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Now I know there’s a better way

Let my heart ride out for a brighter day

Now it’s time to breathe in the open air

With a mind so free, anyway

It’s time for a change...

It’s time to break free!

—TIME TO BREAK FREE (Gamma Ray)



ABSTRACT

We discuss the creation of new probability distributions for continuous data in two distinct

approaches. The first one is, to our knowledge, novelty and consists of using Estimation of

Distribution Algorithms (EDAs) to obtain new cumulative distribution functions. This class of

algorithms work as follows. A population of solutions for a given problem is randomly selected

from a space of candidates, which may contain candidates that are not feasible solutions to the

problem. The selection occurs by following a set of probability rules that, initially, assign a

uniform distribution to the space of candidates. Each individual is ranked by a fitness criterion.

A fraction of the most fit individuals is selected and the probability rules are then adjusted to

increase the likelihood of obtaining solutions similar to the most fit in the current population.

The algorithm iterates until the set of probability rules are able to provide good solutions to the

problem. In our proposal, the algorithm is used to generate cumulative distribution functions to

model a given continuous data set. We tried to keep the mathematical expressions of the new

functions as simple as possible. The results were satisfactory. We compared the models pro-

vided by the algorithm to the ones in already published papers. In every situation, the models

proposed by the algorithms had advantages over the ones already published. The main advan-

tage is the relative simplicity of the mathematical expressions obtained. Still in the context of

computational tools and algorithms, we show the performance of simple neural networks as a

method for parameter estimation in probability distributions. The motivation for this was the

need to solve a large number of non linear equations when dealing with SAR images (SAR

stands for synthetic aperture radar) in the statistical treatment of such images. The estimation

process requires solving, iteratively, a non-linear equation. This is repeated for every pixel

and an image usually consists of a large number of pixels. We trained a neural network to

approximate an estimator for the parameter of interest. Once trained, the network can be fed

the data and it will return an estimate of the parameter of interest without the need of iterative



methods. The training of the network can take place even before collecting the data from the

radar. The method was tested on simulated and real data sets with satisfactory results. The

same method can be applied to different distributions. The second part of this thesis shows two

new probability distribution classes obtained from the composition of already existing ones. In

each situation, we present the new class and general results such as power series expansions

for the probability density functions, expressions for the moments, entropy and alike. The first

class is obtained from the composition of the beta-G and Lehmann-type II classes. The second

class, from the transmuted-G and Marshall-Olkin-G classes. Distributions in these classes are

compared to already existing ones as a way to illustrate the performance of applications to real

data sets.

Keywords: New probability distributions. G-classes. Estimation of distribution algorithms.

Estimation.



RESUMO

Discutimos a criação de novas distribuições de probabilidade para dados contínuos em duas

abordagens distintas. A primeira é, ao nosso conhecimento, inédita e consiste em utilizar algo-

ritmos de estimação de distribuição para a obtenção de novas funções de distribuição acumu-

lada. Algoritmos de estimação de distribuição funcionam da seguinte forma. Uma população

de soluções para um determinado problema é extraída aleatoriamente de um conjunto que de-

nominamos espaço de candidatos, o qual pode possuir candidatos que não são soluções viáveis

para o problema. A extração ocorre de acordo com um conjunto de regras de probabilidade,

as quais inicialmente atribuem uma distribuição uniforme ao espaço de candidatos. Cada in-

divíduo na população é classificado de acordo com um critério de desempenho. Uma porção

dos indivíduos com melhor desempenho é escolhida e o conjunto de regras é adaptado para

aumentar a probabilidade de obter soluções similares aos melhores indivíduos da população at-

ual. O processo é repetido por um número de gerações até que a distribuição de probabilidade

das soluções sorteadas forneça soluções boas o suficiente. Em nossa aplicação, o problema

consiste em obter uma função de distribuição acumulada para um conjunto de dados contínuos

qualquer. Tentamos, durante o processo, manter as expressões matemáticas das distribuições

geradas as mais simples possíveis. Os resultados foram satisfatórios. Comparamos os modelos

providos pelo algoritmo a modelos publicados em outros artigos. Em todas as situações, os

modelos obtidos pelo algoritmo apresentaram vantagens sobre os modelos dos artigos publi-

cados. A principal vantagem é a expressão matemática reduzida. Ainda no contexto do uso

de ferramentas computacionais e algoritmos, mostramos como utilizar redes neurais simples

para a estimação de parâmetros em distribuições de probabilidade. A motivação para tal apli-

cação foi a necessidade de resolver iterativamente um grande número de equações não lineares

no tratamento estatístico de imagens obtidas de SARs (synthetic aperture radar). O processo

de estimação requer a solução de uma equação por métodos iterativos e isso é repetido para



cada pixel na imagem. Cada imagem possui um grande número de pixels, em geral. Pensando

nisso, treinamos uma rede neural para aproximar o estimador para esse parâmetro. Uma vez

treinada, a rede é alimentada com as janelas referente a cada pixel e retorna uma estimativa do

parâmetro, sem a necessidade de métodos iterativos. O treino ocorre antes mesmo da obtenção

dos dados do radar. O método foi testado em conjuntos de dados reais e fictícios com ótimos

resultados. O mesmo método pode ser aplicado a outras distribuições. A segunda parte da tese

exibe duas classes de distribuições de probabilidade obtidas a partir da composição de classes

existentes. Em cada caso, apresentamos a nova classe e resultados gerais tais como expansões

em série de potência para a função densidade de probabilidade, expressões para momentos,

entropias e similares. A primeira classe é a composição das classes beta-G e Lehmann-tipo II.

A segunda classe é obtida a partir das classes transmuted-G e Marshall-Olkin-G. Distribuições

pertencentes a essas classes são comparadas a outras já existentes como maneira de ilustrar o

desempenho em aplicações a dados reais.

Palavras-chave: Novas distribuições de probabilidade. Classe-G. Algoritmos de estimação de

distribuição. Estimação.
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CHAPTER 1

Introduction and overview

RESUMO

Nesse capítulo apresentamos uma visão geral da tese. Discutimos o desenvolvimento de no-

vas distribuições de probabilidade para dados contínuos. É feita uma breve revisão dos métodos

mais conhecidos, que consistem da composição de funções de distribuição acumuladas já exis-

tentes, onde discutimos suas vantagens e desvantagens. A contribuição principal dessa tese

é a apresentação de um método que permite obter novas distribuições através de algoritmos

evolutivos. Essa abordagem trata, de certa forma, o problema de seleção de modelos. Também

mostramos como o texto está dividido.

In this work, we present two contributions to the field of generated probability distribu-

tions. One is based on currently popular techniques and the other is based on an evolutionary

algorithm.

The number of new probability distributions greatly increased in the last few decades. This

is partially due to the fact that it is possible to compound two different distributions in order

to obtain a third one. Many distributions obtained in this way adapt nicely to various data

sets as seen in the literature. This subject was reviewed to a great extent recently in Tahir

and Nadarajah (2015) and Tahir and Cordeiro (2016). Each used technique defines a usually

very large class of probability distributions. For each class, listed several papers on particular

families in that class. The authors used the term G-classes to refer to distributions generated

from such compositions. Some G-classes of greater popularity are now presented.

Exponentiated-G (Exp-G)

This method is attributed to Lehmann (1953) and adds one parameter to an existing distri-
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bution. If G(x) is a cummulative distribution function (cdf), then

F(x) = G(x)α , α > 0

is also a cdf and it is called the exponentiated-G (Exp-G) distribution with power parameter α .

The distribution G is called the baseline distribution in this and in similar contexts (other G-

classes). This class is also called Lehmann type I distribution. The Lehmann type II distribution

is given by

F(x) = 1− [1−G(x)]α , α > 0.

These distributions became much more popular after the papers by Gupta et al. (1998)

and Gupta and Kundu (1999, 2001, 2002) on the exponentiated-exponential distribution. The

exponentiated-Weibull distribution was presented in Mudholkar and Srivastava (1993) and is

considered, generally speaking, a very good distribution with many papers discussing it, such

as Mudholkar et al. (1995), Mudholkar and Hudson (1996), Choudhury (2005), Singh et al.

(2005), Qian (2012) and Barrios and Dios (2012) among many others.

Beta-G

If G(x) is a cdf, then

F(x) = IG(x)(a,b) =
1

B(a,b)

∫ G(x)

0
ta−1(1− t)b−1dt, a,b > 0,

is the beta-G cdf, where B(a,b) =
∫ ∞

0 ta−1(1− t)b−1dt represents the beta function and

Ix(a,b) =
1

B(a,b)

∫ x

0
ta−1(1− t)b−1dt,

represents the incomplete beta function ratio. The pdf of the beta-G distribution is given by

f (x) =
1

B(a,b)
g(x)G(x)a−1[1−G(x)]b−1,

in which g(x) is the pdf respective to G(x). The beta-normal distribution is the first known

beta-G member and was proposed in Eugene et al. (2002). This class was studied extensively

by Jones (2004), who showed that this class arises from the distributions of order statistics. The

beta-G distributions can have heavy tails and assimetry.
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It is possible to write its pdf as a mixture of exp-G distributions (with the same baseline

distribution). By using the binomial theorem, we can write

f (x) =
∞

∑
i=0

wi(a+ i)g(x)G(x)a+i−1,

where

wi = wi(a,b) =
(−1)i

(
b−1

i

)

(a+ i)B(a,b)
.

This allows us to express the moments of a beta-G random variable as a mixture of moments

of exp-G random variables, which are usually easier to obtain. Several moments from beta-G

random variables are given in Cordeiro and Nadarajah (2011) by means of probability weighted

moments (PWMs) of G(x). The (u,v) order PWM of a random variable Y ∼ G is given by

τu,v = IE{Y uG(Y )v}. In Zografos and Balakrishnan (2009), this class is discussed and methods

for estimation and the characterization by maximum entropy are proposed.

Gamma-G

This class was proposed in Zografos and Balakrishnan (2009). If G(x) is a cdf with survival

function Ḡ(x) = 1−G(x) and pdf g(x), the gamma-G cdf is given by

F(x) =
1

Γ (δ )

∫ − log Ḡ(x)

0
tδ−1 e−tdt, δ > 0,

and its pdf is

f (x) =
1

Γ (δ )

[
− log Ḡ(x)

]δ−1
g(x).

Ristić and Balakrishnan (2012) proposed a slightly different generator given by

F(x) = 1− 1
Γ (δ )

∫ − logG(x)

0
tδ−1 e−tdt, δ > 0,

with pdf

f (x) =
1

Γ (δ )
[− logF(x)]δ−1

g(x),

It is also possible to express the gamma-G pdf as a mixture of exp-G densities. This was given

by Nadarajah, Cordeiro and Ortega (2015).

There are many other classes and several of them are given by Tahir and Nadarajah (2015).
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A very general approach for generating distributions is given in Alzatreeh et al. (2015). In

their paper, they provide properties for the G-classes obtained by

F(x) =
∫ W (G(x))

0
r(x)dx,

where G is the baseline distribution, r(x) is a continuous pdf and W (G(X)) matches the support

of r(x). Aly and Benkherouf (2011) discussed the composition of continuous and discrete

distribution and showed very general properties of the generated classes.

There are advantages to the composition methods. The new parameters tend to provide

better fits of the G-classes distributions as the probability density functions can assume different

shapes. The mathematical properties of the G-classes distributions are usually not very difficult

to obtain and in many cases they follow from writing the new densities as mixtures of exp-G

pdfs. This has been done in many papers. Some of the parameters in G-classes even have

physical interpretations. There is, however, a trade-off in the use of such new models. They

usually have many parameters and estimating them is usually troublesome. The maximum

likelihood method will usually suffer from having very spiky or very flat areas in the “log-

likelihood” function. This may lead to numerical difficulties, large standard errors and overall

poor identifiability of the model. Also, for some applications in signal processing and other

areas of engineering, complex expressions for the distributions’ cdf and pdf may be a problem.

Another problem comes from the increase in the number of distributions. Model selection is

now considerably harder than before.

Because of these issues with the G-classes, we propose in this text a different method for

generating new distributions for continuous data. This method is based on the Probabilistic

Incremental Program Evolution (PIPE) algorithm proposed by Salustowicz and Schmidhuber

(1997). Using this algorithm we are able to obtain new continuous distributions that are gener-

ated specifically for each one of the data sets considered, while obtaining relatively simple cdfs

and pdfs. This approach deals with model selection and model estimation at the same time and

yields very satisfactory results. This is the main contribution of this text.

This text is divided as follows. In Chapter 2, we present a new method for generating

continuous probability distributions. We also provide real data application for some data sets.

In Chapter 3, we present a new class of distributions obtained by the composition of the beta-G
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and Lehmann type II classes. Chapter 4 presents another class of distributions. This one is

obtained from the composition of the Transmuted-G (Shawn and Buckley, 2007) and Marshall-

Olkin-G (Marshall and Olkin, 1997). A new procedure for parameter estimation is presented in

Chapter 5. This procedure is based on a certain neural network and makes the task of parameter

estimation in some extended classes both easier and faster.
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CHAPTER 2

Continuous Probability Distributions Generated

by the PIPE Algorithm

RESUMO

Nesse capítulo, investigamos o uso do algoritmo Probabilistic Incremental Programming

Evolution (PIPE) como uma ferramenta para a construção de funções de distribuição acumu-

ladas para modelar determinados conjuntos de dados. O algoritmo, em nossas aplicações, gera

várias funções candidatas a modelar os conjuntos de dados considerados. Essas candidatas são

geradas seguindo um conjunto de regras estocásticas. O conjunto de regras então evolui ao

longo de iterações para gerar candidatas melhores de acordo com um dado critério de otimali-

dade. Essa abordagem compete com a adição de parâmetros a distribuições existentes. Há duas

vantagens principais em utilizar o novo método. A primeira é a possibilidade de controlar ex-

plicitamente a complexidade das funções condidatas, especificando quais funções e operadores

matemáticos podem ser utilizados e quão longa pode ser a expressão matemática correspon-

dente. A segunda vantagem é que essa abordagem trata seleção de modelo e estimação ao

mesmo tempo. Esse método é apropriado para situações em que não é possível deduzir um mo-

delo de probabilidade diretamente das características do fenômeno estudado. Essa também é

uma alternativa aos métodos não-paramétricos clássicos. A vantagem é que utilizando o PIPE,

em geral, podemos obter expressões mais tratáveis. O desempenho em dados artificiais e dados

reais é bastante satisfatório. Para aplicações em dados reais, o algoritmo obteve verossimil-

hanças melhores ou comparáveis ao modelos já utilizados na literatura, mas com expressões

matemáticas notoriamente mais simples.
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2.1 Introduction

In this chapter, we describe an approach to probability modeling based on evolutionary

algorithms. Consider a set of observations of a continuous random variable representing the

outcome of a given experiment. Suppose that there is not enough understanding of the problem

to allow for the construction of a specific cdf or to suggest the use of an existing one. Given

such a data set we attempt to find the “best possible” continuous probability distribution to

model the data regarding some fitness or optimality criteria. This is achieved by exploring a

search space of candidate functions in a way described in the next sections.

The method presented here is an alternative to the G-classes of distributions as well as

to classical non-parametric methods. It has two main motivations: 1) there is an increasing

difficulty in choosing a model for a given data set because of the increase in the number of

new distributions; 2) most of the new models use formulas that are expressed with elementary

functions such as logarithms and exponentials and arithmetic operators. Given a data set and

an optimality criterion, our goal is to obtain a suitable cdf for the data using only these ele-

mentary functions and arithmetic operators for at most a certain number of times. This may

lead to models with simpler mathematical expressions. Thus, we consider model selection

and model generation in a single approach. The main advantage of this method over the other

two commented above is that we are able to explicitly control the complexity of the resulting

cdf. In this text we use the word complexity in its basic meaning. A function is complex if

its mathematical expression is lengthy or uses advanced special functions like gamma, beta,

Bessel functions and alike. By having a simple expression for the cdf, we can easily obtain

quantities related to the data, such as moments, for example. This chapter is divided as follows.

