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Abstract

Statistical and applied researchers have shown great interest in building new ex-

tended probability models that generalize well-known distributions and are more fle-

xible for data modeling in many fields of applications. Probably, one of the most pop-

ular ways to extend well-known models is to consider distribution generators. A class

of univariate distributions called the exponentiated generalized (EG for short) class was

recently proposed in the literature. We believe that the EG class of distributions can

be widely used to generalize continuous distributions. For this reason, the present

doctoral thesis presents some extended models using the EG class. For each model

presented in the chapters that follow, we provide a complete mathematical treatment,

simulation studies and applications to real data that illustrate the usefulness of the

models under study.

Keywords: Exponentiated generalized class. Generalized distribution. Probability dis-

tribution.



Resumo

Estatísticos e pesquisadores aplicados têm mostrado grande interesse em propor

novos modelos de probabilidade estendidos que generalizam distribuições bem es-

tabelecidas na literatura. Provavelmente, uma das formas mais populares de esten-

der modelos bem conhecidos é considerando os chamados geradores de distribuições.

Uma classe de distribuições univariadas chamada de classe exponencializada genera-

lizada (EG) foi proposta recentemente na literatura. Acreditamos que a classe EG de

distribuições pode ser amplamente utilizada para generalizar distribuições contínuas.

Por esta razão, a presente tese de doutorado apresenta alguns modelos estendidos

usando a classe EG. Para cada modelo apresentado nos capítulos que se seguem,

fornecemos um tratamento matemático completo, estudos de simulação e aplicações

a dados reais que ilustram a utilidade dos modelos em estudo.

Palavras-chave: Classe exponencializada generalizada. Distribuição generalizada. Dis-

tribuição de probabilidade.
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CHAPTER 1

Introduction

The recent statistical literature offers a broad arsenal of univariate probability dis-

tributions that can be (and indeed are) widely used in data modeling in several fields

of application. Notwithstanding, this large number of available distributions does

not seem to deal with the huge variety of data arising from several fields such as

medicine, engineering, demography, biology, actuarial, economics, finance, reliabil-

ity, among others ([1]). Indeed, statistical and applied researchers have shown great

interest in building new extended probability distributions, which are more flexible

for data modeling ([2]). There are several ways described in the literature to extend

well-known distributions ([3]). Probably, one of the most popular ways is to consider

distribution generators.

In the generator approach, we refer to the following papers: [4] for the Marshall-

Olkin class, [5] for the beta class, [6], [7] and [8] for the gamma class and [9] for the

Kumaraswamy class of distributions. More recently, for any baseline cdf G(x), and

x ∈ R, [10] defined the exponentiated generalized (EG) class of distributions with two

extra shape parameters.

We believe that the addition of parameters to the well-known models may generate

new distributions with great adjustment capability. We also believe that the EG class
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of distributions proposed by [10] can be widely used to generalize continuous distri-

butions. For this reason, the present doctoral thesis introduces some extended models

using the methodology proposed in [10]. For each model presented in the chapters

that follow, we provide a complete mathematical treatment, simulation studies and

applications to real data.

Besides this introduction, the present doctoral thesis is organized as follows. In

Chapter 2, we study the exponentiated generalized Gumbel distribution, henceforth re-

ferred as EGGu distribution, that generalizes the Gumbel model. We discuss several

properties for this model, including shapes of its density function, explicit expressions

for the ordinary moments, generating and quantile functions, mean deviations, Bon-

ferroni and Lorenz curves, Rényi entropy and the density function of the order statis-

tics. The method of maximum likelihood is considered to estimate the model param-

eters and we determine the observed information matrix. We provide a Monte Carlo

simulation study to evaluate the maximum likelihood estimates (MLEs) of the model

parameters and two applications to real data to illustrate the importance of the EGGu

model. In Chapter 3, we study the exponentiated generalized extended exponential (EGEE

for short) distribution that generalizes the extended exponential (EE) model introduced

by [11]. We have shown that the hazard function of the EGEE model can take the

classic shapes: bathtub, inverted bathtub, increasing, decreasing and constant, among

others. We also investigate many of its mathematical properties such as a representa-

tion for the density function as a double linear combination of Erlang densities, explicit

expressions for the quantile function, ordinary and incomplete moments, mean devi-

ations, Bonferroni and Lorenz curves, generating function, Rényi entropy, density of

order statistics and reliability. We use the maximum likelihood method to estimate

the model parameters and provide the elements of the score vector. Two applications

to real data illustrates the flexibility of the proposed model. In Chapter 4, we intro-

duce a new two-parameter lifetime model, called the exponentiated generalized standard

half-logistic (EGSHL) distribution, and study some of its general structural properties.

This distribution extends the half-logistic distribution proposed by Balakrishnan in the

eighties. We provide explicit expressions for the density function, ordinary and in-

complete moments, generating and quantile functions, mean deviations, Bonferroni
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and Lorenz curves, and order statistics. Our formulas are manageable using mod-

ern computer resources with analytical and numerical capabilities and they may turn

into adequate tools for applied statisticians. For most of the functions associated with

the proposed model, we provide numerical and graphical studies to illustrate their

practical use. The model parameters are estimated by maximum likelihood and the

observed information matrix is derived. An extensive Monte Carlo simulation study

reveals that these estimators have good properties such as low biases and variances,

even in small or moderate sample sizes. We also show that the proposed model can be

superior to some other lifetime models by means of a real data set. Finally, Chapter 5

is dedicated to general considerations and also presents some paths for future research

on the EG class of distributions.

It should be mentioned that, although having an unifying theme, this doctoral

thesis consists of a collection of independent essays published in different journals.

Nevertheless, each chapter is arranged according to its period of elaboration. This is

reflected in the characteristics in each of them. For example, in Chapter 4, because it

is more recent, an effort has been made to provide several practical answers, which il-

lustrates the increasing computational demand in statistics. We hope that these works

will be useful for researchers applied in various fields of activity.
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CHAPTER 2

The Exponentiated Generalized Gumbel Distribution

Paper published in the Colombian Journal of Statistics, 38, 123-143, 2015.

Abstract

A family of univariate distributions called the exponentiated generalized class was

recently proposed in the literature. A four-parameter model within this class, named

the exponentiated generalized Gumbel distribution, is defined. We discuss the shapes

of its density function and obtain explicit expressions for the ordinary moments, gen-

erating and quantile functions, mean deviations, Bonferroni and Lorenz curves and

Rényi entropy. The density function of the order statistic is derived. The method of

maximum likelihood is used to estimate the model parameters. We determine the ob-

served information matrix. We provide a Monte Carlo simulation study to evaluate

the maximum likelihood estimates of the model parameters and two applications to

real data to illustrate the importance of the model.

Keywords: Exponentiated generalized family. Gumbel distribution. Maximum like-

lihood, Moments.
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Resumo

Recentemente foi proposta na literatura uma nova família de distribuições contínuas

univariadas denominada de classe de distribuições exponencializadas generalizadas.

Dentro desta família, denfine-se uma distribuição com quatro parâmetros denominada

de Gumbel exponencializada generalizada. Nós discutimos as formas da densidade

desta distrubuição e obtemos fórmulas explícitas para seus momentos ordinários,

funções geratriz de momentos e quantílica, desvios médios ao redor da média e me-

diana, curvas de Bonferroni e Lorenz, além de entropia de Rényi. Nós derivamos a

função densidade da estatística de ordem. Utilizamos o método de máxima verossim-

ilhança para estimar os parâmetros do modelo e derivamos a matriz de informação

observada. Fornecemos um estudo de simulação de Monte Carlo para avaliar os esti-

madores de máxima verossimilhança e duas aplicações a dados reais, que ilustram a

importância do modelo.

Palavras-chave: Distribuição Gumbel. Família exponencializada generalizada. Máx-

ima verossimilhança. Momentos.

2.1 Introduction

The Gumbel distribution is a very popular statistical model due to its wide appli-

cability. An extensive list of the Gumbel model applications can be obtained in [12].

In the area of climate modeling, for example, some applications of the Gumbel model

include: global warming problems, offshore modeling, rainfall and wind speed mod-

eling ([13]). We can find applications of this model in various areas of engineering

such as flood frequency analysis, network, nuclear, risk-based, space, software reli-

ability, structural and wind engineering ([14]). Due to its wide applicability, several

works aimed to extend the Gumbel model became important. Here, we refer to the

papers: [15], [13] and [14].

The cumulative distribution function (cdf) G(x) and probability density function
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(pdf) g(x) of the Gumbel (Gu) distribution are given by

G(x) = G(x; µ, σ) = exp
{
−exp

(
−x− µ

σ

)}
(2.1)

and

g(x) = g(x; µ, σ) =
1
σ

exp
{
−
[

x− µ

σ
+ exp

(
−x− µ

σ

)]}
, (2.2)

respectively, for x ∈ R, µ ∈ R and σ > 0.

In recent years, some different generalizations of continuous distributions have

received great attention in the literature. An excellent review of these generalizations

is provided by [16]. Here, we refer to the papers: [4] for the Marshall-Olkin class, [5]

for the beta class, [6] and [7] for the gamma class and [9] for the Kumaraswamy class of

distributions. In a similar manner, for any baseline cdf G(x), and x ∈ R, [10] defined

the exponentiated generalized (EG) class of distributions with two extra parameters a > 0

and b > 0 and cdf F(x) and pdf f (x) given by

F(x) = F(x; a, b) = {1− [1− G(x)]a}b (2.3)

and

f (x) = f (x; a, b) = ab[1− G(x)]a−1{1− [1− G(x)]a}b−1g(x), (2.4)

respectively, in which the dependence of the G(x) parameters are implicit.

The generator proposed by [10] presents some important characteristics that, in our

opinion, makes it more attractive to generalize distributions. The first important point

to highlight is the simplicity of the (2.3) and (2.4) equations. They do not involve any

complicated functions and will be as simple as G(x) is simple. Despite the simplicity

of the model, the two extra parameters a and b in the density (2.4) can control both

tail weights, allowing generate flexible distributions, with heavier or lighter tails, as

appropriate. Another important feature is that the EG model contains as especial cases

the two classes of Lehmann’s alternatives. In fact, for a = 1, (2.3) reduces to F(x) =

G(x)b and for b = 1 we obtain F(x) = 1− [1− G(x)]a, which correspond to the cdf’s

of the Lehmann type I and II families ([17]), respectively. For this reason, the EG

model encompasses both Lehmann type I and Lehmann type II classes. So, the EG family

can be derived from a double transformation using these classes. There is also an

attractive physical interpretation of the model (2.3) when a and b are positive integers.
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This interpretation is described in [3] and reproduced below. Suppose initially that

a certain device is composed of b components in a parallel system. Consider also

that, for each component b, there exists a series of subcomponents a independent and

distributed according to G(x). Suppose also that each component b fails if some a sub-

component fails. Let Xj1, . . . , Xja denote the lifetimes of the subcomponents within the

jth component, j = 1, . . . , b, with common cdf G(x). Let Xj denote the lifetime of the

jth component and let X denote the lifetime of the device. Thus, the cdf of X is

P(X ≤ x) = P(X1 ≤ x, . . . , Xb ≤ x) = P(X1 ≤ x)b = [1− P(X1 > x)]b

= [1− P(X11 > x, . . . , X1a > x)]b = [1− P(X11 > x)a]b

= [1− {1− P(X11 ≤ x)}a]b.

