 0.015 0.259
300 0.030 0.056 −0.025 0.221 0.004 0.123 0.009 0.148

0.75 100 0.089 0.106 0.095 0.544 0.039 0.349 0.118 1.256
200 0.043 0.064 −0.010 0.321 0.006 0.163 0.016 0.533
300 0.029 0.059 −0.023 0.212 0.004 0.122 0.009 0.326

1.0 0.5 100 0.088 0.034 0.187 0.927 0.021 0.617 0.208 1.136
200 0.047 0.012 0.006 0.560 0.005 0.273 0.022 0.522
300 0.031 0.009 −0.008 0.389 0.003 0.192 0.012 0.295

0.75 100 0.087 0.079 0.269 0.840 0.037 1.330 0.772 2.276
200 0.046 0.019 0.014 0.522 0.005 0.256 0.024 1.066
300 0.030 0.014 −0.005 0.367 0.003 0.188 0.012 0.613
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lifetime model. Its cdf and pdf are given, respectively, by

𝐻(𝑥) =
[︁
1 − e−( 𝑥

𝛼)
𝛽]︁𝜂

and ℎ(𝑥) =
𝛽𝜂

𝛼

(︁𝑥
𝛼

)︁𝛽−1 [︁
1 − e−( 𝑥

𝛼)
𝛽]︁𝜂−1

e−( 𝑥
𝛼)

𝛽

,

where 𝑥 ≥ 0 and 𝛼,𝛽,𝜂 > 0.
The goodness-of-fit values for the fitted distributions are listed in Table 4.5.

Table 4.3: Descriptive statistics for the service times data

min. 1st quantile median mean 3rd quantile max.

0.040 1.839 2.354 2.557 3.393 4.663

Based on the figures in Table 4.5, we note that the EW distribution presents the
smaller values of the AIC, BIC and HQIC statistics. On the other hand, the BMOL
distribution presents the smaller values of the W* and A* statistics. Since the BMOL
and EW distributions are non-embedded models, a comparison between them is more
appropriate by means of the W* and A* statistics. Also, note that the BMOL model
presents the smaller value of the AIC statistic among all its sub-models and the smaller
values of the BIC and HQIC statistics comparatively with the Lomax, BL and KwL
distributions. Therefore, we can conclude that the BMOL distribution gives the best fit
to the current data . If a minimum number of parameters is taken into account, the MOL
or EW distributions can be chosen, since these also has less parameters.

To analyze how significant are the parameters of the BMOL distribution in model-
ing the current data, we use the LR statistic, as discussed in Section 4.11, for testing
the BMOL model versus its sub-models listed in Table 4.1. The results are given in
Table 4.6. Based on the figures in this table, we note that the rejection of the null hy-
potheses for the Lomax, MOL, BL and KwL models (at the 10% significance level) is
significant. So, we have evidence of the potential need for including the parameters 𝑎,𝑏
and 𝑐 to model the current data.

The plots of the estimated densities for the EW, MOL and BMOL distributions are
displayed in Figure 4.4. Based on these plots, it is possible to assess the best overall fit
of the BMOL distribution to the current data.

4.14 Conclusion and final remarks

In this chapter, we introduce a new four-parameter distribution, called the beta Marshall-
Olkin Lomax (BMOL) distribution, as a member of the beta Marshall-Olkin generated
(BMO-G) family (ALIZADEH et al., 2015) when the parent model is the Lomax distri-
bution (LOMAX, 1954) (with 𝜆 = 1). Some sub-models of the BMOL distribution are
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Table 4.5: Goodness-of-fit statistics for the service times data

Statistic

Distribution AIC BIC HQIC W* A*

Lo(𝛼̂,1) 406.442 408.873 407.419 0.562 3.786
MOL(𝑐,𝛼̂,1) 266.987 271.849 268.942 0.068 0.650

BL(𝑎̂,𝑏̂,𝛼̂,1) 312.806 320.098 315.737 0.553 3.737

KwL(𝑎̂,𝑏̂,𝛼̂,1) 282.938 290.230 285.869 0.175 1.463

BMOL(𝑎̂,𝑏̂,𝑐,𝛼̂) 265.694 275.417 269.602 0.0480.0480.048 0.4870.4870.487

EW(𝛼̂,𝛽,𝜂) 261.208261.208261.208 268.501268.501268.501 264.140264.140264.140 0.129 0.831