In section 2, we describe the Probabilistic Incremental Program Evolution (PIPE) algorithm

developed by Salustowicz and Schmidhuber (1997), which is the base technique employed in

this proposal. It is slightly modified for our purpose. Section 3 describes and exemplifies the

new proposal. Simulation studies are presented in Section 4 to illustrate the performance of

the method regarding a mean quadratic error between the proposed function and the empirical

distribution function at the data points. In Section 5, we consider data sets from papers on



21

recent distributions, comparing the fitness of the distributions in those papers to the fitness of

the distribution obtained by the method proposed here. Issues and final remarks are addressed

in Section 6. The source code for the implementations of the described method are available in

the Appendix. Instructions of how to use and examples are also included.

2.2 The PIPE algorithm

The PIPE algorithm was presented in Salustowicz and Schmidhuber (1997) and it is capable

of producing programs according to a set of probability rules. These rules are improved over

iterations so that the generated programs are more likely to solve a given problem. In this

section we follow closely the explanation in the original paper.

A program is a set of instructions given in a certain order. Each of these instructions may

depend on a (possibly empty) set of terminal symbols, which usually denote constants or user

inputs. Let F = { f1, f2, . . . , fk} be a set of k functions and T = {t1, t2, . . . , tl} be a set of l ter-

minals. For instance, to write a program that calculates the value of the probability density

function (pdf) for the normal or exponential distributions at a point x and a given set of param-

eters, it is sufficient to take F = {−,×,÷,exp,√} and T = {x,π ,2,1,−1,R,R+}, where ÷ the

protected division (does not allow division by zero), x represents an user input, R represents

a real constant and R+ represents a positive real constant. The normal distribution pdf can be

described as

(
1÷ (

√
2∗π ∗R+)∗ exp((−1÷ (2∗R+ ∗R+))∗ (x−R)∗ (x−R)

)
,

for example.

Each program can be represented by an n-ary tree, where n is the maximum possible of

arguments for a function in F . For the normal distribution example we may use the tree in

Figure 2.1. The tree representing a program is not unique unless we specify a set of rules for

parsing a program to a tree, however this is negligeable for our purpose.

Programs can be created randomly by traversing a structure called Probabilistic Prototype
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Figure 2.1 Tree representation of the normal distribution pdf.

Tree (PPT). The PPT is a n-ary tree with n, again, representing the maximum arity of an in-

struction in F . The node at depth d ≥ 0 and horizontal position w ≥ 0 (width) is represented by

Nd,w. Each node contains a probability vector Pd,w whose entries are Pd,w(I) for each I ∈ F ∪T

such that

∑
I∈F∪T

Pd,w(I) = 1, ∀Nd,w.

That is, each node has the probability distribution of the possible instructions in the programs

at the respective node of their tree representation. The PPT is traversed in a depth first fashion

from left to right, starting at N0,0. For each accessed node, an instruction I is selected with

probability Pd,w(I) and denoted Id,w. If Id,w ∈ F , then a subtree is created for each argument

of Id,w. If Id,w ∈ T then it is replaced by an instance Vd,w(Id,w) of that terminal. This instance

equals Id,w if Pd,w(Id,w) is greater than a certain threshold TI and equals a randomly generated

number Rd,w otherwise. For each terminal instruction I ∈ T there corresponds a threshold TI and

these are not changed throughout the iterations. The authors in Salustowicz and Schmidhuber
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(1997) also consider the growing and pruning of the PPT to reduce the memory requirements

of the algorithm. Initially there is only the node N0,0. If Id,w ∈ F is chosen and the subtree for

its arguments are missing in the PPT, then additional nodes are created (growing). Conversely,

if the probability of accessing a certain node in the PPT is too small, the node is deleted from

the PPT (pruning).

PIPE has two learning mechanics: elitist learning and generation-based learning. These

two mechanics alternate until a stopping criterion is met. Generation-based learning comprises

five distinct phases.

1. Creation of a program population. A population of programs is created according to

the rules mentioned earlier. These programs are enumerated as PROG j, 0 < j ≤ PS, with

PS denoting the population size. Probabilities in each node are initialized in a random

way but maintaining their sum equal to 1.

2. Population evaluation. Each PROG j in the population is evaluated regarding a certain

fitness function. This is a numeric value assigned by a function FIT(PROG j). The pro-

grams are ranked in ascending order of those values. The best program in the current

population is denoted PROGb while the best program found so far is denoted PROGel .

3. Learning from the population. The probabilities in each node of the PPT are modi-

fied as to increase the likelihood of PROGb being generated. The following steps can

be stored as the content of an adaptPPTtowards(PROGb) routine at the time of the

implementation by the reader. First the probability P(PROGb) is obtained as ∏Pd,w(Id,w)

for each instruction Id,w used in the production of the candidate PROGb. A target proba-

bility is calculated as

PTARGET =P(PROGb)+ lr[1−P(PROGb)]

× ε +FIT(PROGel)

ε +FIT(PROGb)
,

in which the constant lr denotes the learning rate of the algorithm, and ε is a user-defined

positive real constant. The fraction in the right hand side of the equation implements the
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fitness-dependent-learning (fdl). If ε is chosen such that ε ≪ FIT(PROGel) then gener-

ations with lower quality (higher fitness values) programs do not influenciate much the

learning process, allowing for the use of smaller populations. Once PTARGET is obtained,

all the probabilities Pd,w(Id,w) for the instructions used in PROGb are increased iterac-

tively as seen in algorithm 1, where clr denotes a constant that influences the number of

iterations and the precision. The choice of this constant is subjective. Lower values will

imply more iterations and more precision while higher values will do the opposite. Then,

each terminal used in the construction of PROGb is stored in the respective node of the

PPT, that is, Id,w := Vd,w(Id,w) for each terminal instruction Id,w used in PROGb.

4. Mutation of the PPT. In this step, the nodes acessed during the production of PROGb

are mutated with a probability PMP
given by

PMP
=

PM

(l+ k)
√

|PROGb|
,

where PM is a user defined parameter controlling the overall probability of mutation.

The previous formula is empirically justified in Salustowicz and Schmidhuber (1997). If

a node is to be mutated, the probability Pd,w(Id,w) is changed to Pd,w(Id,w)+mr · (1−
Pd,w(Id,w)), in which mr represents a mutation rate. Notice that this change is small if

Pd,w(Id,w) is already large. After the mutation step every modified node is normalized to

keep the sum of probabilities equal to 1.

5. PPT pruning. If Pd,w(Id,w) becomes too small for a certain node Nd,w and instruction

Id,w ∈ F then the subtrees corresponding to the possible arguments of Id,w are deleted

from the PPT.

Algorithm 1: Updating the PPT.

1 repeat

2 forall Id,w in PROGb do

3 Pd,w(Id,w) := Pd,w(Id,w)+ clr · lr · (1−Pd,w(Id,w));

4 until P(PROGb)>PTARGET ;
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After the generation-based learning, elitist learning takes place by repeating the previous pro-

cedure using PROGel instead of PROGb. However, during the elitist learning mutation is not

performed. The PPT is then pruned accordingly.

2.3 The new proposal

Given a data set, we propose the use of the PIPE method, with minor modifications, to

generate a continuous function that resembles the empirical cumulative distribution of the data.

We argue that, for a suitable choice of the sets F and T , it is possible to achieve a good fit of

the data while controlling the complexity of the model by limiting the maximum height of the

PPT. The minor modifications considered are:

1) During the generation of a program, if a node Nd,w is to receive an instruction Id,w ∈ T

representing an user input variable (a data point), we set the respective threshold to 1.

2) The maximum size of the program, measured by the height of the tree representing it,

is controlled. Programs are not allowed to grow indeterminately. To achieve this, we

modify the nodes at the maximum depth of the PPT by forcing Pd,w(I) = 0 for every I∈F

and normalizing the distribution Pd,w again.

3) No pruning or growing is performed, since memory consumption for small PPTs is not

of concern in this context.

4) At each generation we randomly choose to adapt the PPT towards PROGel or towards

PROGb. Mutation occurs regardless of the choice.

These modifications simplified the code while yielding good results in our investigations. Also,

they help to incorporate some aspects of the problem at hand. In this paper we choose the

functions and terminal sets to be F = {×,÷,+,pow(·, ·),exp(−·), log(·)} and I = {x,R}, where

÷ represents the protected division, ab is represented by pow(a,b), exp(−x) is the usual e−x,

log(x) is the protected logarithm (does not accept negative arguments), x represents an user
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input and R represents a random number between 0 and a specified maximum value. This is the

set of functions and terminals we use throughout the paper unless stated otherwise. The fitness

function is given by:

FIT(PROG) =−1
n

n

∑
i=1

(PROG(xi)− F̂n(xi))
2,

where xi is ith observation of the data set, n is size of the data set, and F̂n is the empirical

distribution function. Our implementation will run for a number of generations and then stop.

The overall sequence of an implementation for the PIPE algorithm is as follows.

• Set the following parameters: the elements in F∪T, size of the program population, num-

ber of generations, maximum size of the programs, learning rate, ε , mutation rate, max-

imum value of a generated random number and the probability of adapting the PPT to-

wards the elite program.

• Initialize the PPT and assign probabilities to the vectors in every node. Let the PPT be as

high as the maximum size of a program. Remember to set the probability of non-terminal

symbols to zero for the leaf nodes.

• Read the data and obtain the empirical distribution function.

• For every generation:

– Generate a random population of functions from the PPT.

– Evaluate the fitness of every function.

– Find the best program in the current generation and obtain PROB(PROGb). Replace

PROGel if needed.

– Adapt the PPT towards PROGb or PROGel randomly.

– Mutate the PPT, if it was adapted towards PROGb.

– Normalize Pd,w for every node of the PPT.
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2.4 Simulation studies

In this section we investigate how well the models proposed by the PIPE algorithm fit the

data when compared to the true distribution of the data. For several distributions with cdf F and

several sample sizes n, we generate an artificial data set of size n from F and use the proposed

method to generate a cdf for the data. We compare the proposed distribution to the distribution

F by means of the logarithm of the likelihood function based on the data (log-likelihood). The

Anderson-Darling and Kolmogorov-Smirnov tests (see, for example, Stephens 1974) are also

performed to verify the adequacy of the model to the data. The simulation can be described as

follows.

• Generate a data set S from F .

• Estimate the parameters of F using the data and the maximum likelihood method.

• Run the proposed method and obtain a cdf G.

• Perform both the Anderson-Darling and Kolmogorov-Smirnov tests, at the 10% level of

significance. This level choice is arbitrary.

• Calculate the log-likelihood of G based on the data and compare to that of F .

Results of the simulation are presented in Table 2.1. The Kolmogorov-Smirnov (KS) test

considers the overall fit of the distribution, whereas the Anderson-Darling (AD) test is built to

emphasize the fit in the tails of the distribution (Stephens, 1974). The columns of Table 2.1

represent, respectively, the sample size, the distribution from which the data was simulated, the

logarithm of the maximized likelihood for the model in the previous column with its parameters

being estimated by the maximum likelihood method, the logarithm of the likelihood of the

PIPE model and the p-values for the KS and AD tests. Criteria such as the Akaike information

criterion (AIC) and Bayesian information criterion (BIC) are not used since we do not have a

solid understanding of how would the comparison apply to the PIPE generated distributions.

For all of the simulation runs, the parameters of the PIPE algorithm were set as follows: 100

candidates per generation, 3000 generations, TI = 0.2 for all terminal numbers, 100 as the
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maximum random number generated, height of the PPT set to 3, learning rate of 0.001, clr =

0.01, ε = 0.01, PM = 0.1, mutation rate of 0.1 and the probability of adapting the PPT towards

the elite program was set to 0.5. These values were chosen after a few trials with different

values. The algorithm is not much sensitive to those values, except for the learning rate. Keep

in mind that the learning rate represents a trade-off between speed and quality of the search

for good candidates. The column LL represents the logarithm of the maximized likelihood

function.

We chose the normal distribution because it is widely used in practical situations, the ex-

ponential and gamma distributions for being popular lifetime distributions, the Cauchy distri-

bution for its heavy tails, a skew-t distribution (Fernandez and Steel 1998) for the heavy tails

and skewness, the Pareto distribution for its shift, the beta distribution for being confined in

the (0,1) interval and a mixture of two normal distributions for bimodal data. Certainly it was

not expected that the PIPE distributions would outperform the distributions that originated the

data, even though it happened for a few runs. During this simulation we noticed that the data

generated from the normal, exponential, gamma, normal mixture, skew-t and Pareto distribu-

tions were easily modeled by the proposed distributions from the PIPE algorithm. One run

of the algorithm was most of the times enough to obtain a distribution that would achieve a

log-likelihood close to or better than the original model. We ran the algorithm at most five

times with different seeds for the random number generation and presented the best results in

here. The Cauchy distribution proved to be the more challenging distribution. Better levels

of log-likelihood than those shown in Table 2.1 for the Cauchy distribution were achieved but

at the expense of failing the AD test at the 0.1 significance level. Solutions for this problem

would possibly include the addition or removal of elements in the F set or the possibility of

applying different weights to the data points in the tails of the data set when calculating the

fitness values, if the user knows beforehand that the data supplied is heavy tailed. We noticed

no increasing nor decreasing of the performance of the algorithm regarding the sample size.
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Table 2.1 Results support the PIPE method distribution

LL p-value

n Distribution Fitted PIPE KS AD

10

Normal(0,1) −9.41 −11.34 0.5360 0.6047

Cauchy(0,1) −22.60 −21.77 0.8633 0.6579

Exponential(1) −15.62 −14.55 0.8282 0.6536

Gamma(3,1) −19.94 −18.68 0.6581 0.9247

Beta(3,5) 6.20 5.30 0.9448 0.8216

Pareto (1,3) −9.99 −9.28 0.8101 0.8564

MN(0,5,1,1,0.25) −12.14 −12.80 0.7953 0.9348

Skew-t(2,2) −23.90 −22.94 0.9585 0.9699

30

Normal(0,1) −49.13 −49.16 0.8098 0.6490

Cauchy(0,1) −77.36 −93.89 0.2368 0.0111

Exponential(1) −15.61 −32.99 0.1538 0.2048

Gamma(3,1) −59.53 −61.58 0.6300 0.6858

Beta(3,5) 18.96 17.09 0.8287 0.7421

Pareto(1,3) −81.87 −83.96 0.8036 0.8051

MN(0,5,1,1,0.25) −36.13 −40.15 0.6238 0.6667

Skew-t(2,2) −91.50 −79.11 0.4857 0.2997

50

Normal(0,1) −70.32 −70.35 0.4798 0.2208

Cauchy(0,1) −114.37 −133.22 0.7690 0.5053

Exponential(1) −56.80 −60.99 0.7635 0.6453

Gamma(3,1) −92.53 −94.34 0.7588 0.7505

Beta(3,5) 24.16 24.33 0.8891 0.9453

Pareto(1,3) −152.28 −152.32 0.9630 0.9471

MN(0,5,1,1,0.25) −59.16 −65.44 0.7566 0.5720

Skew-t(2,2) −104.19 −97.11 0.3121 0.1469
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2.5 Real data application and comparisons

In this section, we apply the PIPE method to a pair of data sets that were modeled in already

published papers on probability distribution families. For each re-visited paper we compare the

likelihood of the distributions proposed in that paper to the one suggested by the PIPE method.