So, the lifetime of the device obeys the EG family of distributions. The above prop-

erties and many others have been discussed and explored in recent works for the EG

class. In this chapter, we study the so-called exponentiated generalized Gumbel (“EGGu”

for short) distribution by inserting the formula (2.1) in equation (2.3). As we will see

later, our model in study is very flexible and with great potential of adjustment to real

data.

The rest of the chapter is organized as follows. In Section 2.2, we define the EGGu

distribution. Shapes of the density function are discussed in Section 2.3. Explicit ex-

pressions for the cumulative and density functions, quantile function, ordinary mo-

ments, mean deviations, Bonferroni and Lorenz curves, generating function, Rényi

entropy and order statistics are derived in Section 2.4. We discuss maximum like-

lihood estimation and present a Monte Carlo simulation experiment to evaluate the

maximum likelihood estimates (MLEs) of the model parameters in Section 2.5. Two

applications in Section 2.6 illustrate the usefulness of the EGGu distribution for data

modeling. Lastly, concluding remarks are given in Section 2.7.
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2.2 The EGGu distribution

The EGGu distribution was proposed by [10], but they did not provide a complete

mathematical treatment for this model. The cdf and pdf of the EGGu distribution are

given by

F(x) = F(x; a, b, µ, σ) =

{
1−

{
1− exp

[
− exp

(
−x− µ

σ

)]}a}b

(2.5)

and

f (x) = f (x; a, b, µ, σ) =
ab
σ

exp
{
−
[

x− µ

σ
+ exp

(
−x− µ

σ

)]}
{

1− exp
[
− exp

(
−x− µ

σ

)]}a−1

{
1−

[
1− exp

[
− exp

(
−x− µ

σ

)]]a}b−1

, (2.6)

respectively, with µ ∈ R and σ > 0.

Hence, a continuous random variable X with support on the real line and hav-

ing density function (2.6) is denoted by X ∼ EGGu(a, b, µ, σ). We write F(x) =

F(x; a, b, µ, σ) in order to eliminate the dependence on the model parameters. In this

model, µ ∈ R and σ > 0 are the location and scale parameters, respectively, whereas

a > 0 and b > 0 are the shape parameters. The Gumbel distribution is clearly an

especial case of (2.5) when a = b = 1. Setting b = 1 we obtain the exponentiated

Gumbel distribution defined by [13]. Plots of the EGGu density function for selected

parameter values are displayed in Figure 2.1. As we will see later, our model in study

is very flexible and with great potential of adjustment to real data.
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Figure 2.1: Plots of the EGGu density function for µ = 0, σ = 1 and some a and b

parameter values.
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2.3 Shapes

The main features of the density shape can be perceived through the study of its

first and second derivative. Regarding the EGGu distribution, the first derivative of

log{ f (x)} is

d log{ f (x)}
dx

=
1
σ

{
−1− ln(z)

[
1− (a− 1) z

(1− z)
+

a (b− 1) z (1− z)a−1

[1− (1− z)a]

]}
,

where z = exp
[
− exp

(
− x−µ

σ

)]
. Here, 0 < z < 1.

The critical values of f (x) are the roots of the equation:

(a− 1) z
(1− z)

− a (b− 1) z (1− z)a−1

[1− (1− z)a]
=

ln(z) + 1
ln(z)

. (2.7)

If the point x = x0 is a root of (2.7), then we can classify it as local maximum, local

minimum or inflection point when we have, respectively, λ(x0) < 0, λ(x0) > 0 and

λ(x0) = 0, where λ(x) = d2 log{ f (x)}/dx2.

Particularly noteworthy are the following special cases for equation (2.7):

• For a = 1, the critical values of f (x) are the roots of the equation b = 1/ln(z);

• For b = 1, the critical values of f (x) are the roots of the equation a = [1− z +

ln(z)]/[z ln(z)];

• For a = b = 1, the critical values of f (x) are the roots of the equation [ln(z) +

1]/[ln(z)] = 0.

It is often difficult to obtain an analytical solution for the critical value of this func-

tion. Thus, it is very common to obtain numerical solutions from optimization rou-

tines in most mathematical and statistical platforms. Some plots of the first derivative

of log{ f (x)} for some a and b parameter values (µ = 0, σ = 1) are displayed in Figure

2.2. These plots are constructed using the Wolfram Mathematica software.

2.4 Properties

In this section, we study some structural properties of the EGGu distribution.
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Figure 2.2: Plots of the first derivative of log{ f (x)}.

2.4.1 A useful representation

Several properties of the EGGu distribution can be derived using the concept of

exponentiated distributions. The class of exponentiated distributions have been stud-

ied by many authors in recent years. To give an idea of the importance of this class,

a recent paper by [16] lists over seventy works related to exponentiated distributions.

Here, we refer to a few of these papers: [18] for exponentiated exponential, [19] for

exponentiated Fréchet, [13] for exponentiated Gumbel, [20] for exponentiated lognor-

mal, [21] for exponentiated Gamma, [22] for exponentiated modified Weibull and [23]

for exponentiated generalized Gamma.

For an arbitrary baseline cdf G(x), a random variable is said to have the

exponentiated-G (“exp-G” for short) distribution with power parameter c > 0, say

Y ∼exp-G(c), if its cdf and pdf are Hc(x) = G(x)c and hc(x) = c g(x)G(x)c−1, respec-

tively. We consider the generalized binomial expansion

(1− z)b =
∞

∑
k=0

(−1)k
(

b
k

)
zk, (2.8)

which holds for any real non-integer b and |z| < 1. Using expansion (2.8) twice in

equation (2.3), [3] expressed the EG cdf as

F(x) =
∞

∑
j=0

wj+1 Hj+1(x), (2.9)

where wj+1 = ∑∞
m=1(−1)j+m+1 ( b

m) (
m a
j+1) and Hj+1(x) = G(x)j+1 is the exponentiated-

G (exp-G) cdf with power parameter j + 1 (for j ≥ 0). By differentiating (2.9), we

obtain



27

f (x) =
∞

∑
j=0

wj+1 hj+1(x), (2.10)

where hj+1(x) is the exp-G pdf.

By using (2.9) and (2.10) for the Gumbel distribution (2.1), hj+1(x) becomes the

exp-Gu pdf with power parameter j + 1 (for j ≥ 0) given by

hj+1(x) =
(j + 1)

σ
exp

{
−
[

x− µ

σ
+ (j + 1) exp

(
−x− µ

σ

)]}
. (2.11)

Equations (2.10) and (2.11) reveal that the EGGu density function is a linear com-

bination of exp-Gu densities. This result is important to derive some structural prop-

erties of the EGGu distribution like the ordinary and incomplete moments, generating

function and mean deviations from those of the exp-Gu distribution.

2.4.2 Quantile function

In applied work, we are interested in the quantile function (qf) of a continuous

distribution. Based on the qf, we can generate occurrences of the distribution and

obtain measures of skewness and kurtosis. The EGGu qf, say xu = Q(u), follows by

inverting the EGGu cdf (2.5) as

xu = Q(u) = µ− σ log{− log[1− (1− u1/b)1/a]}. (2.12)

The median of X is simply x1/2 = Q(1/2). Furthermore, it is possible to generate

EGGu variates by X = Q(U), where U is an uniform variate on the unit interval (0, 1).

The effect of the additional shape parameters a and b on the skewness and kurtosis

of the EGGu distribution can be based on quantile measures. In this sense, two im-

portant measures are the Bowley’s skewness (B) and the Moors’s kurtosis (M). Recent

papers used these measures to determine the skewness and kurtosis, for example, [24],

[25] and [26] derived the B and M measures for the Beta normal, Beta exponentiated

Pareto and exponentiated Lomax Poisson distributions, respectively.

The Bowley’s skewness ([27]) based on quartiles is given by

B =
Q(3/4) + Q(1/4)− 2Q(1/2)

Q(3/4)−Q(1/4)
.
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On the other hand, the Moors’s kurtosis ([28]) based on octiles is given by

M =
Q(7/8)−Q(5/8) + Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
.

These measures are less sensitive to outliers and they exist even for distributions

without moments. For the normal distribution, B = M = 0. Plots of these skewness

and kurtosis measures for some choices of the parameter b as functions of a, and for

some choices of a as functions of b, for µ = 0, σ = 1, are displayed in Figure 2.3. These

plots indicate that the skewness and kurtosis decrease when b increases for fixed a and

when a increases for fixed b.

(a) M: µ = 0 and σ = 1 (b) M: µ = 0 and σ = 1 (c) M: µ = 0 and σ = 1

(d) B: µ = 0 and σ = 1 (e) B: µ = 0 and σ = 1 (f) B: µ = 0 and σ = 1

Figure 2.3: Plots of the Bowley’s skewness and Moors’s kurtosis for the EGGu distri-

bution.

The EGSGu (we refer EGSGu to denote EGGu with µ = 0 and σ = 1) distribution

is easily simulated from a uniform random variable U by X = Q(U). Next, we use

(2.12) to generate 200 EGSGu(3, 2) occurrences. Figure 2.4 displays the histogram

and empirical cdf for the simulated data and also the exact pdf and cdf of the EGSGu

model. As we can see, the setting is quite adequate and reinforces that the model

has good potential for simulation studies. For similar studies, we refer [29] and [30],

among others.
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Figure 2.4: Plots of the EGSGu(3, 2) pdf, histogram, exact and empirical cdfs for sim-

ulated data with n = 200.

2.4.3 Moments

It is hardly necessary to emphasize the importance of calculating the moments of a

random variable in statistical analysis, especially in applied work. Some key features

of a distribution such as skewness and kurtosis can be studied through its moments.

The nth moment of X can be determined from (2.6) as E(Xn) =
∫ ∞
−∞ xn f (x)dx. This

integral has no closed form, but is easily manageable using symbolic computing soft-

wares that have numerical integration routines. To illustrate this, we present below a

small numerical example, in which we compute the first six moments for the EGSGu

distribution, considering some a and b parameters values. The results are present in

Table 2.1. All computations are obtained using Wolfram Mathematica software, which

have numerical integration routines with great precision.

As we see, it is very simple to get the moments of X using numerical integration.