Table 4.6: LR tests for the service times data

Models Hypoteses LR statistic 𝑝-value

Lomax vs. BMOL ℋ0: 𝑎 = 𝑏 = 𝑐 = 1 vs. ℋ1: ℋ0 is false 146.748 1.33× 10−31

MOL vs. BMOL ℋ0: 𝑎 = 𝑏 = 1 vs. ℋ1: ℋ0 is false 5.294 7.09× 10−2

BL vs. BMOL ℋ0: 𝑐 = 1 vs. ℋ1: ℋ0 is false 49.112 2.42× 10−12

KwL vs. BMOL ℋ0: 𝑎 = 𝑐 = 1 vs. ℋ1: ℋ0 is false 19.244 6.63× 10−5

Service times for failured windshields
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Figure 4.4: Fit comparison of the EW, MOL and BMOL estimated densities for the
service times data.
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presented. The new distribution has simple expressions for the cumulative and density
functions. We study some of its mathematical and statistical properties. We demon-
strate that the BMOL density can be expressed as linear combinations of Lomax and
exponentiated-Lomax densities and therefore some of its structural properties can be
obtained from those of these models. We present explicit expressions for the quantile
function, moments, generating function, mean deviations, Shannon entropy and order
statistics. We obtain the maximum likelihood estimates for complete samples and per-
form a Monte Carlo simulation in order to evaluate the behavior of these estimates
in finite samples. We compare the performance of the new model with other related
distributions including the exponentiated Weibull model using classical goodness-of-
fit statistics. The results confirm that the BMOL distribution is very appropriate for
lifetime applications.



Chapter 5
Final conclusions

Applying the parameter induction method, in this thesis are proposed new models pri-
marily to be used in lifetime applications, although they have proved to be useful also
for fit data of another nature. These new models extend or generalize classic lifetime
models, adding flexibility to the parent distributions and improving the goodness-of-fit,
which can be verified in the different applications presented throughout this thesis.

In Chapter 2, we introduce two new families of distributions, the supremum and
infimum families, by inducing one additional shape parameter in the parent model 𝐺.
These families have simple and elegant expressions and a physical interpretation in
terms of functions of maximum and minimum the i.i.d. random variables. The prob-
ability density functions (pdf’s) in both families have simple expressions in terms of
pdf’s the exponentiated-𝐺 (exp-𝐺) distributions. Because of this, many properties of
these families can be obtained from those of the exp-𝐺 distributions, such as expan-
sions for the moments. In addition, it was proved that the supremum family can induce
bathtub hazard rate, which has important implications in lifetime applications. These
properties have motivated the introduction of the supremum and infimum families.

In Chapter 3, the modified Fréchet (MF) distribution is defined to extend the Fréchet
distribution. Some mathematical quantities and properties of the new distribution are
obtained by considering the Lambert W function, which arises in many mathematical
and physical problems expressed in terms of logarithmics or exponential equations.
Because the Lambert function has not yet been sufficiently explored in generalized
probability distributions, the contribution of this chapter is valuable in showing how the
analytical properties of this function can be used to obtain mathematical properties and
quantities of generalized or extended models. Thus, we show how obtain an explicit
expression for the quantile function of the MF distribution by using the Lambert W
function and how obtain expansions for the ordinary moments, generating function and
Bonferroni and Lorenz curves by using its analytical properties. The results on the

103
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MF distribution was published in the journal Communications in Statistics: Theory and

Methods, october 2016.
Chapter 4 introduces the beta Marshall-Olkin Lomax (BMOL) distribution by con-

sidering the Lomax distribution as the parent model in the generated beta Marshall-
Olkin family (ALIZADEH et al., 2015). It was demonstrated that the BMOL density
can be expressed as linear combinations of Lomax and exp-Lomax densities. Thus, sev-
eral of its structural properties can be obtained from the Lomax properties. Also, were
presented explicit expresions for the quantile function, moments, generating function,
mean deviations, Shannon entropy and order statistics. In this case, the new model have
demostrated greater flexibility than its sub-models, providing more control in the tails.

At the end of each chapter, were considered applications to real data sets, which aim
to assess the performance of the new distributions. For all cases, the results confirm that
the proposed distributions are very appropiate for lifetime applications.

5.1 Future research

Next, we list some future topics to be investigated:

• It is possible to extend the 𝐺𝑖𝑛𝑓 family defined by equation (2.2) by inducing two
additional shape parameters 𝑎 > 0 and 𝑏 > 0 as follows

𝐹 𝑖𝑛𝑓 (𝑥; 𝜉,𝑎,𝑏) = 𝐻𝑎(𝑥) 𝐻̌𝑏(𝑥),

where the basic family is obtained by taking 𝑎 = 1. So, this extended family
can be used as alternative method to existing ones, such as the generalized beta
family (EUGENE et al., 2002) or the generalized transmuted family (BOUR-
GUIGNON et al., 2016; NOFAL et al., 2016) of distributions.

• Silva et al. (2010) defined the five-parameter beta modified Weibull distribution
by considering the modified Weibull distribution introduced by Lai (2013) as the
parent model in the generalized beta family. Following a similar approach, a fu-
ture research line is to study the five-parameter beta modified Fréchet distribution.
Because of the properties of the generalized beta family, the density function of
the new distribution can be expressed as a linear mixture of MF distributions.
Thus, several structural properties can be obtained from the latter. In addition,
further mathematical quantities and properties of the new distribution can be ob-
tained by considering the Lambert W function and follow the same approach
given in Chapter 3.
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