To verify the adequacy of the model proposed by the PIPE method to the data we resort to the

KS and AD tests, the visual inspection of the theoretical quantiles plotted against the empirical

quantiles and the plot of the probability density function overlapping the data histogram. To

the quantile plot we add a simulated 95% envelope for the empirical quantiles obtained by

bootstrapping the original sample. This is done by generating a large number B of pseudo-

samples by sampling, with replacement, the original data set. Order each pseudo-sample to

obtain its empirical quantiles. There will be, after the simulation, B samples of each quantile.

For each quantile q find the quantiles 2.5% and 97.5% of its respective sample and use them to

plot the envelope.

The results suggest that good fitness levels for real data can be attained by the distributions

proposed by the PIPE method, in agreement to what was suggested by the simulations. These

distributions presented simpler mathematical expressions for the cdf and pdf when compared to

the distributions in the previous paper on those data sets. Whenever estimation was necessary,

it was done by the fitdistr() routine from the MASS package in R. For some models, how-

ever, we reported the estimates of the parameters and the respective logarithm of the likelihood

from the original papers.

The parameters for the PIPE algorithm in this section are the same used in the simulation

section.

Wheaton river data set

The following data consist of 72 observations of the exceedances of flood peaks, measured in

m3/s, of the Wheaton River located near Carcross in the Yukon Territory, Canada. These data

were analyzed by several authors, amongst which we cite a few. In Akinsete et al. (2008) the
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four parameter beta-Pareto (BP) distribution was used to model the data. Its density is given by

f (x) =
k

θB(α,β )

{
1−
( x

θ

)−k
}α−1( x

θ

)−kβ−1
,

with x ≥ θ and α , β , θ , k > 0. A better fit, regarding the most common criteria such as Akaike

information criterion (AIC), was found by Alshawarbeh et al. (2012) using the beta-Cauchy

(BC) distribution. The pdf for the beta-Cauchy distribution is given by

f (x) =
λ

πB(α,β )

{
1
2
+

1
π

arctan

(
x−θ

λ

)}α−1{1
2
− 1

π
arctan

(
x−θ

λ

)}β−1 1
λ 2 +(x−θ)2 ,

where −∞ < x < ∞, 0 < α,β ,λ < ∞ and −∞ < θ < ∞. Finally, Cordeiro et al. (2013) used

the exponentiated generalized Gumbel (EGGU) distribution to achieve an even better fit for the

data. The pdf for the EGGU distribution is

f (x) =αβσ−1
{

1−
[

1− exp

{
−exp

(
−x−µ

σ

)}]α}β−1[
1− exp

{
exp

(
−x−µ

σ

)}]α−1

× exp

{
−exp

(
−x−µ

σ

)}
exp

(
−x−µ

σ

)
,

with −∞ < x < ∞, 0 < α,β ,σ < ∞ and −∞ < µ < ∞.

Bourguignon et al. (2013) also analyzed the data, but they used the Kumaraswamy-Pareto

(KWP) distribution with pdf

f (x) =
abkβ k

xk+1

[
1−
(

β

x

)k
]a−1{

1−
[

1−
(

β

x

)k
]a}b−1

,

for x ≥ β and 0 < a, b ,k ,β < ∞. The histogram for this data set is very skewed to the right as

seen in Figure 2.2.

We obtained, using the PIPE method, for this data set the following cdf:

F(x) =
1.17258x

x+11.6991
, 0 ≤ x < x1,

with F(x1) = 1, x1 = 67.7894. The corresponding pdf is given by

f (x) =
13.7181

(x+11.6991)2 , 0 ≤ x < x1.
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Table 2.2 Estimates and log-likelihood for the models adjusted to the Wheaton river data set.

φ φ̂ LL

BP (α,β ,k,θ) (7.69,85.75,0.02,0.10) −
KWP (a,b,k,β ) (2.86,85.85,0.05,0.10) −271.20

BC (α,β ,λ ,θ) (387.65,1.46,2.05,0.08) −260.48

EGGU (a,b,µ,σ) (0.11,0.48,2.63,1.63) −256.90

PIPE − − −235.83

For this example we removed exp(−·) from F , to search for simpler alternatives. Table 2.2

shows the information of the fitting of the models in the previous papers. We used the esti-

mates and information available from the original papers. The information on the likelihood

of the BP model was not available in Akinsete et al. (2008) and was omitted here as well.

Figure 2.2 shows the pdfs of the EGGU and the PIPE model overlapping the data’s histogram

and the quantile plot with 95% bootstrap simulated envelope for the PIPE model. The his-

togram suggests that the proposed distribution is suitable for the data. The quantile plot shows

a good agreement between the model and the data. The largest observation in this data set is

64.0, which is much larger than the second largest one, 39.0, considering the sample standard-

deviation of 12.41m3/s. The PIPE model seems to capture the behavior of this possibly extreme

value very well. The KS test returned a p-value equal to 0.3197 and AS test returned 0.3341

suggesting that there is no evidence of a bad fit. As in the previous example, the PIPE distribu-

tion achieved the highest likelihood. We emphasize that the distribution obtained from the PIPE

method has a much simpler analytic expression for its cdf and cdf than the other candidates.

Ball bearing data set

The next data set is used in many papers on lifetime distributions. It consists of 23 observations

of the fatigue failure times, measured in millions of revolutions, of ball bearings. In Nassar and

Nada (2012) the authors proposed to use the beta-exponential-geometric (BEG) distribution,
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Figure 2.2 Histogram and quantile plot for the Wheaton river data set.

which they presented, and it fitted the data nicely. Its pdf is given by

f (x) =
1

B(a,b)

(
1− e−βx

1− pe−βx

)a−1
β (1− p)be−bβx

(1− pe−βx)b+1
,

for x > 0, p ∈ (0,1), a, b, β > 0. This is the result of the composition of the beta distribu-

tion and the exponential geometric distribution (Adamidis and Loukas, 1998). The gamma

and exponentiated Weibull (EW) (Mudholkar and Srivastava 1993), with cdf F(x) = {1 −
exp[−(x/λ )k]}α , λ > 0, α > 0, x > 0, distributions are also considered here. The EW dis-

tribution is a good benchmark since it is known to be able to fit a very wide variety of data. The

data are:

17.23, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.64,

68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.4.

Table 2.3 shows the fitted distributions and the logarithm of the maximized distribution. The

PIPE method proposed the function

F(x) = 0.000847396e−x/26.272
, −∞ < x < ∞

as cdf. The Kolmogorov-Smirnov test for the PIPE distribution returned a p-value of 0.8974,



34

Table 2.3 Estimation for the ball bearings data set.

φ φ̂ LL

BEG (p,a,b,β ) (0.35,5.38,2.58,0.01) −113.06

EW (α,k,λ ) (4.49,1.06,34.83) −113.06

Weibull (k,λ ) (2.10,81.88) −113.73

Gamma (α,β ) (3.99,0.06) −113.10

PIPE − − −113.50
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Figure 2.3 Histogram and quantile plot for the ball bearings data set.

whereas for the Anderson-Darling test the value was 0.8007. Figure 2.3 suggests the PIPE dis-

tribution is adequate for the data and this agrees with the previous tests. The logarithm of the

likelihood for this model was −113.5005, which is slightly lower than the one from the BEG

distribution. However, it is computationally much simpler to obtain values for P(X ≤ x) under

the PIPE model than under the BEG model − even a handheld calculator suffices. There is the

inconvenience of P(X < 0) 6= 0, however it is a small value for this particular application.
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2.6 Addressing issues and final comments

In this chapter we suggested the use of the PIPE method for generating possibly new con-

tinuous probability distributions from a given data set. The method described here allows the

development of relatively simple distributions that performed better than several more com-

plicated available distributions in two data sets. Its use was also illustrated by several runs

of simulations with artificial data. The simulation studies suggest that the PIPE algorithm can

properly handle data modeling from a wide variety, including heavy tailed, bimodal and skewed

data.

We recommend the use of this method if there is no evidence in the problem being studied

that may lead to the use of a specific distribution, existing or new. The main advantage over the

use of distributions in the so called G-classes (as the beta-G and gamma-G classes) is that it is

possible to control the complexity of the new distribution using the PIPE method. The cdf of

the G-classes distributions tend to have mathematically complicated formulae.

There are also situations where we do not recommend the use of this method. For instance,

if it is possible to develop an specific distribution from the underlying physical properties of

the problem, we do not recommend using the PIPE method unless there is a clear advantage in

doing so. Another situation where we do not recommend its use is when the problem satisfies

all the theoretical criteria for the use of an existing distribution, such was the waiting times in

Poisson processes or small measurement errors that are easily handled by the normal distribu-

tion. Adequacy measures and the likelihood criteria should never replace proper mathematical

analysis of the problem.

Future efforts may be able to describe the mathematical properties of the search in the

space of the candidates distributions. A useful refinement that we were not able to provide is to

obtain an algorithm for generating a function that integrates up to a constant. If there was such

an algorithm we would be able to find distributions with support on the whole real line or in the

(0,∞) half of the line in a much easier way. However, finding a distribution that has support on

bounded intervals is also reasonable.

We observed many other interesting events during the development of this paper, while
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working on other examples. Changing the numbers in the cdfs found by the PIPE method for

unknown parameters and estimating them by maximum likelihood led to values very close to

those proposed by the algorithm for many data sets (real and simulated). In some data sets we

changed the seed for the random number generators or modified some of the initial conditions,

such as the values in Pd,w. These runs of the algorithm led to different solutions (cdfs) since

it is a non-deterministic algorithm. However, these solutions were usually very similar to each

other. For the ball bearings and the Wheaton river data sets there were two groups of very

similar solutions that were suggested by the PIPE method depending on the initial settings and

the method did not find anything outside those groups. Last, the output of the algorithm seems

to depend heavily on the choice of F . Adding or removing elements to F changes drastically

the behavior of the algorithm in our experience. We suggest starting from very few elements

and adding more as needed. We also suggest keeping the mutation probability high enough. It

seems to play a major role in the final result.

Overall, our opinion is that the PIPE algorithm is an interesting and promising alternative

in the field of data modeling.
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CHAPTER 3

Beta L2 Model

RESUMO

Nesse capítulo, apresentamos uma nova classe de distribuição obtida através da composição

de duas classes já existentes. Essa composição permite adicionar até três novos parâmetros, os

quais podem contribuir para um melhor ajuste do modelo a uma variedade maior de conjuntos

de dados. Alguns modelos já existentes são casos particulares dessa nova classe. Apresentamos

resultados gerais para uma família genérica nessa nova classe. O resultado principal é a uma

representação da função densidade de probabilidade como mistura de distribuições exponen-

cializadas, o que ajuda a obter várias propriedades matemáticas das novas famílias tais como

momentos e funções geradoras de momentos. Também apresentamos a caracterização pelo

princípio da máxima entropia para essa classe. Uma aplicação a um conjunto de dados reais é

utilizada para ilustrar o uso de uma família da nova classe. Comparamos o novo modelo a nove

outros modelos já existentes. Estimação dos parâmetros é brevemente discutida.

3.1 Introduction

In this chapter, a new wide class of continuous distributions is investigated. This class

is obtained by adding three parameters to a parent continuous distribution with cumulative

distribution function (cdf) G(x).

Alzaatreh et al. (2013) generate a new class by using an existing distribution as baseline

and a transformation of a given cdf. Their very general framework is defined as follows: Let X

be a random variable with probability density function (pdf) g(x) and cdf G(x). This cdf will

act as a baseline distribution. Let T be a continuous random variable with pdf r(t) and support
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[a,b]. The cdf of a new family of distributions is defined by

F(x) =
∫ W (G(x))

a
r(t)dt,

where W (G(x)) ranges from a to b, is differentiable and monotonically non-decreasing, with

lim
x→−∞

W (F(x)) = a and lim
x→+∞

W (G(x)) = b. The cdf F(x) is thus R(W(G(x))), where R(t)

denotes the cdf of the random variable T . In their paper, the authors provided several examples

of choices for T and W . The class of distributions proposed in this chapter comes by taking

W (u) = u and T as a beta-exponential variate (Nadarajah and Kotz, 2006). This investigation

is mainly motivated by two reasons. First, families from the beta-G class of distributions have

a good performance in many applications. Among the papers with real data applications of

the beta-G, we cite: Nadarajah and Gupta (2004), Nadarajah and Kotz (2004), Fischer and

Vaughan (2010), Paranaíba et al. (2011) and Cordeiro et al. (2012). The extra parameter may

improve further the usefulness of these families. Second, the generated class is a combination

of the beta- G and Lehmann type II classes of distributions. This class appears very briefly

in Alzaatreh et al. (2013) but is not discussed in enough details and was only used in a few

examples of their work. Its ability to outperform several other classes, as shown later in this

paper, makes a solid reason for further investigations.

The chapter is organized as follows. In Section 3.2, we define the new class of distributions.

In Section 3.3, we present some general properties of this class, such as moments, moment

generating function (mgf) and entropies. In Section 3.4, we provide special models in this

class. In Section 3.5, we address estimation of the model parameters by maximum likelihood.

Finally, Section 3.6 presents an application of two families in the new class.

3.2 The Beta-L2-G class

The class investigated in this paper is actually equivalent to the composition of two gener-

ators: the beta generator and the Lehmann type II generator. Then, a distribution in the new

class with baseline cdf G(x) is referred to as the Beta-L2-G distribution. The class pdf is given
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by

f (x) =
c

B(a,b)
[1−G(x)]bc−1 {1− [1−G(x)]c}a−1 g(x), (3.1)

where G(x) and g(x) are the cdf and pdf of the baseline distribution.

Using the generalized binomial expansion twice, we can easily prove that

f (x) =
cg(x)

B(a,b)

∞

∑
j,k=0

(−1) j+k

(
a−1

j

)(
(b+1)c−1

k

)
G(x)k. (3.2)

A useful expansion for the pdf in (3.1) can be derived using the concept of exp-G distribu-

tion. Based on equation (3.2), we can write

f (x) =
∞

∑
k=0

vk+1 hk+1(x), (3.3)

where hk+1(x) is the exp-G(k+1) density function with power parameter k+1 and

vk+1 =
c

(k+1)B(a,b)

∞

∑
j=0

(−1) j+k

(
a−1

j

)(
(b+1)c−1

k

)
.

This is done in many papers on members of the G-classes, and quickly allows to obtain

most mathematical properties of the new family based on the corresponding properties of their

exp-G counterparts. Nevertheless, when G(x) and g(x) are simple, the mathematical proper-

ties can be derived via numerical integration from Equation (3.1) without much computational

effort. In the next section, we obtain some of these mathematical properties using the mixture

representation (3.3).

3.3 General properties of the new family

In this section, we discuss some general properties of the Beta-L2-G class. Henceforth, let

X ∼ Beta-L2-G(ηηη,φφφ) be a random variable whose pdf is given by (3.1), with φφφ representing

the vector of parameters of G(x) and ηηη = (a,b,c)⊤, and let Yk+1 ∼ exp-G(k+1), for k ≥ 0.

The general expression for the moments of the new family can be obtained from Equation

(3.3). Let µ j =E(X j) be the j-th ordinary moment of X and ν j,k+1 =E(Y
j

k+1). From Equation
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(3.3), it follows that

µ j =
∞

∑
k=0

vk+1ν j,k+1.

The same can be stated for the mgf of X regarding that one of Yk. It is simply given by

MX(t) =
∞

∑
k=0

vk+1Mk+1(t),

where Mk+1(t) denotes the mgf of Yk+1. Using well known recursive formulas, the cumulants

and the central and factorial moments are easily obtained. Based on them, mean deviations,

Bonferroni and Lorenz curves and other characteristics of X are readily available. Further,

manipulation of the sums and integer power of sums will reveal a mixture representation for

the density function of the order statistics in this family. Those calculations are lengthy and not

given here, but they mimic very closely what is done in, for example, Pinho et al. (2015) and

references therein.