But, we go further and we present below a closed expression for E(Xn). Using equa-

tion (2.10), we obtain

E(Xn) =
∫ ∞

−∞
xn

∞

∑
j=0

wj+1 hj+1(x)dx

=
1
σ

∞

∑
j=0

(j + 1)wj+1

∫ ∞

−∞
xn exp

{
−
[

x− µ

σ
+ (j + 1) exp

(
− x− µ

σ

)]}
dx,
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Table 2.1: First sixth moments of X for several a and b values (with µ = 0 and σ = 1).

a b E(X) E(X2) E(X3) E(X4) E(X5) E(X6)

1 0.57722 1.97811 5.44487 23.5615 117.839 715.067

2 1.27036 3.25876 10.7232 45.3600 233.071 1418.73

1 3 1.67583 4.45333 15.3804 66.3318 345.015 2113.31

4 1.96351 5.50031 19.6637 86.4083 454.276 2798.98

5 2.18665 6.42639 23.6502 105.693 561.110 3476.31

1 −0.11593 0.69747 0.166507 1.76299 2.60769 11.4045

2 0.34165 0.72200 1.03513 2.52093 6.50153 20.6720

2 3 0.59545 0.92435 1.59047 3.63454 9.74663 30.7523

4 0.77030 1.14191 2.07825 4.75215 12.8901 40.7867

5 0.90328 1.34995 2.53233 5.84379 15.9738 50.7334

1 −0.40361 0.61140 −0.45472 0.93635 −0.68052 2.31902

2 −0.02993 0.37204 0.10596 0.51195 0.57386 1.68848

3 3 0.17170 0.36710 0.31147 0.60373 1.02392 2.32992

4 0.30846 0.41307 0.45178 0.75980 1.38992 3.06458

5 0.41138 0.47383 0.57072 0.62827 1.73627 3.81059

1 −0.57351 0.67294 −0.70212 1.00506 −1.28616 2.13690

2 −0.24490 0.33249 −0.14312 0.29771 −0.09027 0.46581

4 3 −0.07069 0.24739 0.01646 0.20673 0.12820 0.38704

4 0.04630 0.22709 0.09714 0.20835 0.23144 0.45403

5 0.13374 0.23112 0.15195 0.23451 0.30806 0.54894

where µ ∈ R and σ > 0.

Setting u = exp{−(x− µ)/σ}, its reduces to

E(Xn) =
∞

∑
j=0

(j + 1)wj+1

∫ ∞

0
[µ− σ log(u)]n exp{−u(j + 1)}du.
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Using the binomial expansion for [µ− σ log(u)]n, E(Xn) can be expressed as

E(Xn) =
∞

∑
j=0

n

∑
i=0

(j + 1)
(

n
i

)
(−σ)iµn−iwj+1

∫ ∞

0
[log(u)]i exp{−u(j + 1)}du. (2.13)

Using a result by [13], I(i, j) =
∫ ∞

0 [log(u)]i exp{−u(j + 1)}du reduces to

I(i, j) =
(

∂

∂c

)i
[(j + 1)−cΓ(c)] |c=1 . (2.14)

By combining (2.13) and (2.14), the nth moment of X becomes

E(Xn) =
∞

∑
j=0

n

∑
i=0

(j + 1)
(

n
i

)
(−σ)iµn−i wj+1

(
∂

∂c

)i
[(j + 1)−cΓ(c)] |c=1 .

2.4.4 Generating function

The moment generating function (mgf) of X can be obtained using the fact that the

EGGu density function is a linear combination of exp-Gu densities. Thus,

M(t) =
∞

∑
j=0

wj+1

∫ ∞

−∞
etx hj+1(x)dx

=
1
σ

∞

∑
j=0

(j + 1)wj+1

∫ ∞

−∞
etx exp

{
−
[

x− µ

σ
+ (j + 1) exp

(
−x− µ

σ

)]}
dx.

Setting u = exp{−(x− µ)/σ}, M(t) reduces to

M(t) = etµ
∞

∑
j=0

(j + 1)wj+1

∫ ∞

0
u−tσ exp[−(j + 1)u] du.

Using a result by [14], we have

I(j) =
∫ ∞

0
u−tσ exp[−(j + 1)u] du = Γ(1− tσ)(j + 1)tσ−1,

and then

M(t) = etµ Γ(1− tσ)
∞

∑
j=0

(j + 1)tσ wj+1.
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2.4.5 Mean deviations

Generally, there has been a great interest in obtaining the first incomplete moment

of a distribution. Based on this quantity, we can obtain, for example, the mean devi-

ations that provide important information about characteristics of a population. In-

deed, the amount of dispersion in a population may be measured to some extent by

all the deviations from the mean and median.

For calculating the mean deviations about the mean and the median, we require

the first incomplete moment of X given by T(z) =
∫ z
−∞ x f (x) dx. Using equation

(2.10) and setting u = exp{−(x− µ)/σ}, T(z) reduces to

T(z) =
∞

∑
j=0

(j + 1)wj+1

∫ ∞

t
[µ− σ log(u)] exp[−u(j + 1)]du

=
∞

∑
j=0

wj+1{exp[−t(j + 1)][µ− σ log(t)]− σΓ[0, (j + 1)t]}, (2.15)

where t = exp{−(z − µ)/σ} and Γ(k, x) =
∫ ∞

x vk−1 e−vdv is the complementary in-

complete gamma function.

The mean deviations about the mean and the median are defined by

δ1 = 2µ′1 F(µ′1)− 2T(µ′1) and δ2 = µ′1 − 2T(M),

respectively, where µ′1 = E(X), the median M of X is determined from the qf by

M = Q(1/2), F(M) and F(µ′1) are easily obtained from (2.5) and T(z) is given by

(2.15).

Another important application of the first incomplete moment is to determine the

Bonferroni and Lorenz curves, which are commonly used in applied works in areas

such as economy, reliability, demography, insurance, medicine and others. For a given

probability π, these curves are defined by B(π) = T(q)/(πµ′1) and L(π) = T(q)/µ′1,

where µ′1 = E(X) and q = Q(π) is given by (2.12). Here, we make reference to the

following papers: [31], [32], [33] and [34].

2.4.6 Rényi entropy

Given a certain random phenomenon under study, it is important to quantify the

uncertainty associated with the random variable of interest. In this context, several
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statistical methods are available in the literature. One of the most popular measures

used to quantify the variability of X is the Rényi entropy. Here, we make reference to

the following papers: [25], [35], [36] and [37], among others.

The entropy of a random variable X with density function f (x) for any real param-

eter λ > 0 and λ 6= 1, the Rényi entropy is given by

IR(λ) =
1

(1− λ)
log
(∫ ∞

−∞
f (x)λdx

)
.

The equation above can be easily implemented computationally with IR(λ) val-

ues being obtained in a few seconds. Table 2.2 shows some values of IR(λ) for the

EGGu model, considering different parameter values. Naturally, the higher the value

of IR(λ), indicates the greater uncertainty about the phenomenon under study. All

computations are obtained using Wolfram Mathematica software, which have numeri-

cal integration routines with great precision.

Table 2.2: Rényi entropy of X for some λ, a and b values (with µ = 0 and σ = 1).

a b λ = 2 λ = 4 λ = 6 λ = 8 λ = 10

2 3 0.90814 0.77951 0.72323 0.69037 0.66843

2 2 0.94522 0.81770 0.76180 0.72913 0.70731

3 2 0.72436 0.59999 0.54513 0.51299 0.49148

Using the binomial expansion (2.8) twice in equation (2.4), we can write

f (x)λ = (ab)λ
∞

∑
j=0

δj G(x)j g(x)λ, (2.16)

where δj is given by

δj =
∞

∑
i=0

(−1)i+j
(

λ(b− 1)
i

)(
ai + λ(a− 1)

j

)
.

Inserting (2.1) and (2.2) in equation (2.16) and, after some algebra, we obtain

f (x)λ =

(
ab
σ

)λ ∞

∑
j=0

δj exp
{
−
[

λ(x− µ)

σ
+ (j + λ) exp

(
−x− µ

σ

)]}
.
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Finally,

IR(λ) =
1

(1− λ)
log

{(
ab
σ

)λ ∞

∑
j=0

δj×

∫ ∞

−∞
exp

{
−
[

λ(x− µ)

σ
+ (j + λ) exp

(
−x− µ

σ

)]}
dx

}
.

2.4.7 Order statistics

We derive an explicit expression for the density of the ith order statistic Xi:n, say

fi:n(x), in a random sample of size n from the EGGu distribution. It is well-known that

fi:n(x) =
1

B(i, n− i + 1)

n−i

∑
j=0

(−1)j
(

n− i
j

)
f (x) F(x)i+j−1. (2.17)

Replacing (2.3) and (2.4) in equation (2.17) and applying the binomial expansion

(2.8) twice, we can write

fi:n(x) =
ab

B(i, n− i + 1)

∞

∑
`=0

ϑ` g(x) G(x)`,

where ϑ` is given by

ϑ` =
n−i

∑
j=0

∞

∑
k=0

(−1)j+k+`

(
n− i

j

)(
b(i + j)− 1

k

)(
a(k + 1)− 1

`

)
.

Thus, replacing G(x) and g(x) by the cdf and pdf of the Gumbel distribution given

by (2.1) and (2.2), respectively, we can write fi:n(x) as

fi:n(x) =
ab

σB(i, n− i + 1)

∞

∑
`=0

ϑ` exp
{
−
[

x− µ

σ
+ (`+ 1) exp

(
−x− µ

σ

)]}
.

After simple algebraic manipulation, we can rewrite the last equation as

fi:n(x) =
ab

B(i, n− i + 1)

∞

∑
`=0

ϑ∗` h`+1(x), (2.18)

where ϑ∗` = ϑ`/(`+ 1) and h`+1(x) is given by (2.11).

Equation (2.18) reveals that the density function of the EGGu order statistic is a

linear combination of exp-Gu densities. A direct application of (2.18) is to calculate

the moments and the mgf of the EGGu order statistics.
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The rth moment of Xi:n is given by

E(Xr
i:n) =

ab
B(i, n− i + 1)

∞

∑
`=0

ϑ∗`

∫ ∞

−∞
xr h`+1(x) dx.

From the results presented in Section (2.4.3), the last equation reduces to

E(Xr
i:n) =

ab
B(i, n− i + 1)

∞

∑
`=0

r

∑
k=0

(`+ 1) (−σ)k µr−k
(

r
k

)
ϑ∗`

(
∂

∂c

)k

[(`+ 1)−cΓ(c)] |c=1 .

The mgf of Xi:n is given by

M(t) =
ab

B(i, n− i + 1)

∞

∑
`=0

ϑ∗`

∫ ∞

−∞
etx h`+1(x) dx.

Finally, based on the results in Section (2.4.4), the last equation can be rewritten as

M(t) =
a b etµ Γ(1− tσ)
B(i, n− i + 1)

∞

∑
`=0

(`+ 1)tσ ϑ∗` .