One characteristic that does not follow directly from the series representation in (3.2) is the

Shannon entropy. It refers to the amount of uncertainty (or surprisal) associated to a random

variable. It is an important concept in many areas of knowledge, specially theory of infor-

mation, physics and probability. Although there are many other entropy measures, this one is

possibly the most popular and was introduced in the seminal paper by Shannon (1948). For a

continuous distribution F(x) with density f (x), the Shannon entropy is given by

HSh( f ) = E{(− log [ f (X)])}=−
∫ +∞

−∞
{log [ f (x)]} f (x)dx.

Alzaatreh et al. (2013) used the Beta-L2-G to illustrate a theorem involving the Shannon en-

tropy in their framework. From Lemma 2 in Alzaatreh et al. (2013), it follows that

HSh( f ) =−E{logg[G−1(1− e−X)]}+ log[c−1B(a,b)]+(a+b−1)ψ(a+b)

− (a−1)ψ(a)−bψ(b)− c−1[ψ(a+b)−ψ(b)].

We use a different formula to provide the maximum entropy characterization of this class.

This alternative formula is given in the Appendix. The entropy of Shannon can be used to

identify probability models as seen in Jaynes (1957). Consider a class of distributions defined

by a set of constraints such as

F = { f (x)|EX [Li(X)] = ti, i = 1,2, . . . ,m},
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where ti ∈ R, ∀i. We can choose a member of F as the pdf of a random variable X if it

maximizes the Shannon entropy under these constraints. The chosen pdf is called the maximum

entropy distribution. This approach ensures that no other assumptions except those from the

constraints are made. For instance, we can prove that if the first and second moments are

constrained, the maximum entropy distribution is the normal distribution or that if we only that

the data at hand are positive, the maximum entropy distribution is the exponential distribution.

More often than not, the calculations of the Shannon’s entropy provide clues of what are the

constraints involved in the maximum entropy characterization.

For the Beta-L2-G distribution, the maximum entropy characterization is given by these

three constraints:

• E[log[1−G(X)])] = [ψ(b)−ψ(a+b)];

• E[log{1− [1−G(X)]c)}] = ψ(a)−ψ(a+b);

• E[logg(X)] = E{log[G−1(1− Z−c)]}, where Z ∼ Beta(b,a) and ψ(·) is the digamma

function.

The proof can be found in the Appendix B, it uses the different (but equivalent) ways of ex-

pressing the Shannon entropy for this class.

3.4 Some members of the Beta-L2-G class

In this section, we present some characteristics of the generated family for particular choices

of the cdf G(x).

3.4.1 Beta-L2-Gumbel

This family comes by inserting G(x) = exp[−exp(−z)], with z= β−1(x−µ), into Equation

(3.1). Figure 3.1 displays some shapes of the new density function for µ = 0 and β = 1.
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Figure 3.1 Some shapes of the Beta-L2-Gumbel pdf for selected parameter values
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3.4.2 Beta-L2-Log-logistic

This family follows from inserting

G(x) = 1− 1
1+( x

λ )
−α

into Equation (3.1). Figure 3.2 displays some possible shapes of the new density function. In

Section 3.6, we use this new family to model breaking strengths of glass fibres. The results

indicate a superior fit of the Beta-L2-log-logistic distribution when compared to several others

old and new distributions.

Figure 3.2 Some shapes of the Beta-L2-Log-logistic pdf for selected parameter values
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3.4.3 Beta-L2-Fréchet

This family is obtained by inserting

G(x) = 1− e−z−α
, α > 0,

where z = β−1(x−µ) and x > µ , into Equation (3.1). Figure 3.3 displays some possible shapes

of the Beta-L2-Fréchet density function.

Figure 3.3 Some shapes of the Beta-L2-Fréchet pdf for selected parameter values
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3.5 Estimation

Estimation of the Beta-L2-G model parameters can be accomplished by the maximum like-

lihood method. Based on a random sample x1, . . . ,xn, the logarithm of the likelihood function
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for the parameters in (3.2) is given by

ℓ= ℓ(a,b,c,φφφ⊤) =−n log(c−1B(a,b))− (bc−1)
n

∑
i=1

log[1−G(xi)]

+(a−1)
n

∑
i=1

log(1− [1−G(xi)]
c)+

n

∑
i=1

log[g(xi)].

Then, the components of the score function are

∂ℓ

∂a
=

n

∑
i=1

log(1− [1−G(xi)]
c)+n[ψ(a)−ψ(a+b)],

∂ℓ

∂b
= c

n

∑
i=1

log[1−G(xi)]+n[ψ(b)−ψ(a+b)],

∂ℓ

∂c
= nc−1 +b

n

∑
i=1

log[1−G(xi)]− (a−1)
n

∑
i=1

[1−G(xi)]
c

1− [1−G(xi)]c
log[1−G(xi)]

and

∂ℓ

∂φ j
= (bc−1)

n

∑
i=1

1
1−G(xi)

∂G(xi)

∂φ j
+(a−1)

n

∑
i=1

c[1−G(xi)]
c−1

1− [1−G(xi)]c
∂G(xi)

∂φ j

+
n

∑
i=1

1
g(xi)

∂g(xi)

φ j
,

where φφφ⊤ = (φ1, . . . ,φk) denotes the parameters of G(x) and 1≤ j ≤ k. Setting these derivatives

to zero and solving the resulting equation system yields the maximum likelihood estimators

(MLEs) of the model parameters. Unfortunately, the k+3 equations cannot be simplified any

further for a generic distribution G and require the use of an iterative numerical method such

as the Newton-Raphson or quasi-Newton procedures, even in simple cases. Under general

regularity conditions, the asymptotic distribution of (â, b̂, ĉ,φ̂φφ
⊤
)⊤ is Nk+3(0,KKK

−1), where K =

KKK(a,b,c,φφφ⊤) is the expected information matrix. The matrix KKK can be replaced by the observed

information evaluated at the MLEs matrix for constructing asymptotic confidence intervals for

the parameters.

Care is advised when extracting a numerical approximation for the matrix K from the iter-

ative methods used to obtain the estimates of the parameters. For some methods, such as the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, an approximation of the Hessian matrix

is used in the calculations at each iteration. This approximation may not be reliable if the con-

vergence of the methods happens too fast. If the number of iterations is small (e.g. five or six
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iterations), using the BFGS method, the output given for the approximate Hessian matrix may

be unreliable, even when the point estimates are very accurate. Bootstrap confidence intervals

are a reliable alternative in these cases. The convergence of the estimation procedures usually

depends on the choice of the starting values of the parameters. We advise first using a non-

deterministic optimization routine, such as simulated annealing, to obtain the initial guesses

of the parameters and then using the Newton or quasi-Newton methods. This greatly helps to

find decent first guesses, although it adds to the total computational time, this is usually reli-

able, especially when dealing with simulation and bootstrap. One recent, fully implemented,

very useful routine is found in the C library libcgrpp (Silva et al., 2011). It implements the

C-GRASP metaheuristic mainly as suggested in Hirsch et al. (2010).

Other estimation methods such as the method of moments (see Cramèr, 1946, Section 33) or

the generalized method of moments (Hansen, 1982) may be used. Particularly, the generalized

method of moments may be used in conjunction with the maximum entropy characterization to

produce estimates of the parameters. Another alternative is the use of the log-cumulants in the

estimation process as described in Nicolas (2002), which possesses good statistical properties,

such as low variance, according to Anfinsen and Eltoft (2011). This is, however, a discussion

which may be long and thus fit to be presented in a separate work.

3.6 Application to real data

The following data set consists of 63 observations of the breaking strength of glass fibers

with length of 1.5cm. These data were obtained at the UK National Physical laboratory and

studied by Smith and Naylor (1987), Jones and Faddy (2004) and Fischer and Vaughan (2010),

among others. We fit several models to the current data:

• the Beta-L2-log-logistic (BL2LL) distribution;

• the Beta-L2-logistic (BL2L) distribution with baseline given by

G(x) =
1

1+ e−
x−µ

σ

, x,σ > 0;
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• the generalized gamma (GG) distribution with cdf

F(x) =
γ(dp−1, [xa−1]p)

Γ (dp−1)
;

where γ(a,z) =
∫ z

0 ta−1e−tdt represents the incomplete gamma function.

• the exponentiated-Weibull (EW) distribution (Mudholkar and Srivastava, 1993) with cdf

F(x) =
[
1− e−( x

λ )
k
]α

, x, k, λ , α > 0;

• the gamma distribution, with cdf F(x) = γ(α,βx)/Γ (α); and

• the Weibull distribution, which is the EW distribution with α = 1.

We also consider six models investigated by Fischer and Vaughan (2010): the normal distri-

bution, beta-normal (BN) distribution, beta-logistic (BL) distribution, beta-hyperbolic secant

(BHS) distribution, beta-Student’s t (BT) distribution and beta-generalized hyperbolic secant

(BGHS) distribution. The references for these distribution can be seen in Fischer and Vaughan

(2010), most of them follow from, for example, Jones (2004).

For the first six models, the MLEs of the parameters, the logarithm of the maximized

likelihood function (LL) and the Akaike Information Criterion (AIC) are listed in Table 3.1.

These values are obtained in the R software. The parameters are estimated by the function

fitdistr() from package MASS with initial guesses for the parameters found by simulated

annealing function GenSA() from the GenSA package.

Since the BL2LL and BL2L models are five-parameter distributions, we compare to the

five-parameter BT and BGHS distributions and to the four-parameter BN, BL and BHS distri-

butions from Fischer and Vaughan (2010). The values for the LL and AIC obtained in Fischer

and Vaughan (2010) are given in Table 3.2. The BHS distribution yields the best overall fit

based on the LL and AIC statistics. However, Fischer and Vaughan found that these distribu-

tion presented a few identification problems. It is a common issue with these new generated

distributions to have a likelihood function with very flat areas.

From the new distributions presented here, the BL2LL yields the best fit according to both

the LL and AIC statistics. The generalized gamma and exponentiated-Weibull distributions are
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Table 3.1 Parameter estimates and relative selection criteria for the current example.

Distribution Parameter Estimate Std. Error LL AIC

BL2LL

a 0.1262 0.0249

−8.73 27.45

b 0.0462 0.0116

c 11.6021 0.1084

α 1.5746 0.0447

λ 25.4154 0.0542

BL2L

a 0.1407 0.0220

−10.48 30.97

b 1.8299 0.5680

c 0.1080 0.0040

µ 1.7088 0.0040

σ 0.0404 0.0031

GG

a 1.7693 0.1053

−14.59 35.18d 4.8102 0.8926

p 7.7626 2.0217

EW

α 0.6712 0.2489

−14.67 35.35k 7.2846 1.7069

λ 1.7181 0.0861

Gamma
α 17.4385 3.0778

−23.95 51.90β 11.5730 2.0722

Table 3.2 Relative selection criteria for the distributions in Fischer and Vaughan (2010).

Distribution LL AIC Distribution LL AIC

Normal −17.91 39.82 BHS −10.02 28.03

BN −14.06 36.11 BT −11.41 32.82

BL −10.49 28.99 BGHS −9.90 29.80
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very flexible distributions and usually perform well in many applications. They are used here as

benchmarks for the fitness of the new models. Both BL2LL and BL2L models perform better

than the generalized gamma and exponentiated-Weibull distributions. The BL2LL model also

performs better than the distributions in Fischer and Vaughan (2010), one of which is a partic-

ular case of the new class. Surprisingly, the standard errors for estimating the new families’

parameters are relatively small and provide no indication of poorly identified density functions

even though they have five parameters. So, at least for this application, it is one advantage

of the new models. Figure 3.4 displays three of the fitted density functions overlapping the

histogram of the data.

Figure 3.4 Three of the fitted densities.
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3.7 Concluding remarks

In this Chapter, we explore the Beta-Lehmann 2-G (Beta-L2-G) class. The main results are

a mixture representation for its density function and the maximum entropy characterization.

Other structural results follow directly from the mixture representation. The benefits of the

addition of three new parameters to an existing baseline distribution are presented by means

of an application to a real data set. In the practical example, the Beta-Lehmann 2-log-logistic

(BL2LL) model provides the best fit when compared to other models of similar complexity.
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CHAPTER 4

The Quadratic Transform-Marshal-Olkin-G class

of distributions

RESUMO

Nesse capítulo, apresentamos outra classe de distribuições obtida através da composição

de duas classes já existentes. Apresentamos resultados gerais para uma escolha genérica da

distribuição baseline. Apresentamos uma representação da função densidade de probabilidade

como mistura de distribuições exponencializadas, como no capítulo anterior. Uma aplicação a

um conjunto de dados reais é utilizada para ilustrar o uso de uma família da nova classe.

4.1 Introduction

In this chapter we present and analyse another new class of probability distributions that

adds two new parameters to an existing distribution. The Quadratic Transformed Marshall

Olkin-G, QTMO-G for short, is the composition of the Transmuted-G (Shawn and Buckley,

2007) and Marshall-Olkin-G (Marshall and Olkin, 1997) classes of distributions. This chapter

is divided as follows. In Sections 4.2 and 4.3 we give general information on the Transmuted-G

and Marshall-Olkin-G classes, respectively. Section 4.4 shows the new class of distributions we

are proposing and a mixture representation for the pdf based on a generic baseline distribution.

In Section 4.5 we illustrate the behaviour of the pdf and hazard rate function (hrf) of some of

the new families in this class. We also present examples of the behaviour of the kurtosis and

skewness as function of the additional parameters for selected baseline distributions. Section

4.6 briefly discusses the estimation of the parameters for this class. An application is shown in

Section 4.7 and final comments are addressed in Section 4.8.
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4.2 Transmuted distributions

In Shawn and Buckley (2007) the authors attempt to infer the change of variables of one

random variable that leads to another random variable with given distributions. The motivation

for this comes from simulation of random variables. They argue that undergraduate students

usually learn to simulate a random variable X with cdf G(X) by generating a uniform random

variable U and then setting x = G−1(u) and little emphasis is given to the fact that occurrences

of X may be obtained from another random variable Y and a suitable mapping h : Y → X ,

where X and Y are the supports of Y and X . Such is the case of the Box-Muller transform

and the well known relation between the chi-square and normal distributions. Using computa-

tional algebra and Cornish-Fisher expansions it is possible to find such changes of variables or

approximations of it.

The same authors proceed to use such mappings with the intent of introducing modulations

in existing distributions. This can, for example, induce different skewness and kurtosis to the

distributions and is essentially in the same context of the generated distributions. They call the

mapping u → F(G−1(u)) a rank transmutation. The mapping u → u+λu(1− u), |λ | < 1, is

called the quadratic transmutation and this leads to F(x) = (1+λ )G(x)−λG(x)2. There are

at least two interesting characteristics of this generated cdf. First, if G(x) has a symmetric pdf

the transmutation preserves all the even moments and the parameter λ is able to induce extra

skewness. Second, the distribution of the square of a random variable with cdf G(x) is the same

of the square of the random variable with cdf F(x).

Bourguignon et al. (2016) studied the distributions generated by the quadratic mapping

from Shawn and Buckley (2007) as a member of the G-classes. The Transmuted-G distri-

bution has cdf given by F(x) = (1+λ )G(x)−λG(x)2, for a baseline G(x). Bourguignon et

al. (2016) provided and discusses many of the mathematical properties that are typical of G-

classes studies, such as moments, entropies, Kullback-Leibler divergence and estimation, as

well as providing applications of members of the Transmuted-G class to real data sets. Shaw

and Buckley (2007) commented that some of these rank transmuted distributions are not thor-

oughly described because they are not always mathematically tractable, even with computa-
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tional algebra systems. Indeed, many results described in Bourguignon et al. (2016) must be

found via numerical techniques. Fortunately, some of the expressions for the moments of par-

ticular Transmuted-G distributions are very concise. Some of them are listed in Bourguignon

et al. (2016).

The pdf of the Transmuted-G distribution is given by

f (x) = [1+λ −2λG(x)]g(x), (4.1)

in which g(x) is the pdf of G(x). A useful way to express the pdf in ((4.1)) is

f (x) = (1+λ )g(x)−2λG(x)g(x),

because G(x)g(x) is the pdf of an exp-G distribution with power parameter equal to 2. This

leads to immediate results for the moments of the transmuted-G class.

From this point on, we will refer to the transmuted-G class as the quadratic transformed-G

class for two reasons. The first is that Shawn and Buckley (2007) also consider a cubic map

which is able to modify the kurtosis of some baseline distributions, though it is less tractable

than the quadratic one. The second reason is that "transmuted" does not reflect the nature of

the method. The quadratic transform is most useful when there is the need to introduce more

skewness to a model and should not be taken as something other than that.

4.3 The Marshall-Olkin class of distributions

Consider a sequence of independent random variables Y1, Y2, . . . all of them with a common

cdf G(x) and pdf g(x). Let X =min{Y1,Y2, . . . ,YN}, where N is a positive integer valued random

variable with probability generating function ϕ(·,θ) for θ > 0. The survival function F̄(x) of

X is given by

F̄(x) = ϕ(Ḡ(x),θ), (4.2)

where Ḡ(x) = 1−G(x). This kind of composition was studied in many details by Aly and

Benkherouf (2011). For instance, when Ḡ(x) = exp(−λx), λ > 0 with ϕ(s,θ) represent-
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ing a zero truncated Poisson pgf, namely ϕ(s,θ) = exp[θ(s−1)][1− exp(−θ)]−1, the result-

ing distribution is the exponential Poisson (EP) distribution from Kus (2006). When Ḡ(x) =

exp(−λx) and Ḡ(x) = exp[−(λx)α ], where ϕ(s,θ) denotes the probability generating function

of a generic power series distribution, we obtain the models in Chahkandi et al. (2009) and

Morais (2011), respectively. Other proposals for this kind of mixture can be found in Barreto-

Souza et al. (2011), Lu and Shi (2012), Ristic (2012) and in the references sections of these

papers.

One of the most popular versions of (4.2) was pioneered by Marshall and Olkin (1997)

based on the geometric pgf ϕ(·,θ) = sθ(1− θ̄ s)−1, where θ̄ = 1−θ . In the same paper, the

method was applied to the exponential and Weibull distributions yielding the Marshall-Olkin

extended exponential and Marshall-Olkin extended Weibull distributions.

4.4 The new class of distributions

The Quadratic Transform Marshall Olkin - G (QTMO-G) class of distributions is obtained

by the composition of the Transmuted-G and Marshall-Olkin-G classes of distributions. The

cdf of the QTMO-G is given by

F(x) = α(1+λ )

[
1− G(x)

1−αG(x)

]
−λα2

[
1− G(x)

1−αG(x)

]2

. (4.3)

The corresponding pdf is given by

f (x) = α

[
1+λ +2λ

G(x)

1−αG(x)

]
g(x)

[1−αG(x)]2
.

As in Bourguignon et al. (2016), this pdf can be written as

f (x) = (1+λ )h(x,1)−λh(x,2),

where h(x, i) is the pdf of a random variable with distribution exp-MO-G with power parameter

i.

This pdf can be expressed as a mixture of exp-G pdfs. Several mathematical properties and

quantities of the QTMO-G distributions can be obtained directly from this, such as moments,
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cumulants, moment generating functions, distribution of the order statistics and more. This

mixture is obtained as follows. Let

ai = α(1−α)
∞

∑
j=i

(
j

i

)
, i ≥ 0,

such that, by using the negative binomial series and the binomial theorem, we have

αG(x)

(1−αG(x))
=

∞

∑
i=0

ai[G(x)]i.

By similar calculations we have

α(1−αG(x))−2 =
∞

∑
i=0

bi[G(x)]i,

with

bi = α(1−α)
∞

∑
j=i

(1+ j)

(
j

i

)
.

With these two expansions we may write

f (x) =

[
1+λ −2λ

∞

∑
i=0

aiG(x)i

](
∞

∑
j=0

bnG(x) j

)
g(x)

=

[
(1+λ )

∞

∑
j=0

b jG(x) j −2λ
∞

∑
i=0

∞

∑
j=0

aib jG(x) j+i

]
g(x)

=

[
(1+λ )

∞

∑
j=0

b jG(x) j −2λ
∞

∑
s=0

csG(x)s

]
g(x),

with cs = ∑s
i=0 aibs−i. Finally,

f (x) =
∞

∑
i=0

digi(x),

with

di =
(1+λ )bi −2λci

s+1
,

and gi(x) = (i+ 1)g(x)G(x)s. This expansion leads to a direct connection of the QTMO-G

distributions properties to the Exp-G distributions properties, such as moment and moment

generating function.
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4.5 Some families in the QTMO-G class

In this section we show some aspects of selected members of the QTMO-G class of distri-

butions. For each selected member, we show how the additional parameters affect the skewness

and kurtosis. The Galton’s skewness (Johnson et al, 1994, p. 40) and Moors’ kurtosis (Moors,

1988) are the measures we use to illustrate the behaviour of the skewness and kurtosis as func-

tions of the parameters. These are considered more robust than those usual skewness and

kurtosis measures and have the advantage of existing even for distributions without moments.

The Galton’s skewness is given by

G =
Q
(3

4

)
+Q

(1
4

)
−2Q

(1
2

)

Q
(3

4

)
−Q

(1
4

) ,

and the Moors kurtosis is given by

M =
Q
(3

8

)
−Q

(1
8

)
+Q

(7
8

)
−Q

(5
8

)

Q
(

6
8

)
−Q

(
2
8

) .

4.5.1 QTMO-Weibull

This family is obtained by using

G(x) = 1− e−θxk

as the baseline distribution in (4.3). We use θ = 1 and k = 2. Different shapes for the pdf and

hrf of the QTMO-Weibull are shown in Figure 4.1. Plots for the Galton’s skewness and Moor’s

kurtosis are shown in Figure 4.2. Overall, both the kurtosis and skewness increase as λ goes

from −1 to 1, with varying convexity depending on the value of α .

4.5.2 QTMO-log-logistic

The cdf for the QTMO-log-logistic is obtained by inserting

G(x) =
1

1+(x/β )k
,
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Figure 4.1 QTMO-Weibull pdfs and hrfs.
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in (4.3). Some of the shapes for the pdf and hrf of this family, for selected values of k and

β = 1, are presented in Figure 4.3.

For the skewness and kurtosis in this example, we use k = 2 and β = 1, allowing λ and α

to vary. The result is shown in Figure 4.4. It appears that both the kurtosis and skewness do

not depend on α and the decrease as λ goes from 0 to 1. Both the skewness and kurtosis seem

increase in this family as λ goes from −1 to 0.



58

Figure 4.2 Galton’s skewness and Moor’s kurtosis for a QTMO-Weibull family.
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Figure 4.3 QTMO-log-logistic pdfs and hrfs with β = 1.
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4.5.3 QTMO-normal

The cdf for the QTMO-normal distribution is easily obtained by using the normal distribu-

tion cdf Φ(x; µ,σ) in (4.3). Since the normal distribution only has location and scale parame-

ters, we set µ = 0 and σ = 1. Different shapes for the pdf and hrf are seen in Figure 4.5 while

skewness and kurtosis are seen in Figure 4.6. While the skewness behaves much like in the
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Figure 4.4 Galton’s skewness and Moor’s kurtosis for a QTMO-log-logistic family.
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QTMO-Weibull distribution, the kurtosis measure seems more complex.

Figure 4.5 QTMO-standard normal pdfs and hrfs.
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Figure 4.6 Galton’s skewness and Moor’s kurtosis for the QTMO-standard normal.
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4.5.4 QTMO-Kumaraswamy

The Kumaraswamy distribution, used as baseline, and proposed in Kumaraswamy (1980),

is well known for its applications in hydrology (Fletcher and Ponnambalam, 1996). The pdf

for the Kumaraswamy distribution is

g(x) = abxa−1(1− x)b−1, x ∈ [0,1], a > 0, b > 0.

Different shapes for the QTMO-Kumaraswamy distribution can be seen in Figure 4.7. The kur-

tosis surface shows a complexity similar to that of the QTMO-standard normal. The skewness

and kurtosis seen in Figure 4.8

4.6 Estimation

In this section, we consider the estimation procedure by the maximum likelihood method

for the parameters in the QTMO-G families. Estimates for the parameters, based on a sam-

ple xxx = (x1,x2, . . . ,xn)
⊤, are obtained by solving the set of equations ∂ l/∂θi(xxx) = 0, i =

1, . . . ,k, with θθθ = (θ1,θ2, . . . ,θk)
⊤ representing the vector of parameters of the model and
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Figure 4.7 Some possible shapes for the pdf and hrf of the QTMO-Kumaraswamy family.
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Figure 4.8 Galton’s skewness and Moor’s kurtosis for a QTMO-Kumaraswamy.
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l(xxx) = ∑n
i=0 log f (xi) representing the logarithm of the likelihood function based on the sample.

Since this set of equations is very likely not to have explicit solutions, iterative methods are

employed, as it was the case in the previous chapter. This can be achieved by the fitdistr()

routine from package MASS. We emphasize that choosing appropriate initial guesses in this set

up may be frustrating and time consuming in practical applications. Much in the same way as
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Figure 4.9 Histogram and box-plot for the coverage data.
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it was with the Beta-L2-G class, it is possible to avoid this problem by using heuristic methods,

such as simulated annealing. The GenSA() routine, from package GenSA, in R is able to do

so. Heuristic methods can be used on their own as a tool for estimation. This is achieved, for

instance, by using the AdequacyModel package, from R.

4.7 Application to a real data set

In this section, we present an application of a member of the QTMO-G class of distributions

to a real data set to illustrate its use. It also shows the improvement over the baseline distribution

regarding the fit to the data.

The data set we consider is included in Appendix C for easy access and it can be obtained

online at http://data.un.org/Data.aspx?d=MDG\&f=seriesRowID\%3a567.

It consists of 210 observations of the proportion of land area covered by forest in 2010 for

several countries, expressed as percentage. An histogram and a box-plot for these data are

presented in Figure 4.9. The data is clearly skewed and presents a higher frequency near zero

and another peak of frequency around 0.4.

To these data we fitted the QTMO-Kumaraswamy distribution. The baseline distribution is
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Figure 4.10 Histogram and fitted model. Quantile plot for the QTMO-KW distribution.
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confined to the [0,1] interval and that makes it a potentially favourable choice for the dataset.

The baseline distribution was also fitted to the data. An asymptotic likelihood ratio test for

testing the fit of the QTMO-KW distribution versus the fit of the KW distribution yields a p-

value of 0.0028. This suggests that the additional parameters are indeed useful. We also fitted

the exponentiated-Weibull (EW) distribution (Mudholkar and Srivastava, 1993) as it is widely

known as being able to model a large variety of data and is usually regarded as a benchmark to

new models. The Weibull, gamma and beta-KW models were also considered. The beta-KW

is another four parameter distribution that extends the Kumaraswamy distribution. Its pdf is

given by using the Kumaraswamy distribution as baseline in the composition

F(x) =
1

B(α,β )

∫ G(x)

0
tα−1(1− t)β−1.

The three best fitting densities are shown in Figure 4.10 overlapping the histogram for the data

and the quantile plot for the QTMO-KW distribution. The plots suggest that the QTMO-KW

is well suited for modelling the data. The estimated values of the parameters for every distri-

bution, the Akaike Information Criterion (AIC) and the p-value for the Kolmogorov-Smirnov

and Anderson-Darling tests are displayed in table 4.1.

The QTMO-G is, according to the AIC and likelihood levels, a better choice than the other

competing distributions. The KS and AD tests suggest that all the distributions considered here
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Table 4.1 Parameter estimates and relative selection criteria for the forest coverage example.

Distribution Parameter Estimate Std. Error LL AIC KS AD

QTMO-KW

λ 0.76 0.2182

48.68 −89.36 0.7269 0.9014
α 5.15 2.8391

a 0.56 0.1257

b 1.77 0.3197

Beta-KW

α 0.25 0.0188

46.16 -84.30 0.2369 0.4336
β 3.82 0.5532

a 2.99 0.0088

b 0.53 0.0125

EW

α 0.19 0.0135

47.19 −88.37 0.1582 0.4008k 3.92 0.0265

λ 0.69 0.0264

KW
a 0.83 0.0672

44.22 -84.44 0.0863 0.1994
β 1.68 0.1707

are suitable to the data at the most usual confidence levels. This makes the comparison more

meaningful.

4.8 Concluding remarks

In this chapter, we presented the Quadratic Transform Marshall Olkin-G class of distribu-

tions, which is obtained by the composition of two already existing G-classes: the Transmuted-

G and Marshall-Olkin-G. The expansion for the pdf of a general member of this class allows to

quickly obtain some mathematical properties of this class based on those of the exponentiated

class of distributions.

Some mathematical properties of the QTMO-G class are note mathematically tractable.
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Closed expressions or series representations for them are not available, even with the aid of

computer algebra systems. This is not too detrimental, as most of the quantities can be calcu-

lated by using iterative methods with great precision. Estimation of the parameters in this class

of distributions benefits greatly from the use of heuristic methods.

The application section provided empirical evidence of the usefulness of this class. The

fit of the QTMO-Kumaraswamy to the data was superior to the one of the baseline alone.

The QTMO-Kumaraswamy, to these data, also had a superior performance when compared to

already existing models of equal or lower complexity.
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CHAPTER 5

Estimation procedures using multilayer

perceptrons for univariate models

RESUMO

Nesse capítulo, mostramos como utilizar redes neurais simples para a estimação de parâmet-

ros em distribuições de probabilidade. Isso permite aproximar as estimativas obtidas pelo

método dos momentos sem a necessidade de métodos iterativos. O método foi testado em

conjuntos de dados reais e fictícios com ótimos resultados. O mesmo método pode ser aplicado

a outras distribuições. Mostramos uma aplicação a um problema de segmentação de imagens

SAR no qual o método reduz consideravelmente o tempo de computação necessário.

5.1 Introduction

The method of moments and generalized method of the moments (Hansen, 1982) are very

popular methods for parameter estimation. The first consists of equating some theoretical mo-

ments to their numeric sample counterparts and solving the equation system to obtain estimates.

The properties of this estimation method are well known. These properties are well documented

in, for example, Cramèr (1946). The generalized method of moments, as proposed by Hansen

(1982), equates the expected values of functions of the random variable to their numeric coun-

terparts. Solving the system of equations provides the estimates. The equations in Hansen are

mainly from orthogonality equations typically arising in Economy problems.

In both methods, solving the equations systems is usually difficult and relies on numerical

methods. These methods, in practical applications, may require programming skills of anyone

wanting to use non-common distributions, such as those in the generated distributions con-
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text (see Tahir and Nadarajah, 2015). We will focus, initially, on the generalized method of

moments (GMM) as the basic version is a special case of it.

Let θ
˜

be the vector of parameters of a distribution with cumulative distribution function

(cdf) F(x). Consider a random sample of size n, (Y1, . . . ,Yn)
T = Y

˜
. If g(Yi,θ˜

) is such that

IE[g(Yi,θ˜0)] = 0, when θ
˜0 is the “true” value of θ

˜
, and m̂(θ

˜
) = 1

n ∑ g(Yi,θ˜
), then the GMM

estimator of θ
˜

is found by minimizing

‖m̂(θ
˜
)‖2

W = m̂(θ
˜
)T W m̂(θ

˜
),

where the matrix W is positive-definite. This estimator can be viewed as a function of the data.