2.5 Estimation and inference

Several approaches for parameter point estimation were proposed in the literature

but the maximum likelihood method is the most commonly employed. The MLEs en-

joy desirable properties and can be used when constructing confidence intervals and

regions and also in test statistics. Large sample theory for these estimates delivers sim-

ple approximations that work well in finite samples. The resulting approximation for

the estimates in distribution theory is easily handled either analytically or numerically.

So, we consider the estimation of the unknown parameters a, b, µ and σ of the EGGu

distribution from complete samples only by the method of maximum likelihood. Let

x1, . . . , xn be a sample of size n from X. The log-likelihood function for the vector of

parameters θ> = (a, b, µ, σ)> can be expressed as

`(θ) = n log
(

ab
σ

)
−

n

∑
i=1

[
xi − µ

σ
+ exp

(
−xi − µ

σ

)]
+ (a− 1)

n

∑
i=1

log
{

1− exp
[
− exp

(
−xi − µ

σ

)]}
+ (b− 1)

n

∑
i=1

log
{

1−
[

1− exp
[
− exp

(
−xi − µ

σ

)]]a}
.
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The elements of the score vector are given by

Ua(θ) =
∂`(θ)

∂a
=

n
a
+

n

∑
i=1

log[H(xi)] + (1− b)
n

∑
i=1

H(xi)
a log H(xi)

1− H(xi)a ,

Ub(θ) =
∂`(θ)

∂b
=

n
b
+

n

∑
i=1

log[1− H(xi)
a],

Uµ(θ) =
∂`(θ)

∂µ
=

n
σ
− 1

σ

n

∑
i=1

exp
(
−xi − µ

σ

)
+ (a− 1)

n

∑
i=1

g(xi)

H(xi)

+ a(1− b)
n

∑
i=1

g(xi)H(xi)
a−1

1− H(xi)a ,

Uσ(θ) =
∂`(θ)

∂σ
= −nµ

σ2 −
n
σ
− 1

σ2

n

∑
i=1

(xi − µ) exp
(
−xi − µ

σ

)
+

1
σ2

n

∑
i=1

xi

+ (a− 1)
n

∑
i=1

(xi − µ)g(xi)

σH(xi)

+ (b− 1)
n

∑
i=1
− a(xi − µ)g(xi)H(x)a−1

σ[1− H(x)a]
,

H(xi) = 1− exp
[
− exp

(
− xi−µ

σ

)]
and g(xi) =

1
σ exp

{
−
[

xi−µ
σ + exp

(
− xi−µ

σ

)]}
.

The MLEs θ̂ of θ is obtained by solving simultaneously the nonlinear equations

Ua(θ) = 0, Ub(θ) = 0, Uµ(θ) = 0 and Uσ(θ) = 0. They cannot be solved analyti-

cally and require statistical software with iterative numerical techniques. There exists

many maximization methods in R scripts like NR (Newton-Raphson), BFGS (Broyden-

Fletcher-Goldfarb-Shanno), BHHH (Berndt-Hall-Hall-Hausman), SANN (Simulated-

Annealing), NM (Nelder-Mead) and L-BFGS-B. For interval estimation and hypothesis

tests on the parameters a, b, µ and σ, we determine the 4× 4 observed information ma-

trix J(θ) = {−Urs}, where Urs = ∂2`(θ)/(∂θr∂θs) for r, s ∈ {a, b, µ, σ}. The elements

of J(θ) are given in the Appendix.

Next, a small Monte Carlo simulation experiment based on 10, 000 replications will

be conducted to evaluate the MLEs of the parameters of the EGGu distribution. We

set the sample size at n = 100, 200, 400 and 800, the parameter a at a = 1.5 and 3.0,

and the parameter b at b = 1.5 and 3.0. The location and scale parameters are fixed at

µ = 0 and σ = 1, respectively, without loss of generality. The Monte Carlo simulation

experiments are performed using the R programming language; see http://www.r-

project.org. Table 2.3 reports the empirical means and mean squared errors (in paren-
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theses) of the corresponding estimators. From the figures in this table, we note that,

as the sample size increases, the empirical biases and mean squared errors decrease in

all cases, as expected.

Table 2.3: MLEs and mean squared errors (in parentheses); µ = 0 and σ = 1.

a b â b̂ µ̂ σ̂

n = 100

1.5 1.5 1.8709 (2.4748) 1.8402 (4.2093) 0.4719 (2.5600) 0.9405 (0.2061)

1.5 3.0 1.7451 (2.1280) 2.7433 (4.5480) 0.5222 (2.3406) 0.8962 (0.2240)

3.0 1.5 3.8777 (11.916) 1.4662 (3.1887) 0.4057 (11.311) 0.8999 (0.1775)

3.0 3.0 3.3444 (8.8191) 2.3874 (4.3211) 0.3190 (8.8023) 0.8200 (0.1654)

n = 200

1.5 1.5 1.6795 (0.9176) 1.7512 (4.1874) 0.4188 (1.0608) 0.9684 (0.1151)

1.5 3.0 1.5910 (0.8141) 2.8413 (4.1928) 0.3743 (0.9459) 0.9364 (0.1237)

3.0 1.5 3.6424 (7.1481) 1.5338 (3.1388) 0.3643 (6.8681) 0.9632 (0.1720)

3.0 3.0 3.1394 (3.8597) 2.5946 (4.2360) 0.2676 (3.9119) 0.8860 (0.1213)

n = 400

1.5 1.5 1.5886 (0.2920) 1.6240 (2.9118) 0.3542 (0.4096) 0.9839 (0.0496)

1.5 3.0 1.5559 (0.3442) 2.9562 (3.6910) 0.2807 (0.4199) 0.9713 (0.0674)

3.0 1.5 3.4946 (5.0507) 1.6924 (3.6551) 0.2981 (4.8949) 1.0017 (0.1697)

3.0 3.0 3.1413 (3.3052) 2.7812 (4.4744) 0.2236 (3.3352) 0.9406 (0.1107)

n = 800

1.5 1.5 1.5495 (0.1265) 1.5625 (1.9864) 0.2688 (0.1963) 0.9914 (0.0274)

1.5 3.0 1.5328 (0.1513) 2.9838 (2.5010) 0.1724 (0.1799) 0.9889 (0.0332)

3.0 1.5 3.2975 (3.6003) 1.5810 (2.8298) 0.2321 (3.5656) 0.9932 (0.1335)

3.0 3.0 2.9814 (1.4341) 2.7585 (2.5881) 0.1302 (1.4507) 0.9467 (0.0599)

2.6 Applications to real data

In this section, we provide two applications to real data sets to illustrate the im-

portance of the EGGu distribution. The MLEs of the parameters are computed (as
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discussed in Section 2.5) and the goodness-of-fit statistics for this model are compared

with other competing models. All computations are performed using the SAS sub-

routine NLMixed. The four-parameter Beta Gumbel (BGu) [15] and Kumaraswamy

Gumbel (KumGu) [14] distributions are used to make a comparison with the EGGu

model. Their pdfs are given by

πBGu(x; a, b, µ, σ) =
exp[−(x− µ)/σ] exp{−a exp[−(x− µ)/σ]}{1− exp[−(x− µ)/σ]}b−1

σ B(a, b)
,

and

πKumGu(x; a, b, µ, σ) = a b exp[−(x− µ)/σ] exp{−a exp[−(x− µ)/σ]}

{1− exp{−a exp[−(x− µ)/σ]}}b−1,

respectively.

The first data set is obtained from [38]. They consist of thirty successive values of

March precipitation (in inches) in Minneapolis/St Paul. The data are: 0.77, 1.74, 0.81,

1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81,

2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05. Table 2.4 gives some descriptive

statistics for these data, which includes central tendency statistics, variance, among

others. Table 2.5 lists the MLEs of the model parameters (standard errors in parenthe-

ses) for all fitted models. It is also given the values of the Akaike information criterion

(AIC), Bayesian information criterion (BIC) and consistent Akaike information crite-

rion (CAIC).

Table 2.4: Descriptives statistics for Hinkley’s data set.

Statistic

Mean 1.675

Median 1.470

Variance 1.001

Minimum 0.320

Maximum 4.750
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Table 2.5: MLEs (standard errors in parentheses), AIC, BIC and CAIC statistics for

Hinkley’s data.

Distribution â b̂ µ̂ σ̂ AIC BIC CAIC

EGGu 0.1440 2.1935 0.2190 0.1285 84.1 85.7 89.7

(0.0358)a (1.3392) (0.2508) (0.0078)

BGu 0.8294 0.4449 0.9133 0.4301 84.7 86.3 90.3

(2.0008)a (0.4855) (1.5573) (0.3628)

KumGu 0.7632 0.4349 0.9225 0.4206 84.7 86.3 90.3

(0.2094)a (0.4428) (0.3800) (0.3151)

a Denotes the standard deviations of the MLEs of a, b, µ and σ.

Plots of the estimated pdf and cdf of the fitted EGGu, BGu and KumGu models

to these data are displayed in Figure 2.5. They indicate that the EGGu distribution is

superior to the other distributions in terms of model fitting.
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Figure 2.5: (a) Plots of the fitted EGGu, BGu and KumGu densities; (b) Plots of the

estimated cdfs of the EGGu, BGu and KumGu models.

Next, we shall apply formal goodness-of-fit tests in order to verify which distri-

bution fits better to the current data. We consider the Cramér-von Mises (CM) and

Anderson-Darling (AD) statistics, which are described in [39]. Table 2.6 gives the val-
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ues of the CM and AD statistics (and the p-values of the tests in parentheses) for the

fitted models. Thus, according to these formal tests, the EGGu model fits the current

data better than the other models, i.e., these values indicate that the null hypothesis is

strongly not rejected for the EGGu distribution. Based on the plots of Figure 2.5, we

conclude that the EGGu distribution provides a better fit to these data than the BGu

and KumGu models.

Table 2.6: Goodness-of-fit tests for Hinkley’s data set.

Model
Statistics

CM AD

EGGu 0.0151 (0.9932)a 0.1169 (0.9891)a

BGu 0.0205 (0.9611) 0.1606 (0.9415)

KumGu 0.0193 (0.9718) 0.1520 (0.9548)

a Denotes the p-value of the test.

The second data set is given by [40]. The data referrers to the time between failures

for repairable item: 1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36,

0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17.

Table 2.7 gives some descriptive statistics for these data. Table 2.8 gives the MLEs of

the model parameters (standard errors in parentheses) for all fitted models and the

values of the AIC, BIC and CAIC statistics.

Table 2.7: Descriptives statistics for the times between failures.

Statistic

Mean 1.543

Median 1.235

Variance 1.272

Minimum 0.110

Maximum 4.730
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Table 2.8: MLEs (standard errors in parentheses) and the AIC, BIC and CAIC statistics

for the times between failures.

Distribution â b̂ µ̂ σ̂ AIC BIC CAIC

EGGu 0.2914 1.3294 0.3146 0.3004 87.55 93.16 89.15

(0.3659)a (1.0088) (0.5421) (0.3222)

BGu 7.7144 0.2089 −0.2351 0.2600 87.82 93.43 89.42

(10.521)a (0.1715) (0.5534) (0.1884)

KumGu 2.4766 0.2749 0.1804 0.3115 87.55 93.16 89.15

(4.4419)a (0.2469) (0.5544) (0.2508)

a Denotes the standard deviation of the MLEs of a, b, µ and σ.

Plots of the estimated pdfs and cdfs of the EGGu, BGu and KumGu models to the

current data are displayed in Figure 2.6.
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Figure 2.6: (a) Plots of the fitted EGGu, BGu and KumGu densities; (b) Plots of the

estimated cdfs of the EGGu, BGu and KumGu models.

Table 2.9 gives the values of the CM and AD statistics (p-values between parenthe-

ses). Thus, according to these formal tests, the EGGu model fits the current data better

than the other models, i.e., these values indicate that the null hypotheses are strongly

not rejected for the EGGu distribution.
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Table 2.9: Goodness-of-fit tests for the times between failures.

Model
Statistics

CM AD

EGGu 0.0168 (0.9885)a 0.1198 (0.9892)a

BGu 0.0181 (0.9821) 0.1231 (0.9874)

KumGu 0.0176 (0.9848) 0.1204 (0.9889)

a Denotes the p-value of the test.

2.7 Conclusions

In this chapter, we study a four-parameter model named the exponentiated gener-

alized Gumbel (EGGu) distribution. This model generalizes the Gumbel distribution,

which is one of the most important models for fitting data with support in R. We pro-

vide some mathematical properties of the EGGu distribution including the ordinary

moments, generating and quantile functions, mean deviations, Bonferroni and Lorenz

curves and Rényi entropy. The density function of the order statistics is obtained as a

combination of exponentiated Gumbel densities. We discuss the parameter estimation

by maximum likelihood and provide the observed information matrix. We provide a

Monte Carlo simulation study to evaluate the maximum likelihood estimation of the

model parameters. Two applications to real data indicate that the EGGu distribution

provides a good fit and can be used as a competitive model to fit real data.
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Appendix A: Observed information matrix.

∂2`(θ)

∂a2 = − n
a2 + (b− 1)

n

∑
i=1

{
−H(xi)

2a log[H(xi)]
2

[1− H(xi)a]2
− H(xi)

a log[H(xi)]
2

1− H(xi)a

}
,

∂2`(θ)

∂b2 = − n
b2 ,

∂2`(θ)

∂µ2 = (a− 1)
n

∑
i=1

{
− g(xi)

2

H(xi)2 +

g(xi)

[
1−exp(− xi−µ

σ )
σ

]
H(xi)

}

+ (b− 1)
n

∑
i=1

{
− a(a− 1)g(xi)

2H(xi)
a−2

1− H(xi)a − a2g(xi)
2H(xi)

2(a−1)

[1− H(xi)a]2

−
a[H(xi)]

a−1g(xi)

[
1−exp(− xi−µ

σ )
σ

]
1− H(xi)a

}
−

n

∑
i=1

exp( xi−µ
σ )

σ2 ,

∂2`(θ)

∂σ2 =
2nµ

σ3 +
n
σ2 −

2
σ3

n

∑
i=1

xi

−
n

∑
i=1

−2(xi − µ) exp
(
− xi−µ

σ

)
σ3 +

(xi − µ)2 exp
(
− xi−µ

σ

)
σ4


+ (a− 1)

n

∑
i=1

{
−2(xi − µ)g(xi)

σ2H(xi)
− (xi − µ)2g(xi)

2

σ2H(xi)

+

(xi − µ)g(xi)

{
(xi−µ)

[
1−exp

(
− xi−µ

σ

)]
σ2

}
σH(xi)

}

+ (b− 1)
n

∑
i=1

{
2a(xi − µ)g(xi)H(xi)

a−1

σ2[1− H(xi)a]

− a(a− 1)(xi − µ)2g(xi)
2H(xi)

a−2

σ2[1− H(xi)a]

− a2(xi − µ)2g(xi)
2H(xi)

2(a−1)

σ2[1− H(xi)a]2

−
a(xi − µ)g(xi)H(xi)

a−1

{
(xi−µ)

[
1−exp

(
− xi−µ

σ

)]
σ2

}
σ[1− H(xi)a]

}
,

∂2`(θ)

∂a∂b
=

n

∑
i=1
−H(xi)

a log[H(xi)]

1− H(xi)a ,
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∂2`(θ)

∂a∂µ
=

n

∑
i=1

g(xi)

H(xi)
+ (b− 1)

n

∑
i=1

{
− g(xi)H(xi)

a−1

1− H(xi)a − ag(xi)H(xi)
2a−1 log[H(xi)]

[1− H(xi)a]2

− ag(xi)H(xi)
a−1 log[H(xi)]

1− H(xi)a

}
,

∂2`(θ)

∂a∂σ
=

n

∑
i=1

(xi − µ)g(xi)

σH(xi)
+ (b− 1)

n

∑
i=1

{
− (xi − µ)g(xi)H(xi)

a−1

σ[1− H(xi)a]

− a(xi − µ)g(xi)H(xi)
2a−1 log[H(xi)]

σ[1− H(xi)a]2

− a(xi − µ)g(xi)H(xi)
a−1 log[H(xi)]

σ[1− H(xi)a]

}
,

∂2`(θ)

∂b∂µ
=

n

∑
i=1
− ag(xi)H(xi)

a−1

1− H(xi)a ,

∂2`(θ)

∂b∂σ
=

n

∑
i=1
− a(xi − µ)g(xi)H(xi)

a−1

σ[1− H(xi)a]
,

∂2`(θ)

∂µ∂σ
= − n

σ2 −
n

∑
i=1

{
−

exp
(
− xi−µ

σ

)
σ2 −

(xi − µ) exp
(
− xi−µ

σ

)
σ3

}

+ (a− 1)
n

∑
i=1

{
− g(xi)

σH(xi)
− (xi − µ)g(xi)

2

σH(xi)2 +
g(xi)[(xi − µ)(1− exp

(
− xi−µ

σ

)
]

σ2H(xi)

}

+ (b− 1)
n

∑
i=1

{
ag(xi)H(xi)

a−1

σ[1− H(xi)a]
− a(a− 1)(xi − µ)g(xi)

2H(xi)
a−2

σ[1− H(xi)a]

− a2(xi − µ)g(xi)
2H(xi)

2(a−1)

σ[1− H(xi)a]2

−
ag(xi)H(xi)

a−1

[
(xi−µ)(1−exp

(
− xi−µ

σ

)
σ2

]
1− H(xi)a

}
,

where H(xi) = 1− exp
[
− exp

(
− xi−µ

σ

)]
and g(xi) =

1
σ exp

{
−
[

xi−µ
σ + exp

(
− xi−µ

σ

)]}
.
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Appendix B: Additional application study to real data

In this appendix we provide an additional application to real data, in order to rein-

force the importance of the EGGu model. Here, we consider the EG generator applied

to the standardized Gumbel distribution. The cumulative distribution function (cdf)

G(x) and probability density function (pdf) g(x) of the standardized Gumbel (SGu)

distribution are given by

G(x; µ, σ) = exp [−exp (−x)]

and

g(x; µ, σ) = exp[−x− exp(−x)]

respectively, for x ∈ IR, µ = 0 and σ = 1.

So, the cdf F(x) and pdf f (x) of the exponentiated generalized standardized Gum-

bel (EGSGu) are given by

F(x) = {1− [1− exp [−exp (−x)]]a}b

and

f (x) = a b exp[−x− exp(−x)] {1− exp [−exp (−x)]}a−1 {1− [1− exp [−exp (−x)]]a}b−1,

respectively, where a > 0, b > 0.

Clearly, the model EGSGu is a special case of the equation (2.5) when µ = 0 and

σ = 1. We adjusted the EGSGu model, that contain just two parameters, and compare

the results with other important models in the literature. We consider the EGSGu

distribution and two Gumbel Lehmann’s alternatives sub-models, denoted by EISGu

and EIISGu, respectively. In addition, we have adjusted the models proposed by [41],

[42] and [43]. The data set was obtained from [40], and consists of the times between

failures for repairable items: 1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23,

0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 0.63, 1.23, 1.24, 1.97,

1.86, 1.17. Table 2.10 gives some descriptive statistics for these data. In Table 2.11 we

provide the MLEs (and their standard errors in parentheses) for all fitted models.
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Table 2.10: Descriptives statistics for the times between failures.

Statistic

Mean 1.543

Median 1.235

Variance 1.272

Minimum 0.110

Maximum 4.730

Table 2.12 lists the values of the Akaike information criterion (AIC), Bayesian infor-

mation criterion (BIC) and consistent Akaike information criterion (CAIC) statistics. In

general, it is considered that the lower values of these criteria indicates the better fit

to the data. The figures in Table 2.12 revels that the EGSGu model has the lowest AIC,

BIC and CAIC values among all fitted models. Thus, the proposed EGSGu distribution

is the best model to explain these data.

Plots of the estimated pdf and cdf of the EGSGu distribution and the histogram of

the data are displayed in Figure 2.7. These plots clearly reveal that the EGSGu model

fits the data adequately and then it can be chosen for modeling these data.
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Figure 2.7: Estimated pdf and cdf of the EGSGu model for the times between failures

for repairable items.
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Table 2.11: The MLEs (and their standard errors in parentheses) for the times between

failures.

Distribution

EGSGu â b̂

1.340 4.800

(0.247) (1.670)

EISGu 1 3.118

(−) (0.569)

EIISGu 0.589 1

(0.108)a (−)

KwGP â b̂ ξ̂ σ̂

1.917 14.432 1.119 4.972

(0.837)a (12.687) (2.371) (4.817)

BGP â b̂ ξ̂ σ̂

1.979 13.850 0.156 11.061

(0.460)a (1.983) (1.960) (3.852)

BMW â b̂ α̂ γ̂ λ̂

2.901 0.344 2.374 0.854 0.093

(1.903)a (0.168) (0.164) (0.210) (0.109)

a Denotes the standard deviation of the MLE’s.

Appendix C: Additional simulation study

We understand that the inferential process depends heavily on the quality of the

estimates obtained for the model under study. For this reason, we have extended the

simulation study presented in Section 2.5. We investigate the behavior of the MLEs
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Table 2.12: AIC, BIC and CAIC statistics for the times between failures for repairable

items.

Distribution AIC BIC CAIC

EGSGu 86.181 88.983 86.826

EISGu 86.334 87.735 86.477

EIISGu 103.73 105.13 103.87

KwGP 87.283 92.888 88.883

BGP 87.257 92.862 88.857

BMW 89.239 96.245 91.739

for the parameters of the EGGu model by generating from (2.12) samples sizes n =

50, 100, 150, 200 with µ = 0, σ = 1 and selected values for a and b.