Given the data (Y1,Y2, . . . ,Yn)
T , the numerical value of θ̂

˜
is

argmin
θ
˜

= m̂(θ
˜
)T W m̂(θ

˜
).

This function can be highly non-linear or may assume a simple form. The former is far more

frequent than the latter.

It is well known that neural networks can emulate non-linear functions (Hornik, 1991). We

investigate in this chapter, how do multilayer perceptrons (MLP), a class of neural networks,

perform in estimating the parameters of probability distributions from the sample moments.

We compare the performance of the MLP estimator to the performance of the MM and GMM

estimators, since all three of them use basically the same information as input. To use a MLP in

such way, we require that m̂(θ
˜
) may be written as m̂(θ

˜
) = m1(Y˜

)−m2(θ˜
), where m1(Y˜

) does

not depend on θ
˜

. The input of the network will be m1(Y˜
) and the output will be the values of

θ̂
˜

.

This chapter is divided as follows. In Section 4.2, we provide a brief introduction to the

GMM estimation. Section 4.3 provides the basic information regarding MLP neural networks.

In Section 4.4, we present applications of this method to several probability distributions. Sec-

tion 4.5 shows an application of this method to a problem involving the statistical treatment of

SAR images. The last section addresses our final comments and possible extensions.
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5.2 The generalized method of the moments

In this Section, we describe the GMM procedure as proposed in Hansen (1982). This is

only a brief explanation. For further details, readers are referred to the original paper.

Let Y
˜
= (Y1,Y2, . . . ,Yn)

T be a random sample with independent and identically components

and let FY (y) be their common distribution. The parameters of F are denoted by θ
˜

. We do

not require F to be continuous or discrete. Let g(Y,θ
˜
) be a vector valued function such that

IE[g(Yi,θ˜0)] = 0
˜

, when θ
˜0 is the “true” value of θ

˜0 and 0
˜

is a vector of zeros with appropriate

dimension.

Consider the function m̂(θ
˜
)= 1

n ∑n
i=1 g(Yi,θ˜

), which is the sample counterpart of IE[g(Yi,θ˜0)].

The GMM estimator is obtained as θ̂
˜
= argmin

θ
˜

m̂(θ
˜
)T W m̂(θ

˜
).

For the estimation described above, the following conditions are sufficient to guarantee the

strong consistency of θ̂
˜

.

• If S is the parametric space and ξ is some norm, the metric space (S,ξ ) is separable and

S is compact.

• g(·,θ
˜
) is Borel mensurable for each θ

˜
in S and g(y, ·) is continuous for every y.

• IE[g(Yi,θ˜
)] exists and is finit for every θ

˜
∈ S and IE[g(Yi,θ˜0)] = 0 also, θ

˜0 is the only

value such that the expected value is zero.

• Let ε(ω,θ
˜
,δ ) = sup

{
|g(Y (ω),θ

˜
)−g(Y (ω),α

˜
)| : α
˜
∈ S,ξ (θ

˜
,α
˜
)< δ

}
. Then

lim
δ↓0

IE[ε(ω,θ
˜
,δ )] = 0.

Hansen (1982) also provides a set of sufficient conditions for the asymptotic normality of

the estimator. This, however, is not important for the particular use of the GMM in this paper.

5.3 Multilayer perceptron (MLP) neural networks

This section, initially, brings a very brief introduction to MLPs and neural networks. A

neural network, loosely speaking, is a system of inputs and outputs vaguely based on some
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biological process. Mathematically, let g be a function, x
˜

and y
˜

vectors such that g(x
˜
) = y

˜
.

Suppose that g is not easy or practical to be computed. A MLP can be used to approximate

g(x
˜
). This process is made in, usually, three steps.

1. Example collection: We provide some examples of pairs (x
˜
,y
˜
), such that y

˜
= g(x

˜
).

2. Learning or training: The network is trained to correctly assign each x
˜

to a value close to

its respective y
˜

.

3. Validation: During the training phase, it is possible to overfit the data. That means the

network will perform incredibly good in the example set but may perform very poorly for

x
˜

outside the example set. The validation phase checks if there is evidence of overfitting.

A neuron is the basic element of a MLP. It receives a value v and returns φ(v), where φ(·)
is called activation function and usually has range in [0,1] or [−1,1]. Neurons are organized

in layers. The first layer of neurons is proceeded by a layer of inputs of the network. Between

every input and neuron there is a weighted link called synapsis. The weight between neuron j

and input i is denoted ω1
i j. The input of this neuron j is v j = ∑n

i=1 ωi j xi, where n is the number

of inputs of the network. Refer to Figure 5.1.

Figure 5.1 A general MLP diagram.

x1

x2

x3

x4

Input

layer

Neuron

layer

Neuron

layer

y1

y2

Output

layer

Th output of the jth neuron in the first layer will be denoted θ1 j = φ(v j). The outputs will

be the inputs of the next neurons layer, and so on. Finally, the last layer will have as many
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neurons as g(x
˜
) has entries. The jth output of the last layer will be denoted θ j. It is usual to

make x1 = 1. A popular choice for φ(v) is φ(v) = (1+ e−v)−1, which is known as the sigmoid

function.

The learning process consists in adjusting the weights of the network to make its output

close to y
˜

for each corresponding x
˜

. A popular method of doing so is the back-propagation

algorithm. Consider the cost function

C =
1
2 ∑

j

(θ j − y j)
2, y j in y

˜
.

The weights can be adjusted in an iterative fashion aiming at reducing the value of the cost

function. The gradient of C regarding the weights ωi j can be shown to equal

∂C

∂ωi j
= δ j θi, with

δ j =




(θ j − y j)θ j (1−θ j), if j is in the output layer,
(
∑k δ j ω jk θ j (1−θ j)

)
, if j is not in the output layer,

where the summation carries over all neurons k in the layer proceeding j. Consider θ j as the jth

input of the network when adjusting the first layer of neurons. The above formula is valid only

when φ(v) is the sigmoid function. Some common stopping criteria are limiting the number of

interactions, stopping when the change in C is lower than a certain threshold, stopping when

the percent change in C is small enough.

An epoch is the number of iteractions to update the weights once for every pair (xi,yi).

After each epoch, it is a good ideia to check for overfitting. This is done by evaluating the

performance of the network in a set different than the one used to train the network. When the

performance in this test set starts to lower, stop training the network.

5.4 Simulation

In this section, we use MLP neural networks to emulate the method of moments in arti-

ficial data to evaluate its performance. For a certain family of probability distribution with k
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parameters, we generate 1000 example vectors. Each example is generated as follows. The k

parameters are randomly chosen from an uniform distribution in an appropriate interval. Once

the parameters are chosen, a random sample of 100 observations is generated from the family

using those parameters. The first k sample moments are obtained for this sample. The jth

sample moment is defined as n−1 ∑n
i=0 xi

j. Each example will consist of the k sample moments

and the k true values of the parameters. For each batch of examples, 750 will be randomly

selected to the training of the MLP, while 250 will be used for evaluating the performance. For

each family, we compare the performance of the MLP estimator to the method of moments

estimator (MME). The MLP consists of two layers of, respectively, 20 and 10 neurons. The

activation function for the neurons in the first and second layers is the sigmoid function. The

output neuron has a linear activation function, it just outputs the weighted sum it holds.

If the MME has a simple expression for some parameter in these distributions, the MLP

can have a good performance by approximating the MME. This implies that, if there is another

estimator other than the MME, such as the GMME, that is able to achieve better performance,

in the sense of achieving a smaller mean squared error (MSE) than the MME, we expect to

observe a better performance of the MLP estimator when compared to the MME.

5.4.1 Exponential distribution

The first family we simulate is the exponential distribution with parameter 0 < λ < 10. The

probability density function (pdf) of the exponential distribution is given by

f (x) = λe−λx, x > 0.

The MME for λ is given by x−1, with x representing the sample mean. Since h(x) = x−1 is

such a simple function for the MLP to approximate, good results are to be expected. Figure 5.2

shows the results of the trials for the test data set. The histograms and the box plot suggest that

the average and median errors in both methods is close to zero and the MLP estimator is more

accurate. This agrees with the previous discussion on the expected performance of the MLP

estimator. The lines in the scatter plots are the minimum squares line Estimate = k · error. In

both cases it is very close to the y = x line. The mean error for the MLP estimator is −0.05 and
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for the MME it is 0.03. The mean squared error (MSE) for the MLP estimator is 0.2600, for

the MME it is 0.3659. This is expected as the MME for λ is not the estimator that minimizes

IE[(λ̂ −λ )2]. For instance, the Bayes estimator (n−2)/(xn) is known to achieve an expected

MSE smaller than that of the MME for the exponential distribution. The error seems to increase

as the true value of the parameter does.

5.4.2 Normal distribution

The second test involves the normal distribution with mean represented by µ and variance

by σ 2. The MME for the normal distribution’s parameters are simply x and s2 = n−1 ∑n
i=1(xi −

x)2. The normal distribution is used in this simulation to illustrate a simple case with two

parameters. We let µ and σ 2 range from 0 to 10. For µ , the results are presented in Figure 5.3.

The results suggest that the MLP estimator is as good as the MME. The same occurs for the

estimation of σ , shown in Figure 5.4. The results for the mean error and mean squared error for

µ and σ are displayed in table 5.1. The results with two parameters in the normal distribution

are good as expected.

Table 5.1 Summary for the errors in the normal distribution estimation.

MLP MM

Mean error MSE Mean error MSE

µ ≈ 0 0.0589 0.01 0.6200

σ ≈ 0 0.0220 −0.03 0.0280

5.4.3 Exponentiated exponential distribution

The exponentiated exponential (EE) distribution with cdf given by

G(x) =
(

1− e−x/λ
)α

, α > 0, λ > 0, x > 0,

is used as a non-trivial example of estimation. The MME for its parameters were discussed in,

for example, Gupta and Kundu (1999) and there is no explicit expression for them. We let α
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Figure 5.2 Results for the exponential distribution.

Estimation error for the MLP method

Estimate − Real Value

F
re

qu
en

cy

−2 −1 0 1 2

0
20

40
60

80
10

0

Estimation error for the method of moments

Estimate − Real Value

F
re

qu
en

cy
−2 −1 0 1 2 3

0
20

40
60

80

+

+

+

+

+

+
+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+
+

+

+

+

+

+
+

+

++

+

+

+

++

++

+ +

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+
+ +

+

+

+

+

+

+

+

+

+

++

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+ +
+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

0 2 4 6 8 10

0
2

4
6

8
10

MLP estimates vs. real values

Estimate

R
ea

l V
al

ue

+

+

+

+

+

+
+

+
+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+
+

+

+

+

+

+
+

+

++

+

+

+

++

++

++

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+
+ +

+

+

+

+

+

+

+

+

+

++

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+ +
+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

0 2 4 6 8 10 12

0
2

4
6

8
10

MM estimates vs. real values

Estimate

R
ea

l V
al

ue

MLP MME

−
2

−
1

0
1

2
3

Box plot for the errors in both methods

E
rr

or



74

Figure 5.3 Results for the estimation of normal distribution’s mean.
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Figure 5.4 Results for the estimation of normal distribution’s standard deviation.
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Figure 5.5 Results for the estimation of the shape parameter in the exponentiated exponential distribu-

tion.
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range from 0 to 5 and λ range from 0 to 1 in this simulation. The inputs of the MLP are the

first and second order sample moments. The MME was obtained following the suggestion in

Gupta and Kundu (1999). It consists in solving, iteratively, the equation

S

X
=

√
ψ ′(1)−ψ ′(α +1)

ψ(α +1)−ψ(1)
,

for α and the setting λ̂ = X/[ψ(α̂ +1)−ψ(1)].

The results for the estimation of α for the MLP and MM estimators is shown in Figure 5.5.

The MLP estimator appears to perform better than the MME for α . The box plot in Figure 5.6

suggests that the MLP achieves a more accurate estimate for the value of α . The median errors

seem close to zero in both methods. The results for the estimation of λ are very similar and

they are omitted in this text. A summary of the estimation is shown in Table 5.2.

Table 5.2 Summary for the errors in the normal distribution estimation.

MLP MM

Mean error MSE Mean error MSE

α ≈ 0 0.3522 0.16 0.7244

λ ≈ 0 0.0082 ≈ 0 0.161
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Figure 5.6 Comparison of the shape parameter estimation results in the exponentiated exponential dis-

tribution.
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5.5 SAR image segmentation - real data application

A SAR (synthetic aperture radar) is a device that can be used to obtain very large images

of the land. The device is attached to an aircraft and flies over the target area. Antennae in

this device emit waves to the ground and capture back the reflected waves. The underlying

physical characteristics of the received signals allow for the creation of an image of the area.

The problem with this technique is that the reflected wave suffers interference of the incident

wave. This interference is usually modelled in a multiplicative fashion and it is called speckle.

SAR images may be used for several ends. In this application we use the image in Figure 5.7

of the ocean where it is visible an oil slick. Each pixel in this image represents the amplitude

of the received signal, which is related to the brightness of the area (recall that the intensity of

an wave is proportional to the square of its amplitude). We wish to determine the borders of

the oil slick. Such a task is called “segmentation” of the image and the speckle in the signal

makes the task harder. There are many ways to achieve this end and a very popular one is

based on statistical inference of the characteristics of the surface and of the radar. In Frery et

al. (1997) the G 0
A distribution is used to model SAR image data and discussed in great detail.

This model is obtained by assuming different probability distributions for the reflected signal
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and the speckle. The G 0
A model has three parameters and the pdf for this model is given by

f (x;N,γ,α) =
2NNΓ(N −α)

γαΓ(−α)Γ(N)

z2N−1

(γ + z2N)N−α
, −α, γ, N > 0.

The parameter N is the number of looks in the image, essentially the number of times the

antennae fly over the area. The parameter α is related to the roughness of the surface. It is a

key parameter when it comes to segmentation of an image. Values close to zero are typical of

highly heterogeneous areas, such as urban areas, while more negative values are typical of very

homogeneous areas. The difference if the roughness of the surface in different pixels allows

the perception of different objects in the image. The third parameter, γ , is related to the relative

power between the reflected and incident signals. Mejail et al. (2000) comment that there

Figure 5.7 SAR image of an oil slick.

usually is a large amount of information on γ and it can be assumed to be known and constant

for all the pixels in the image. They propose 3 moment based estimators for α , which they call

α̂1/2, α̂1 and α̂ ln
1 . These are, respectively, the solutions of the equations

Γ(−α̂1/2)

Γ(−α̂1/2 −1/4)
= (γ/N)1/4 m̂1/2Γ(N +1/4)

Γ(N)

Γ(−α̂1/2)

Γ(−α̂1/2 −1/2)
= (γ/N)1/2 m̂1/2Γ(N +1/2)

Γ(N)

ψ(α̂ ln
1 ) = log(γ/n)+ψ(N)−2m̂ln

1 ,
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Figure 5.8 Comparison between the MLP and other moment based methods.
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where m̂1/2 is the sample mean of the square roots, m̂1 is the sample mean and m̂ln
1 is the sample

mean of the logarithms of the data.

In this section, we use the MLP estimators to segment the SAR image in Figure 5.7. Before

doing so, we compare the performance of the proposed method to α̂1/2, α̂1, and α̂ ln
1 . Mejail

et al (2000) evaluate the performance of these estimators by simulating data with N and γ

known and estimating α alone. We do the same for the MLP estimator in order to compare

its performance to that of the estimators proposed in Mejail et al (2000). We let N = 4 and

γ = 1 and we let α range from −0.5 to −5. The sample sizes and the number of examples

used to train the MLP are the same as in the previous section. The estimation errors, α̂ −α , are

calculated for each of the 250 examples in the test data set of the MLP. The results are shown

in Figure 5.8. The MLP estimator performs as well as the others in this simulation. However,

once the MLP is trained, it is not necessary to solve any non-linear equation for obtaining the

estimates.