The simulation process is based in 10, 000 Monte Carlo replications, performed in

the R software using the simulated-annealing(SANN) maximization method in the max-

Lik script. To ensure the reproducibility of the experiment, we use the seed for the

random number generator: set.seed (103). Initial kicks are taken as equal to half of the

true values of the parameters in each scenario.

The results of these new simulations are presented in Tables 2.13 and 2.14, which

contain the estimates and their estimated asymptotic variances in parentheses. These

results reveal that the for all estimates, in general, the biases and variances decrease as

the sample size increases.
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Table 2.13: MLEs for several a and b parameter values (variances in parentheses).
n = 50 n = 100 n = 150 n = 200

a b â b̂ â b̂ â b̂ â b̂

1 1 1.0521 1.0601 1.0262 1.0287 1.0170 1.0192 1.0131 1.0145

(0.0400) (0.0447) (0.0185) (0.0189) (0.0121) (0.0122) (0.0089) (0.0091)

1 2 1.0416 2.1546 1.0210 2.0733 1.0135 2.0487 1.0105 2.0368

(0.0280) (0.2526) (0.0131) (0.1029) (0.0087) (0.0661) (0.0064) (0.0484)

1 3 1.0380 3.2710 1.0191 3.1277 1.0123 3.0845 1.0096 3.0640

(0.0240) (0.7163) (0.0113) (0.2837) (0.0075) (0.1811) (0.0055) (0.1314)

1 4 1.0361 4.4045 1.0182 4.1898 1.0117 4.1254 1.0091 4.0947

(0.0219) (1.5130) (0.0103) (0.5873) (0.0068) (0.3728) (0.0050) (0.2687)

1 5 1.0350 5.5516 1.0176 5.2585 1.0114 5.1705 1.0088 5.1284

(0.0206) (2.6931) (0.0097) (1.0349) (0.0064) (0.6539) (0.0047) (0.4695)

1 6 1.0339 6.7013 1.0172 6.3317 1.0111 6.2184 1.0086 6.1645

(0.0194) (4.1665) (0.0093) (1.6460) (0.0061) (1.0363) (0.0045) (0.7410)

2 1 2.1041 1.0601 2.0524 1.0287 2.0340 1.0193 2.0262 1.0146

(0.1599) (0.0446) (0.0739) (0.0189) (0.0485) (0.0122) (0.0355) (0.0091)

2 2 2.0832 2.1545 2.0419 2.0732 2.0271 2.0488 2.0210 2.0368

(0.1122) (0.2526) (0.0526) (0.1028) (0.0348) (0.0661) (0.0255) (0.0484)

2 3 2.0760 3.2711 2.0382 3.1277 2.0247 3.0847 2.0192 3.0640

(0.0960) (0.7158) (0.0451) (0.2837) (0.0299) (0.1812) (0.0219) (0.1314)

2 4 2.0723 4.4044 2.0363 4.1900 2.0234 4.1254 2.0182 4.0947

(0.0875) (1.5131) (0.0412) (0.5872) (0.0273) (0.3726) (0.0200) (0.2685)

2 5 2.0699 5.5510 2.0352 5.2581 2.0227 5.1702 2.0176 5.1282

(0.0821) (2.6869) (0.0387) (1.0351) (0.0257) (0.6539) (0.0189) (0.4691)

2 6 2.0678 6.7009 2.0343 6.3319 2.0222 6.2184 2.0173 6.1646

(0.0778) (4.1584) (0.0370) (1.6465) (0.0246) (1.0359) (0.0180) (0.7399)

3 1 3.1562 1.0601 3.0786 1.0287 3.0509 1.0192 3.0392 1.0145

(0.3598) (0.0447) (0.1663) (0.0189) (0.1093) (0.0122) (0.0799) (0.0091)

3 2 3.1248 2.1546 3.0628 2.0732 3.0405 2.0487 3.0315 2.0369

(0.2525) (0.2527) (0.1182) (0.1028) (0.0782) (0.0661) (0.0573) (0.0484)

3 3 3.1141 3.2710 3.0573 3.1277 3.0371 3.0847 3.0287 3.0639

(0.2159) (0.7162) (0.1014) (0.2837) (0.0673) (0.1811) (0.0493) (0.1314)

3 4 3.1085 4.4044 3.0545 4.1898 3.0352 4.1255 3.0273 4.0947

(0.1968) (1.5079) (0.0927) (0.5872) (0.0615) (0.3726) (0.0450) (0.2686)

3 5 3.1047 5.5492 3.0527 5.2580 3.0341 5.1702 3.0265 5.1285

(0.1846) (2.6673) (0.0871) (1.0340) (0.0579) (0.6537) (0.0424) (0.4689)

3 6 3.1018 6.7026 3.0515 6.3317 3.0333 6.2185 3.0259 6.1646

(0.1750) (4.1982) (0.0833) (1.6463) (0.0553) (1.0364) (0.0406) (0.7403)

4 1 4.2082 1.0601 4.1048 1.0287 4.0679 1.0192 4.0523 1.0146

(0.6396) (0.0446) (0.2956) (0.0189) (0.1945) (0.0122) (0.1421) (0.0091)

4 2 4.1663 2.1544 4.0838 2.0732 4.0541 2.0487 4.0419 2.0368

(0.0487) (0.2527) (0.2101) (0.1028) (0.1390) (0.0661) (0.1019) (0.0484)

4 3 4.1521 3.2711 4.0765 3.1277 4.0495 3.0848 4.0383 3.0640

(0.3839) (0.7160) (0.1804) (0.2838) (0.1195) (0.1811) (0.0876) (0.1314)

4 4 4.1447 4.4046 4.0727 4.1899 4.0470 4.1255 4.0365 4.0946

(0.3502) (1.5122) (0.1647) (0.5872) (0.1092) (0.3724) (0.0801) (0.2686)

4 5 4.1398 5.5499 4.0703 5.2581 4.0455 5.1704 4.0353 5.1284

(0.3283) (2.6737) (0.1549) (1.0347) (0.1028) (0.6539) (0.0754) (0.4691)

4 6 4.1356 6.7007 4.0687 6.3318 4.0444 6.2185 4.0345 6.1646

(0.3107) (4.1586) (0.1481) (1.6447) (0.0983) (1.0354) (0.0721) (0.7403)
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Table 2.14: MLEs for several a and b parameter values (variances in parentheses).
n = 50 n = 100 n = 150 n = 120

a b â b̂ â b̂ â b̂ â b̂

5 1 5.2603 1.0601 5.1309 1.0287 5.0847 1.0192 5.0651 1.0145

(0.9996) (0.0447) (0.4618) (0.0189) (0.3037) (0.0122) (0.2220) (0.0091)

5 2 5.2077 2.1544 5.1047 2.0732 5.0677 2.0487 5.0523 2.0368

(0.7010) (0.2525) (0.3284) (0.1029) (0.2172) (0.0660) (0.1591) (0.0484)

5 3 5.1902 3.2711 5.0956 3.1277 5.0617 3.0847 5.0478 3.0638

(0.6001) (0.7159) (0.2817) (0.2836) (0.1869) (0.1812) (0.1369) (0.1314)

5 4 5.1809 4.4045 5.0908 4.1898 5.0587 4.1254 5.0456 4.0947

(0.5471) (1.5100) (0.2573) (0.5867) (0.1707) (0.3726) (0.1252) (0.2687)

5 5 5.1748 5.5504 5.0879 5.2579 5.0568 5.1702 5.0442 5.1284

(0.5130) (2.6726) (0.2420) (1.0348) (0.1606) (0.6536) (0.1177) (0.4690)

5 6 5.1691 6.6984 5.0858 6.3316 5.0555 6.2184 5.0431 6.1647

(0.4844) (4.1254) (0.2315) (1.6452) (0.1536) (1.0357) (0.1126) (0.7403)

6 1 6.3122 1.0601 6.1572 1.0287 6.1017 1.0192 6.0783 1.0145

(1.4391) (0.0447) (0.6648) (0.0189) (0.4373) (0.0122) (0.3197) (0.0091)

6 2 6.2496 2.1545 6.1256 2.0732 6.0811 2.0487 6.0628 2.0368

(1.0098) (0.2526) (0.4729) (0.1028) (0.3129) (0.0661) (0.2292) (0.0484)

6 3 6.2280 3.2709 6.1146 3.1277 6.0741 3.0846 6.0575 3.0639

(0.8640) (0.7163) (0.4057) (0.2838) (0.2690) (0.1811) (0.1972) (0.1315)

6 4 6.2171 4.4047 6.1090 4.1897 6.0705 4.1255 6.0547 4.0947

(0.7875) (1.5108) (0.3705) (0.5867) (0.2459) (0.3727) (0.1802) (0.2687)

6 5 6.2096 5.5503 6.1055 5.2581 6.0681 5.1701 6.0529 5.1283

(0.7389) (2.6818) (0.3486) (1.0346) (0.2313) (0.6535) (0.1695) (0.4688)

6 6 6.2033 6.6998 6.1031 6.3317 6.0666 6.2186 6.0518 6.1646

(0.6989) (4.1357) (0.3334) (1.6468) (0.2212) (1.0354) (0.1622) (0.7403)

7 1 7.3644 1.0601 7.1832 1.0287 7.1187 1.0192 7.0915 1.0146

(1.9582) (0.0446) (0.9051) (0.0189) (0.5953) (0.0122) (0.4351) (0.0091)

7 2 7.2913 2.1545 7.1467 2.0733 7.0947 2.0487 7.0734 2.0368

(1.3737) (0.2526) (0.6438) (0.1029) (0.4259) (0.0661) (0.3118) (0.0483)

7 3 7.2661 3.2710 7.1338 3.1277 7.0865 3.0846 7.0670 3.0639

(1.1757) (0.7158) (0.5522) (0.2837) (0.3661) (0.1811) (0.2683) (0.1314)

7 4 8.2893 4.4043 7.1272 4.1899 7.0823 4.1255 7.0639 4.0947

(1.4000) (1.5082) (0.5044) (0.5872) (0.3346) (0.3726) (0.2453) (0.2686)

7 5 7.2447 5.5505 7.1230 5.2581 7.0796 5.1703 7.0618 5.1285

(1.0061) (2.6839) (0.4743) (1.0349) (0.3149) (0.6535) (0.2308) (0.4690)

7 6 7.2380 6.7034 7.1202 6.3318 7.0778 6.2187 7.0604 6.1646

(0.9544) (4.1961) (0.4535) (1.6468) (0.3011) (1.0358) (0.2208) (0.7402)

8 1 8.4162 1.0600 8.2095 1.0286 8.1358 1.0193 8.1044 1.0145

(2.5586) (0.0447) (1.1824) (0.0189) (0.7775) (0.0122) (0.5680) (0.0091)

8 2 8.3329 2.1545 8.1677 2.0733 8.1084 2.0488 8.0838 2.0368

(1.7944) (0.2525) (0.8407) (0.1029) (0.5563) (0.0661) (0.4073) (0.0484)

8 3 8.3042 3.2711 8.1528 3.1277 8.0989 3.0846 8.0765 3.0639

(1.5356) (0.7159) (0.7213) (0.2837) (0.4782) (0.1811) (0.3505) (0.1314)

8 4 8.2893 4.4043 8.1452 4.1898 8.0939 4.1255 8.0729 4.0946

(1.4000) (1.5082) (0.6589) (0.5871) (0.4371) (0.3725) (0.3205) (0.2686)

8 5 8.2796 5.5503 8.1406 5.2580 8.0909 5.1702 8.0706 5.1284

(1.3132) (2.6715) (0.6196) (1.0344) (0.4112) (0.6534) (3.3015) (0.4691)

8 6 8.2715 6.7023 8.1373 6.3317 8.0890 6.2186 8.0689 6.1645

(1.2452) (4.1991) (0.5922) (1.6454) (0.3933) (1.0358) (0.2885) (0.7402)
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CHAPTER 3

The Exponentiated Generalized Extended Exponential Distribution

Paper published in the Journal of Data Science, 14, 393-414, 2016.