The image in Figure 5.7 consists of a 512×512 matrix. A MLP was trained for α ranging

from −0.5 to −5, γ from 0 to 5 and N = 4, which is the number of looks for this image. To

segment a SAR image we must assume that the amplitude of the signal associated with every

pixel of the image follows a G 0
A distribution. For each pixel, α must be estimated. Then, every

α from every pixel is compared the α of their neighbors in order to identify objects. To estimate

every α a 7×7 window centered at the pixel is used. In this application, α is to be estimated

approximately 218 times. Avoiding the equations in the MM estimation is useful. The result of

the segmentation, by using two different hard limits on the estimated α , is shown in Figure 5.9.
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Figure 5.9 Segmented SAR image of an oil slick.

.

5.6 Final remarks

In this chapter, we used a multilayer perception neural network to obtain estimates of pa-

rameters in some probability models. This network is trained by presenting several examples

of functions of randomly generated them. Once the network is trained, using it to estimate pa-

rameters is as easy as feeding the network functions of the data. There is no iterative processes

or difficult non-linear systems of equations using this method.

The simulation section provided some information about the performance of the proposed

method. The MLP was able to achieve very good results. The SAR image segmentation appli-

cation was used to illustrate the advantages of having such a fast estimation procedure.
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APPENDIX A

The C code for the PIPE algorithm

1 // How to compile:

2 // gcc tese.c -o tese -std=c99 -L/usr/local/lib -lgsl -lgslcblas

3 // -lm -lmatheval

4

5 #include <stdio.h>

6 #include <stdlib.h>

7 #include <string.h>

8 #include <assert.h>

9 #include <matheval.h>

10 #include <gsl/gsl_rng.h>

11 #include <gsl/gsl_integration.h>

12 #include <gsl/gsl_errno.h>

13

14 #define N_ELEMENTS 9 //the number of elements in each node of the PPT

15 #define N_POPULATION 100 //the number of functions in each population

16 #define N_GENERATIONS 1000 // number of generations

17 #define BUFFER_SIZE 1024 // size of the buffer for the functions

18 #define N_DATA 67 // number of observations

19 #define MAXHEIGHT 4// the max height of the tree representing a function

20 #define MAXNODES 60// max number of nodes used

21 #define LEARNING_RATE 0.1 //the learning rate

22 #define EPS_PIPE 0.1 // epsilon for the learning factor

23 #define MUTATION_PARAMETER (1e-4) // mutation parameter

24 #define MUTATION_RATE 0.01 //mutation rate

25 #define GSL_MYSEED 189273 // seed for the main function

26

27 // codes for the elements in each ppt node

28 #define C_TIMES 0

29 #define C_DIVIDED 1

30 #define C_PLUS 2

31 #define C_MINUS 3

32 #define C_EXP 4

33 #define C_LOG 5

34 #define C_X 6

35 #define C_NUMBER 7
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36 #define C_POWER 8

37

38 struct List{ //this stores the elements of F

39 char element[20]; //each string stores a function "written" a text

40 //(e.g. exp, log, +, etc)

41 struct List *next;

42 }*elements;

43 typedef struct List list;

44

45 struct PPT_{ //this stores the probabilities in the PPT in a binary tree

46 float x[N_ELEMENTS]; // the probabilities of choosing a certain

element

47 // from the list

48 struct PPT_ *left;

49 struct PPT_ *right;

50 }*PPT;

51 typedef struct PPT_ ppt;

52

53 struct Candidate{ // each of the candidate functions

54 char function[BUFFER_SIZE]; //the function written as a string

55 int nodes[MAXHEIGHT]; // this keeps track of which nodes of the PPT

56 // were used in which order

57 };

58 typedef struct Candidate candidate;

59

60 // prints a list

61 // used for development tests

62 void printList(){

63 if (elements==NULL){

64 printf("nothing!\\n");

65 } else {

66 list *l = elements;

67 while(l!=NULL){

68 printf("%s\\n",l->element);

69 l = l->next;

70 }

71 }

72 }

73

74 void add(char *s){ // adds a string to the list of elements of F

75 if (elements==NULL){

76 elements = (list *) malloc(sizeof(list));

77 strcpy(elements->element,s);

78 elements->next = NULL;
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79 } else {

80 list *l = elements;

81 list *lastLink = (list*)malloc(sizeof(list));

82 strcpy(lastLink->element,s);

83 while(l->next!=NULL){

84 l = l->next;

85 }

86 l->next = lastLink;

87 }

88 }

89

90 void get(int i, char* c){ // gets the ith element of the elements of F

91 int actual = 0;

92 list *l = elements;

93 if (elements==NULL){

94 printf("Nothing to get from an empty list!\\n");

95 } else {

96 while (actual<i){

97 if(l->next!=NULL){

98 l = l->next;

99 actual++;

100 } else {

101 printf("No element in the position %d.\\n",i);

102 exit(-1);

103 break;

104 }

105 }

106 strcpy(c,l->element);

107 }

108 }

109

110 // chooses an element from a list based on a vector of probabilities

111 // returns the position of the element (from 0)

112 int sampleElement(float *probs,char *s,gsl_rng * rng){

113 float r = (float) gsl_rng_uniform (rng);

114 float acc = 0.0; // accumulator

115 int i = -1;

116 while(acc<=r \&& acc<0.99){

117 i++;

118 acc = acc + probs[i];

119 }

120 get(i,s);

121 return i;

122 }
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123

124 // end of list functions

125

126 // PPT functions

127

128 // recursivelly populates the PPT

129 // must allocate memory for PPT before using this

130 void createPPT(ppt* temp,float* x,int height){ //creates the PPT with

131 //probabilities given by

x

132 for(int i = 0;i<N_ELEMENTS;i++){

133 (temp->x)[i] = x[i];

134 }

135

136 // if the tree is not tall enough, go on and add the children

137 if(height>0){

138 // allocate memory for the children

139 temp->left = (ppt*) malloc(sizeof(ppt));

140 temp->right = (ppt*) malloc(sizeof(ppt));

141 createPPT(temp->left,x,height-1);

142 createPPT(temp->right,x,height-1);

143 }

144

145 // when the height reaches zero you’re left with

146 // NULL pointers in the children

147 // then recursion ends

148 }

149

150 // helps to print a vector of floats

151 void myprint (float *x){

152 for (int i=0;i<N_ELEMENTS;i++){

153 printf("%.4f ",x[i]);

154 }

155 printf(";\\n");

156 }

157

158 // prints the probabilities in the PPT using inorder

159 void printPPT(ppt *p){

160 if (p != NULL){

161 printf("Probs: ");

162 myprint(p->x);

163 if(p->right!=NULL)

164 printPPT(p->right);

165 if(p->left!=NULL)



91

166 printPPT(p->left);

167 }

168 }

169

170 // end of PPT functions

171

172 // generates a candidate from the PPT and stores on c

173 // nodesVisited keeps track of how many nodes were visited

174 // and is passed to recursive calls

175 // each node is registered in nodesUsed as soon as it is selected.

176 void generateFunction(ppt* p, char c[BUFFER_SIZE], int nodesUsed[

MAXNODES],

177 int *nodesVisited, int height, gsl_rng * rng){

178 // height indicates the maximum possible height of the tree function

179

180 float r; // random number

181 char aux[5000], auxl[5000], auxr[5000], auxn[100]; // auxiliar string

182

183 // if height is one, then generate a literal or a number

184 if(height==0){

185 float p_number, p_literal; // probabilities of choosing a literal

or a number

186 float sum = ((p->x)[N_ELEMENTS-1]+(p->x)[N_ELEMENTS-2]);

187 p_number = (p->x)[N_ELEMENTS-1]/sum;

188 p_literal = (p->x)[N_ELEMENTS-2]/sum;

189

190 r = (float) gsl_rng_uniform(rng);

191

192 if(r<p_number){ // choose a number

193 r = (float) gsl_rng_uniform(rng); // generates a number

194 snprintf(auxn,10,"%f",r); // changes the float to string

195 strcpy(c,auxn);

196 nodesUsed[*nodesVisited] = C_NUMBER;

197 (*nodesVisited)++;

198 } else { // choose an x

199 strcpy(c,"x");

200 nodesUsed[*nodesVisited] = C_X;

201 (*nodesVisited)++;

202 }

203

204 } else { // the height is not one, we will use recursion

205 switch(sampleElement(p->x,aux,rng)){

206 case 0: //*

207 // printf("0\\n");
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208 nodesUsed[*nodesVisited] = C_TIMES;

209 (*nodesVisited)++;

210 generateFunction(p->left,auxl,nodesUsed,nodesVisited,height-1,

rng);

211 strcpy(c,"(");

212 strcat(c,auxl);

213 strcat(c,")*(");

214 generateFunction(p->right,auxr,nodesUsed,nodesVisited,height

-1,rng);

215 strcat(c,auxr);

216 strcat(c,")");

217 break;

218 case 1: // /

219 // printf("1\\n");

220 nodesUsed[*nodesVisited] = C_DIVIDED;

221 (*nodesVisited)++;

222 generateFunction(p->left,auxl,nodesUsed,nodesVisited,height-1,

rng);

223 strcpy(c,"(");

224 strcat(c,auxl);

225 strcat(c,")/(");

226 generateFunction(p->right,auxr,nodesUsed,nodesVisited,height

-1,rng);

227 strcat(c,auxr);

228 strcat(c,")");

229 break;

230 case 2: //+

231 // printf("2\\n");

232 nodesUsed[*nodesVisited] = C_PLUS;

233 (*nodesVisited)++;

234 generateFunction(p->left,auxl,nodesUsed,nodesVisited,height-1,

rng);

235 strcpy(c,"(");

236 strcat(c,auxl);

237 strcat(c,")+(");

238 generateFunction(p->right,auxr,nodesUsed,nodesVisited,height

-1,rng);

239 strcat(c,auxr);

240 strcat(c,")");

241 break;

242 case 3: // -

243 // printf("3\\n");

244 nodesUsed[*nodesVisited] = C_MINUS;

245 (*nodesVisited)++;
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246 generateFunction(p->left,auxl,nodesUsed,nodesVisited,height-1,

rng);

247 strcpy(c,"(");

248 strcat(c,auxl);

249 strcat(c,")-(");

250 generateFunction(p->right,auxr,nodesUsed,nodesVisited,height

-1,rng);

251 strcat(c,auxr);

252 strcat(c,")");

253 break;

254 case 4: //exp

255 // printf("4\\n");

256 nodesUsed[*nodesVisited] = C_EXP;

257 (*nodesVisited)++;

258 generateFunction(p->left,auxl,nodesUsed,nodesVisited,height-1,

rng);

259 strcpy(c,"exp(");

260 strcat(c,auxl);

261 strcat(c,")");

262 break;

263 case 5: //log

264 // printf("5\\n");

265 nodesUsed[*nodesVisited] = C_LOG;

266 (*nodesVisited)++;

267 generateFunction(p->left,auxl,nodesUsed,nodesVisited,height-1,

rng);

268 strcpy(c,"log(");

269 strcat(c,auxl);

270 strcat(c,")");

271 break;

272 case 6: // x

273 // printf("6\\n");

274 nodesUsed[*nodesVisited] = C_X;

275 (*nodesVisited)++;

276 strcpy(c,"x");

277 break;

278 case 7: // numero

279 // printf("0\\n");

280 nodesUsed[*nodesVisited] = C_NUMBER;

281 (*nodesVisited)++;

282 r = (float) gsl_rng_uniform(rng); // generates a number

283 snprintf(auxn,10,"%f",r); // changes the float to string

284 strcpy(c,auxn);

285 break;
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286 case 8: // power

287 // printf("2\\n");

288 nodesUsed[*nodesVisited] = C_POWER;

289 (*nodesVisited)++;

290 generateFunction(p->left,auxl,nodesUsed,nodesVisited,height-1,

rng);

291 strcpy(c,"(");

292 strcat(c,auxl);

293 strcat(c,")\^{}(");

294 generateFunction(p->right,auxr,nodesUsed,nodesVisited,height

-1,rng);

295 strcat(c,auxr);

296 strcat(c,")");

297 break;

298 } // end of switch-case

299 }//end of if-else

300 }

301

302 // generates n functions with a given height

303 void generateFunctions(ppt *p, int n, char functions[N_POPULATION][

BUFFER_SIZE], int nodesUsed[N_POPULATION][MAXNODES], int height,

gsl_rng *rng){

304 for(int i = 0;i<n;i++){

305 int nodesVisited = 0;

306 generateFunction(p,functions[i],nodesUsed[i],&nodesVisited,height,

rng);

307 }

308 }

309

310 // converts several matheval functions to gsl functions

311 void matheval2gsl(gsl_function F[N_POPULATION], char functions[

N_POPULATION][BUFFER_SIZE]){

312 void *f; //for the matheval to create a function

313 for(int i =0;i<N_POPULATION;i++){

314 f = evaluator_create (functions[i]);

315 assert (f); // functions exists now

316

317 // create a function

318 double function (double x, void *f){

319 return(evaluator_evaluate_x(f,x));

320 }

321 // and place t in a gsl_function structure

322 F[i].function = function;

323 F[i].params = f;
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324 }

325 }

326

327 // calculates the fit of a candidate function

328 float getFit(gsl_function F, float *data, float *dataF){

329 float candidateF[N_DATA];

330 float fit =0;

331 for(int i=0;i<N_DATA;i++){

332 candidateF[i]=GSL_FN_EVAL(&F,data[i]);

333 fit = fit + (candidateF[i]-dataF[i])*(candidateF[i]-dataF[i]);

334 }

335 if(!gsl_isnan(fit)){

336 return fit;

337 }else{

338 return GSL_POSINF;

339 }

340 }

341

342 // binds the functions as strings, the functions as gsl_functions and

the list of nodes used

343 // as an array of cadidate structs

344 void bindFunctionAndNodes(candidate candidates[N_POPULATION], char c[

N_POPULATION][BUFFER_SIZE],

345 gsl_function F[N_POPULATION], int nodesUsed[

N_POPULATION][MAXNODES])

346 {

347 for (int i = 0; i<N_POPULATION; i++) {

348 //TODO

349 }

350 }

351

352 int myCompare(const void *a, const void *b){

353 return (int)(*(float*)a - *(float*)b);

354 }

355

356 void evaluateFit(float fit[N_POPULATION], gsl_function F[N_POPULATION],

float data[N_DATA], float dataF[N_DATA]){

357 for(int i =0;i<N_POPULATION;i++)

358 fit[i] = getFit(F[i],data,dataF);

359 }

360

361 // finds the index of the best fit

362 int findBestFit (float fit[N_POPULATION]){

363 int bIndex = 0;
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364 for(int i=1; i<N_POPULATION; i++){

365 if(fit[i]<fit[bIndex])

366 bIndex=i;

367 }

368 return bIndex;

369 }

370

371

372 // calculates the probability of a program

373 float getProbProgram(ppt* p, int nodes[MAXNODES],int* currentIndex){

374 float prob; // the probability

375 prob = (p->x)[nodes[*currentIndex]];

376 // if i’m beyond the last node, stop.

377 if(*currentIndex==MAXNODES-1)

378 return(prob);

379

380 // if the current function from this node was *,/,+ or - then get the

prob of the right and left functions

381 if(nodes[*currentIndex]<4){

382 *currentIndex = *currentIndex + 1;

383 prob = prob*getProbProgram(p->left,nodes,currentIndex);

384 *currentIndex = *currentIndex + 1;

385 prob = prob*getProbProgram(p->right,nodes,currentIndex);

386 } else if(nodes[*currentIndex]==4||nodes[*currentIndex]==5){//if i got

an exp or a log

387 // then get the probability of the only child

388 *currentIndex = *currentIndex + 1;

389 prob = prob*getProbProgram(p->left,nodes,currentIndex);

390 }

391 return prob;

392 }

393

394 // adapts the ppt to raise the probability of getting the best program

395 void adapt_PPT_towards2(ppt* p, int prog_b_nodes[MAXNODES], float

p_prog_b, float p_target, int* currentIndex){

396 // raise the probability for this node’s selected element

397 (p->x)[prog_b_nodes[*currentIndex]] += LEARNING_RATE*(1-(p->x)[

prog_b_nodes[*currentIndex]]);

398 // if i’m beyond the last node, stop.

399 if(*currentIndex==MAXNODES)

400 return;

401

402 // if the current function from this node was *,/,+ or - then get the

prob of the right and left functions
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403 if(prog_b_nodes[*currentIndex]<4){

404 *currentIndex = *currentIndex + 1;

405 adapt_PPT_towards2(p->left,prog_b_nodes,p_prog_b,p_target,

currentIndex);

406 *currentIndex = *currentIndex + 1;

407 adapt_PPT_towards2(p->right,prog_b_nodes,p_prog_b,p_target,

currentIndex);

408 } else if(prog_b_nodes[*currentIndex]==4||prog_b_nodes[*currentIndex

]==5){//if i got an exp or a log

409 // then get the probability of the only child

410 *currentIndex = *currentIndex + 1;

411 adapt_PPT_towards2(p->left,prog_b_nodes,p_prog_b,p_target,

currentIndex);

412 }

413 return;

414 }

415

416 // adapts the ppt to raise the probability of getting the best program

417 void adapt_PPT_towards(int prog_b_nodes[MAXNODES], float p_prog_b, float

p_target){

418 int currentIndex;

419 while(p_prog_b<p_target){

420 currentIndex=0;

421 adapt_PPT_towards2(PPT,prog_b_nodes,p_prog_b,p_target,&currentIndex)

;

422 currentIndex=0;

423 p_prog_b = getProbProgram(PPT, prog_b_nodes,&currentIndex);

424 }

425 }

426

427 // mutates the PPT

428 void mutate_PPT(ppt* p, float p_prog_b, gsl_rng *rng){

429 float mutation_prob = MUTATION_PARAMETER/sqrt(p_prog_b);

430 float r;

431 for (int i=0; i<N_ELEMENTS;i++){

432 r = gsl_rng_uniform(rng);

433 if(r<mutation_prob){

434 (p->x)[i] += MUTATION_RATE*(1-(p->x)[i]);

435 }

436 }

437 if(p->left!=NULL)

438 mutate_PPT(p->left,p_prog_b,rng);

439

440 if(p->right!=NULL)
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441 mutate_PPT(p->right,p_prog_b,rng);

442

443 return;

444 }

445

446 // keeps the sum of the probabilities equal to 1

447 void normalize_PPT(ppt* p){

448 float sum=0.0;

449 for (int i=0; i<N_ELEMENTS;i++){

450 sum+=(p->x)[i];

451 }

452 for (int i=0; i<N_ELEMENTS;i++){

453 (p->x)[i] /= sum;

454 }

455 if(p->left!=NULL)

456 normalize_PPT(p->left);

457 if(p->right!=NULL)

458 normalize_PPT(p->right);

459 return;

460 }

461

462 int main (void){

463 // setting up the random number generator

464 const gsl_rng_type * T;

465 gsl_rng * r;

466 gsl_rng_env_setup();

467 T = gsl_rng_default;

468 r = gsl_rng_alloc (T);

469 //gsl_rng_set (r, 248);

470 gsl_rng_set (r, GSL_MYSEED);

471

472 // the probabilities for selecting each node

473 float x

[9]={1.0/9.0,1.0/9.0,1.0/9.0,1.0/9.0,1.0/9.0,1.0/9.0,1.0/9.0,1.0/9.0,1.0/9.0};

474

475 // the elements of the list of node labels

476 add("*");

477 add("/");

478 add("+");

479 add("-");

480 add("exp");

481 add("log");

482 add("x");
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483 add("number");

484 add("power");

485

486 // It is necessary to allocate space for the PPT before creating it

487 PPT = (ppt*)malloc(sizeof(ppt));

488

489 // creating the PPT

490 createPPT(PPT,x,MAXHEIGHT);

491

492 // the data, sorted

493 float data[N_DATA] =

{0.1,0.4,0.4,0.6,0.6,0.7,1.1,1.1,1.1,1.4,1.5,1.7,1.7,1.7,1.7,1.9,2.2,2.2,2.5,2.5,2.5

494 // the empirical distribution of the data

495 float dataF[N_DATA] =

{0.01492537,0.04477612,0.04477612,0.07462687,0.07462687,0.08955224,0.1343284,0.13432

496

497 // these variables represent the best program across generations (the

elite)

498 char functionEL[BUFFER_SIZE]; // its expression as a string

499 int nodesEL[MAXNODES]; // which elements from the nodes were used to

create it

500 gsl_function FEL; // its expression as a gsl function

501 float fitEL = GSL_POSINF; // its fit value

502 float p_prog_el =0.0;

503

504 // repeat for every generation

505 for(int generation=0; generation<N_GENERATIONS; generation++){

506 // setup the describers of the programs in this generation

507

508 // functions generate by the PPT for this generation

509 char functions[N_POPULATION][BUFFER_SIZE];

510

511 // the nodes used in each function of this generation

512 int nodesUsed[N_POPULATION][MAXNODES];

513 // -1 in a node slot means it was not used.

514 for(int i = 0; i< N_POPULATION;i++){

515 for (int j = 0; j<MAXNODES; j++)

516 nodesUsed[i][j] = -1;

517 }

518

519 // functions created before but now as gsl_function structures

520 gsl_function F[N_POPULATION];
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521

522 // the fit values for this generation

523 float fit[N_POPULATION];

524

525 // the index of the best program at this generation

526 int bIndex;

527

528 // end of setting up the describers for the programs

529

530 // generate the mathematical expressions for the functions as

strings

531 generateFunctions(PPT,N_POPULATION,functions,nodesUsed,MAXHEIGHT,r);

532

533 // generate the gsl_functions from the strings

534 matheval2gsl(F,functions);

535

536 // evaluate the fitness of each individual in this generation

537 evaluateFit(fit, F, data, dataF);

538

539 // chose the most fit in this generation

540 bIndex = findBestFit(fit);

541

542 // this is used to keep track of which node we are visiting during

the adaptation phase

543 int currentIndex =0;

544

545 // get the probability of getting the best program from the PPT

546 float p_prog_b = getProbProgram(PPT, nodesUsed[bIndex], &

currentIndex);

547

548 // if a better than the elite program is found in this generation,

store it

549 if(fit[bIndex]<fitEL){

550 p_prog_el = p_prog_b;

551 strcpy(functionEL,functions[bIndex]);

552 for(int i=0; i<MAXNODES;i++)

553 nodesEL[i] = nodesUsed[bIndex][i];

554 FEL = F[bIndex];

555 fitEL = fit[bIndex];

556 }

557 float p_target = p_prog_b + (1-p_prog_b)*LEARNING_RATE*((EPS_PIPE+

p_prog_el)/(EPS_PIPE+p_prog_b));

558

559 // adapts the ppt to raise the probability of getting the best
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program

560 adapt_PPT_towards(nodesUsed[bIndex], p_prog_b, p_target);

561

562 // mutate the PPT

563 mutate_PPT(PPT,p_prog_b,r);

564

565 // normalize the PPT

566 normalize_PPT(PPT);

567

568 //printf(".");

569 } // end of generation loop

570

571 void* f = evaluator_create(functionEL);

572 void* f_prim = evaluator_derivative_x (f);

573 printf("\\nThe best fit was for the program ");

574 for(int i = 0; i< MAXNODES;i++)

575 printf("%d",nodesEL[i]);

576 printf(" and it was %.4f.\\n",fitEL);

577 printf(" %s with probability %.12f.\\n\\n",functionEL,p_prog_el);

578 printf(" Its density is %s.\\n", evaluator_get_string (f_prim));

579

580 float loglik =0;

581 float tempLogLik = 0;

582 for(int i=0;i<N_DATA;i++){

583 tempLogLik = log(evaluator_evaluate_x(f,data[i]));

584 if(tempLogLik!=tempLogLik){ // acontece se tempLogLik eh NaN

585 loglik = loglik +1;

586 }else {

587 loglik = loglik + tempLogLik;

588 }

589 }

590 printf(" Its loglikelihood is %.4f.\\n", loglik);

591

592 gsl_rng_free(r);

593 }

594 }
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SAR image data

This is the data set used in the SAR image modeling example.

0.01149687, 0.01250427, 0.01528162, 0.01570864, 0.01802599, 0.01894287, 0.01911615, 0.01935418,

0.01992964, 0.02017052, 0.02051137, 0.02082554, 0.02185369, 0.02260664, 0.02293175, 0.02296903,

0.02317232, 0.02338895, 0.02358412, 0.02363688, 0.02396332, 0.02407404, 0.02585229, 0.02647153,

0.02665159, 0.02667463, 0.02721631, 0.02775543, 0.02777823, 0.02784315, 0.02792585, 0.02833025,

0.02839673, 0.02856023, 0.02861129, 0.02892729, 0.02931118, 0.02941171, 0.02942552, 0.03024757,

0.03101604, 0.03141554, 0.03224484, 0.03228633, 0.03232158, 0.03384829, 0.03402714, 0.03424702,

0.03427167, 0.03445653, 0.03453897, 0.03474018, 0.03501506, 0.03578667, 0.03598676, 0.03752478,

0.03754972, 0.03763689, 0.03803634, 0.0382402, 0.03879451, 0.03893850, 0.03989288, 0.04063699,

0.04111884, 0.04164984, 0.0416827, 0.04230256, 0.0427892, 0.04341392, 0.04367883, 0.04526951,

0.04538165, 0.0458550, 0.0462939, 0.04638059, 0.04639203, 0.04647379, 0.04675854, 0.04694617,

0.04768521, 0.04783208, 0.0483232, 0.04891223, 0.04971199, 0. 05092829, 0.05177016, 0.05190274,

0.05229843, 0.05260086, 0.05274564, 0.05385335, 0.0539581, 0.0544991, 0.05508701, 0.05515739,

0.05547253, 0.05562469, 0.05611064, 0.05686707, 0.05705985, 0.05840242, 0.05941767, 0.05983544,

0.0608492, 0.06187658, 0.06204657, 0.06370583, 0.06403044, 0.06442861, 0.06560329, 0.0661218,

0.06653712, 0.06816631, 0.07138552, 0.07589816, 0.07643031, 0.0774606, 0.07915612, 0.08028217,

0.08059592, 0.0847016, 0.08566783, 0.09340851, 0.09429808, 0.09665179, 0.1003492, 0.1060528,

0.1092498, 0.1206784, 0.1257918.
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Maximum entropy characterization for the

Beta-L2-G family

Consider the Kullback-Leibler divergence between the density functions f (x) and h(x)

given by

D(h, f ) =

∫ +∞

−∞
h(x) log

[
h(x)

f (x)

]
dx.

The Gibbs’ inequality implies D(h, f )≥ 0, where the equality hold iff h(x) and f (x) are equal

almost everywhere. Then,

0 ≤
∫ +∞

−∞
h(x) log

[
h(x)

f (x)

]
dx,

0 ≤
∫ +∞

−∞
h(x) log[h(x)]dx−

∫ +∞

−∞
h(x) log[ f (x)]dx,

HSh(h)≤−
∫ +∞

−∞
h(x) log[ f (x)]dx,

Notice that

log[ f (x)] = log

[
c

B(a,b)

]
+(bc−1) log[1−G(x)]+(a−1) log{1− [1−G(x)c]}+ log[g(x)].

For the calculations of the Shannon entropy for the Beta-L2-G family, we require IE{log[1−
G(X)]} and IE[log{1− [1−G(x)c]}]. After some algebraic manipulation, we obtain IE{log[1−
G(X)]}=ψ(b)−ψ(a+b) and IE[log{1− [1−G(X)c]}] =ψ(a)−ψ(a+b). For IE{log[g(X)]},

the substitution z = [1−G(x)]c gives IE{log[g(X)]} = IEZ{log[G−1(1− Z−c)]}, where Z ∼
Beta(b,a). Thus, an alternative expression for the Shannon’s entropy of the Beta-L2-G class is

given by

HSh( f )=− log

[
c

B(a,b)

]
−(bc−1)[ψ(a)−ψ(a+b)]−(a−1)[ψ(b)−ψ(a+b)−IEZ{log[G−1(1−Z−c)]}].

Under the imposed constraints and the definition of Z given before, the right hand side of the

last inequality is precisely HSh( f ) so that, for the equality to hold, f (x) equals h(x) almost

everywhere.
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Forest coverage data

This is the data set used in the application example for the QTMO-Kumarasawamy distri-

bution.

2.07, 28.33, 0.62, 90.00, 35.55, 46.90, 60.00, 22.22, 10.74, 9.29, 19.43, 47.14, 11.32, 51.44, 1.40, 11.07,

18.60, 41.59, 22.39, 61.06, 41.23, 20.00, 69.12, 52.74, 42.67, 20.02, 62.40, 25.00, 72.10, 36.14, 20.64,

6.69, 57.18, 42.13, 34.10, 21.09, 50.00, 36.28, 9.15, 21.67, 21.94, 54.52, 1.61, 65.62, 66.66, 51.01,

32.71, 34.33, 26.13, 18.72, 34.39, 67.98, 12.82, 0.25, 60.00, 40.75, 35.63, 0.07, 13.85, 57.96, 15.16,

52.30, 11.21, 55.50, 72.86, 29.00, 98.32, 42.34, 85.38, 48.00, 39.45, 31.75, 21.71, 30.27, 50.00, 39.75,

47.27, 33.72, 26.63, 71.90, 77.24, 3.66, 46.40, 22.64, 0.29, 23.01, 52.12, 6.80, 1.88, 10.72, 7.11, 31.10,

31.11, 68.52, 1.11, 1.22, 6.09, 14.81, 0.33, 4.97, 68.24, 53.84, 13.39, 1.44, 44.94, 0.12, 43.75, 34.46,

33.59, 21.58, 34.40, 62.26, 3.33, 10.23, 72.22, 45.71, 0.23, 17.24, 37.83, 33.33, 6.95, 40.37, 20.00,

11.49, 49.62, 48.32, 8.85, 25.42, 10.77, 1.25, 45.89, 30.88, 25.65, 0.95, 9.92, 73.07, 65.21, 33.07, 0.01,

2.18, 86.95, 43.67, 63.43, 44.25, 53.11, 25.70, 30.48, 38.11, 62.23, 11.74, 35.20, 28.58, 49.39, 17.63,

6.45, 42.30, 77.04, 13.04, 69.23, 60.42, 28.12, 0.48, 44.01, 31.01, 89.13, 38.06, 2.89, 40.18, 62.21,

79.06, 10.75, 7.60, 36.40, 28.77, 1.49, 29.43, 94.60, 32.73, 68.73, 31.00, 2.67, 2.92, 37.13, 39.24, 49.89,

5.27, 12.50, 44.05, 6.47, 14.72, 8.78, 79.06, 33.33, 15.15, 16.75, 3.79, 11.88, 37.73, 33.18, 58.82, 9.96,

7.70, 36.06, 52.46, 44.49, 40.00, 2.65, 1.03, 66.54, 40.38.