Abstract

We introduce and study a new four-parameter lifetime model named the exponentiated

generalized extended exponential distribution. The proposed model has the advantage

of including as special cases the exponential and exponentiated exponential distri-

butions, among others, and its hazard function can take the classic shapes: bathtub,

inverted bathtub, increasing, decreasing and constant, among others. We derive some

mathematical properties of the new model such as a representation for the density

function as a double linear combination of Erlang densities, explicit expressions for

the quantile function, ordinary and incomplete moments, mean deviations, Bonfer-

roni and Lorenz curves, generating function, Rényi entropy, density of order statistics

and reliability. We use the maximum likelihood method to estimate the model pa-

rameters and provide the elements of the score vector. Two applications to real data

illustrates the flexibility of the proposed model.
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tion. Lifetime distribution. Moments.

Resumo

Nós introduzimos e estudamos um novo modelo com quatro parâmetros que pode

ser usado para ajustar dados de sobrevivência, chamado de distribuição exponen-

cial estendida exponencializada generalizada. O modelo proposto tem a vantagem

de incluir como casos especiais as distribuições exponencial e exponencial exponen-

cializada, dentre outras, além de possuir função de taxa de falha que assume as formas

clássicas descritas na literatura: banheira, banheira invertida, crescente, decrescente e

constante. Nós derivamos algumas propriedades do novo modelo, tais como uma

representação para a função densidade como uma combinação linear dupla de densi-

dades Erlang, expressões explícitas para a função quantílica, momentos ordinários e

incompletos, desvios médios, curvas de Bonferroni e Lorenz, função geratriz de mo-

mentos, entropia de Rényi, densidade da estatística de ordem e confiabilidade. Nós

usamos o método de máxima verossimilhança para estimar os parâmetros do modelo

e fornecemos o vetor escore. Duas aplicações à dados reais ilustram a flexibilidade do

modelo proposto.

Palavras-chave: Distribuição de Erlang. Distribuição exponencial estendida. Função

de risco. Modelo de sobrevivência. Momentos.

3.1 Introduction

The exponential distribution is a very popular statistical model and, probably, is

one of the parametric models most extensively applied in several fields ([44]). The

popularity of this distribution can be explained, perhaps, by the simplicity of their cu-

mulative function, which involves only one unknown parameter λ > 0 and takes a

simple form G(x) = 1− e−λx, for x > 0, in addition to having constant failure rate
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function. Due to its importance, several studies introducing and/or studying exten-

sions of the exponential distribution are available in the literature. Here, we refer to

the following papers: [45], [18], [46] and [44], to mention a few. Recently, [11] intro-

duced the extended exponential (EE for short) distribution. Its cumulative distribution

function (cdf) and probability density function (pdf) (for x > 0) are given by

G(x; α, β) =
α + β− (β + α + αβx) e−αx

α + β
(3.1)

and

g(x; α, β) =
α2 (1 + βx) e−αx

α + β
, (3.2)

respectively, where α > 0 and β ≥ 0.

Here, we point out that the density (3.2) given above can be also obtained as a

special case of the generalized Lindley distribution, proposed by [47]. However, these

latter authors do not address this particular case in their research.

Several mathematical properties of the EE distribution, including expectation, vari-

ance, moment generating function (mgf), asymmetry and kurtosis coefficients, among

others, were studied by [11]. In particular, these authors proved that the density of the

EE model is a linear combination of the exponential and gamma densities. We believe

that the addition of parameters to the EE model may generate new distributions with

great adjustment capability and, for this reason, we propose a generalization of it.

In a recent paper, [10] proposed a new way of adding two parameters to a contin-

uous distribution. For a given continuous baseline cdf G(x), and x ∈ R, they defined

the exponentiated generalized (EG) class of distributions with two extra shape parame-

ters a > 0 and b > 0 and cdf F(x) and pdf f (x) given by

F(x) = {1− [1− G(x)]a}b (3.3)

and

f (x) = a b [1− G(x)]a−1 {1− [1− G(x)]a}b−1 g(x), (3.4)
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respectively, in which are implicit the dependence on the parameters of G(x).

To illustrate the flexibility of the EG model, [10] applied (3.3) to extend some well-

known distributions such as the Fréchet, normal, gamma and Gumbel distributions.

Moreover, these authors presented several properties for the EG class, which constitute

motivations to adopt this generator. Next, we discuss some of these motivations. The

first important point to note is the simplicity of equations (3.3) and (3.4). They have

no complicated functions and will be always tractable when the cdf and pdf of the

baseline distribution have simple analytic expressions. It is very easy, for example,

to obtain the inverse of the cdf (3.3). Another important feature is that the EG model

contains as especial cases the two classes of Lehmann’s alternatives. In fact, for a = 1,

(3.3) reduces to F(x) = G(x)b and for b = 1 we obtain F(x) = 1− [1− G(x)]a, which

correspond to the cdf’s of the Lehmann type I and II families ([17]), respectively. For

this reason, the EG model encompasses both Lehmann type I and Lehmann type II classes.

So, the EG family can be derived from a double transformation using these classes.

The two extra parameters a and b in the density (3.4) can control both tail weights,

allowing generate flexible distributions, with heavier or lighter tails, as appropriate.

There is also an attractive physical interpretation of the model (3.3) when a and b are

positive integers. This interpretation is described in [3].

The above properties and many others have been discussed and explored in recent

works for the EG class. Here, we refer to the papers: [48], [3], [49], [50] and [51], which

used the EG class to extend the Burr III, Birnbaum-Saunders, inverse Weibull, inverted

exponential and generalized gamma distributions, respectively.

In this chapter, we propose the so-called exponentiated generalized extended exponen-

tial (EGEE) distribution determined by inserting (3.1) in equation (3.3). The EGEE

model includes as special cases the exponential, Lindley and exponentiated exponen-

tial distributions, among others, which are very important statistical models, espe-

cially for applied works. The density function of the new distribution is a double

linear combination of Erlang densities, and thus the derivation of several properties

of the EGEE model can be simplified from this relationship. Moreover, the proposed

model has monotonic and non-monotonic hazard rate functions. We hope that this

new distribution can be widely used for data modelling in areas such as economics,



55
finance, reliability, biology and medicine, among others.

The rest of the chapter is organized as follows. In Section 3.2, we provide the den-

sity and hazard functions of the EGEE model with corresponding plots for selected

parameter values. We present explicit expressions for the cumulative and reversed

hazard functions. In Section 3.3, we discuss the shapes of the EGEE density function.

In Section 3.4, we derive several mathematical properties of the proposed model, in-

cluding linear combination representations for the density and culmulative functions,

explicit expressions for the quantile and generating functions, ordinary and incom-

plete moments, among others. Estimation and inference by maximum likelihood are

discussed in Section 3.5. Two applications to real data are presented in Section 3.6.

Section 3.7 provides concluding remarks.

3.2 The EGEE distribution

The cdf and pdf of the EGEE distribution (by omitting the dependence on the pa-

rameters a > 0, b > 0, α > 0 and β ≥ 0 ) are given by

F(x) =
[(α + β)a − (β + α + αβx)a e−aαx]b

(α + β)ab (3.5)

and

f (x) =
abα2

(α + β)ab (1+ βx) e−aαx (β + α + αβx)a−1 [(α + β)a− (β + α + αβx)a e−aαx]b−1,

(3.6)

respectively, for x > 0. Henceforth, a continuous random variable X with positive

support and having pdf (3.6) is denoted by X ∼ EGEE
(
a, b, α, β).

Several distributions are special cases of the EGEE model. Here, we mention some

of them. Clearly, the EE distribution is a basic exemplar when a = b = 1. The expo-

nential and Lindley distributions are obtained from (3.6) by setting β = 0 and β = 1,

respectively, in addition to a = b = 1. The exponentiated generalized exponential

(EGE) model is obtained from (3.6) by setting β = 0 and the exponentiated general-

ized Lindley (EGL) distribution follows when β = 1. The EGEE model also includes
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the Lehmann type I and type II transformations of the EE, exponential and Lindley

distributions. For example, the widely known exponentiated exponential distribu-

tion ([45]), also referred in the literature as the generalized exponential distribution,

follows when β = 0 and a = 1. For a brief discussion and some properties of the

exponentiated exponential distribution, see a recent paper by [44]. The exponentiated

Lindley (EL) model by [52] (they called the generalized Lindley distribution, but here

we adopt the EL terminology) comes when a = β = 1.

The hazard rate function (hrf) and reversed hazard rate function (rhrf) of X are

given by

h(x) =
abα2 (1 + βx) e−aαx (β + α + αβx)a−1 [(α + β)a − (β + α + αβx)a e−aαx]b−1

(α + β)ab − [(α + β)a − (β + α + αβx)a e−aαx]b

and

τ(x) =
abα2 (1 + βx) e−aαx (β + α + αβx)a−1

[(α + β)a − (β + α + αβx)a e−aαx]
,

respectively.

Plots of the EGEE density for selected parameter values are displayed in Figure 3.1.

Figure 3.2 provides some possible shapes of the EGEE hazard function for appropriate

choice of the parameter values, including bathtub, inverted bathtub, increasing, de-

creasing, constant and decreasing-increasing-decreasing shapes. These plots indicate

that the EGEE model is fairly flexible and can be used to fit several types of positive

data.

3.3 Shapes

The first derivative of log{ f (x)} for the EGEE model is given by

d log{ f (x)}
dx

= −a α +
β

1 + βx
+

(a− 1) α β

z(x)
+

a (b− 1) α z(x)a [1− β/z(x)] e−aαx

(α + β)a − z(x)a e−aαx ,

where z(x) = β + α + αβx.
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Figure 3.1: Plots of the EGEE density function for some parameter values.
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Figure 3.2: Plots of the EGEE hazard function for some parameter values.
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Some plots of the first derivative of log{ f (x)} for selected parameter values are

displayed in Figure 3.3. These plots are constructed using the Wolfram Mathematica

software.
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Figure 3.3: Plots of the first derivative of log{ f (x)}.

Thus, the critical values of f (x) are the roots of the equation:

a (b− 1) α z(x)a [1− β/z(x)] e−aαx

(α + β)a − z(x)a e−aαx = a α− β

1 + βx
− (a− 1) α β

z(x)
. (3.7)

If the point x = x0 is a root of (3.7), then we can classify it as local maximum, local

minimum or inflection point when λ(x0) < 0, λ(x0) > 0 and λ(x0) = 0, respectively,

where λ(x) = d2 log{ f (x)}/dx2 is given by

λ(x) =− β2

(1 + βx)2 −
(a− 1) α2 β2

z(x)2 − (b− 1){a α z(x)a [1− β/z(x)] e−aαx}2

[(α + β)a − z(x)a e−aαx]2

+
a (b− 1) α2 z(x)a [a β z(x)−1 − a− (a− 1) β2 z(x)−2 + a β z(x)−1] e−aαx

(α + β)a − z(x)a e−aαx .

3.4 Properties

In this section, we study some structural properties of the EGEE distribution.

3.4.1 A useful representation

First, we derive simple representations for the density and cumulative functions of

the EGEE distribution. The starting point of our approach is the class of exponentiated
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distributions, which has been widely explored in recent works. For an arbitrary con-

tinuous baseline cdf G(x), a random variable Y is said to have the exponentiated-G

(“exp-G” for short) distribution with power parameter c > 0, say Y ∼ exp-G(c), if its

cdf and pdf are Hc(x) = G(x)c and hc(x) = c g(x)G(x)c−1, respectively. Thus, “exp-

G” denotes the Lehmann type I transformation of G(x). Using some results in [3], we

can express the EG cdf (3.3) as

F(x) =
∞

∑
j=0

wj+1 Hj+1(x), (3.8)

where wj+1 = ∑∞
m=1(−1)j+m+1 ( b

m) (
m a
j+1) and Hj+1(x) = G(x)j+1 is the exp-G cdf with

power parameter j + 1. By differentiating (3.8), we obtain a similar linear combination

representation for f (x) as

f (x) =
∞

∑
j=0

wj+1 hj+1(x), (3.9)

where hj+1(x) = dHj+1(x)/dx.

By using (3.8) and (3.9) for the EE distribution (3.1), hj+1(x) becomes the exp-EE

pdf with power parameter j + 1 (for j ≥ 0) given by

hj+1(x) =
(j + 1) α2

(α + β)j+1 (1 + βx) e−αx [α + β− (β + α + αβx) e−αx]j. (3.10)

Combining equations (3.9) and (3.10) we have an important result: the EGEE den-

sity function is a linear combination of exp-EE densities. This result can be used to

derive some EGEE mathematical properties.

Next, we apply the binomial expansion in equation (3.10) to obtain a simple repre-

sentation for the exp-EE density. We have

hj+1(x) =
j

∑
k=0

k

∑
`=0

`+1

∑
i=0

(j + 1) (−1)k α`+2 βi+k−`

(α + β)k+1

(
j
k

)(
k
`

)(
`+ 1

i

)
xi e−α(k+1)x.

By interchanging ∑k
`=0 ∑`+1

i=0 by ∑k+1
i=0 ∑k

`=δi
in the last equation, where
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δi =

0, if i = 0, 1

i− 1, if i ≥ 2,

and, after a simple algebraic manipulation, we obtain

hj+1(x) =
j

∑
k=0

k+1

∑
i=0

p(j+1)
k,i π(x; i + 1, (k + 1)α), (3.11)

where

p(j+1)
k,i =

k

∑
`=δi

(j + 1) (−1)k α`−i+1 βi+k−` i!
(k + 1)i+1(α + β)k+1

(
j
k

)(
k
`

)(
`+ 1

i

)
. (3.12)

Here, π(x; i + 1, (k + 1)α) denotes the Erlang density with shape parameter i + 1

(for i ≥ 0) and scale parameter (k + 1)α. If Z is a Erlang random variable with shape

parameter s (= 1, 2, 3, . . .) and scale parameter λ > 0, its pdf is given by π(z; s, λ) =

λs zs−1 e−λz/(s− 1)!.

Second, combining equations (3.9) and (3.11) and changing ∑∞
j=0 ∑

j
k=0 by ∑∞

k=0 ∑∞
j=k,

the EGEE density function reduces to

f (x) =
∞

∑
k=0

k+1

∑
i=0

vk,i π(x; i + 1, (k + 1)α), (3.13)

where vk,i = ∑∞
j=k wj+1 p(j+1)

k,i .

Equation (3.13) is the main result of this section. Based on this equation, we con-

clude that the density function of X can be expressed as a double linear combination

of Erlang densities. This result is important to derive some mathematical properties

of X such as the ordinary and incomplete moments, generating function and mean

deviations from those of the Erlang distribution. We can take the upper limit of k to be

equal 20 in equation (3.13) for most practical purposes.

3.4.2 Quantile function

For many applications it is important to determine the quantile function (qf) of X.

Based on this function, we can, for example, generate variates and obtain the median

of the EGEE distribution. By inverting (3.5), the qf of X can be expressed as
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Q(u) = −1
α
− 1

β
− 1

α
W
{
− 1

β
(α + β) (1− u1/b)1/a exp[−(α + β)/β]

}
, (3.14)

where 0 < u < 1 and W(·) denotes the Lambert W-function. The median of X, say M,

is obtained by M = Q(1/2).

In a recent paper, [52] use the Lambert W-function to obtain the qf of the EL dis-

tribution. For any complex t, the Lambert W-function is defined as the inverse of the

function g(t) = t et. For more details, see http://mathworld.wolfram.com/LambertW-

Function.html. An implementation in R software is available through the LambertW

package. See http://cran.r-project.org/web/packages/LambertW/LambertW.pdf.

Using the Lagrange inversion theorem, the power series for the W-function holds:

W(z) =
∞

∑
k=1

(−k)k−1

k!
zk. (3.15)

By applying (3.15) in equation (3.14), we have

Q(u) = −1
α
− 1

β
− 1

α

∞

∑
k=1

(−1)k (−k)k−1

βk k!
(α + β)k (1− u1/b)k/a exp[−k(α + β)/β].

The effects of the additional shape parameters a and b on the skewness and kur-

tosis of the EGEE model can be based on quantile measures. The Bowley skew-

ness is based on quartiles B = [Q(3/4) − 2Q(1/2) + Q(1/4)]/[Q(3/4) − Q(1/4)],

whereas the Moors kurtosis is based on octiles M = [Q(7/8) − Q(5/8) + Q(3/8) −

Q(1/8)]/[Q(6/8) − Q(2/8)]. These measures are fairly considered in the literature.

Here, we refer to the following works: [53], [54], [55] and [56], among others.

In Figures 3.4 and 3.5, we present 3D plots of B and M measures for some param-

eters values. These plots are obtained using the Wolfram Mathematica software. Based

on these plots, it is possible to conclude that changes in the additional parameters a

and b have a considerable impact on the skewness and kurtosis of the EGEE model,

thus showing its greater flexibility. So, theses plots reinforce the importance of the

additional parameters.
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(a) α = 3 and β = 0.3 (b) α = 3 and β = 0.7 (c) α = 1.5 and β = 1.5

(d) α = 0.2 and β = 5 (e) α = 0.5 and β = 0.9 (f) α = 0.5 and β = 2

Figure 3.4: Plots of the Bowley skewness for the EGEE distribution.

(a) α = 3 and β = 0.3 (b) α = 0.3 and β = 0.3 (c) α = 2 and β = 2

(d) α = 0.2 and β = 4 (e) α = 6 and β = 4 (f) α = 0.6 and β = 2

Figure 3.5: Plots of the Moors kurtosis for the EGEE distribution.

3.4.3 Moments

It is hardly necessary to emphasize the importance of the moments of a random

variable. Here, for illustrative purposes, we provide the first six moments of X ob-
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tained by numerical integration. The results from (3.6) as E(Xn) =

∫ ∞
0 xn f (x)dx are

present in Table 3.1. All computations are obtained using Wolfram Mathematica soft-

ware, which have numerical integration routines with great precision. We consider

some a and b parameter values with α = 2 and β = 1 fixed.

Based on the values in Table 3.1, we conclude that the additional parameters a and

b have large impact on the moments of X. Theses values reveals that, in general, for

fixed a parameter value, the moments increases when b increase. The inverse happens

when we set values for b and the parameter a increases.

The nth moment of X can be also determined using the linear combination (3.13)

of Erlang densities. Thus, the nth moment of X is given by

E(Xn) =
∞

∑
k=0

k+1

∑
i=0

vk,i

∫ ∞

0
xn π(x; i + 1, (k + 1)α)dx

and we can be also write as

E(Xn) =
∞

∑
k=0

k+1

∑
i=0

(n + i)! vk,i

i! [(k + 1)α]n
.

3.4.4 Incomplete moments

The incomplete moments of a distribution play an important role in applications.

The nth incomplete moment of X is given by Tn(z) =
∫ z

0 xn f (x)dx, and using equa-

tion (3.13), we can write

Tn(z) =
∞

∑
k=0

k+1

∑
i=0

vk,i

∫ z

0
xn π(x; i + 1, (k + 1)α)dx.

Thus, we have

Tn(z) =
∞

∑
k=0

k+1

∑
i=0

{Γ(n + i + 1)− Γ[n + i + 1, z (k + 1)α]} vk,i

i! [(k + 1)α]n
, (3.16)

where Γ(a) =
∫ ∞

0 ta−1 e−tdt is the gamma function and Γ(a, z) =
∫ ∞

z ta−1 e−tdt de-

notes the upper incomplete gamma function.
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Table 3.1: First sixth moments of X for several a and b values (with α = 2 and β = 1).

a b E(X) E(X2) E(X3) E(X4) E(X5) E(X6)

1 0.66667 0.83333 1.50000 3.50000 10.0000 33.7500

2 0.98611 1.43750 2.78125 6.72917 19.5898 66.7676

1 3 1.19427 1.91927 3.91394 9.74748 28.8323 99.1301

4 1.34813 2.32359 4.93712 12.5945 37.7736 130.900

5 1.46994 2.67395 5.87523 15.2981 46.4496 162.126

1 0.34722 0.22917 0.21875 0.27083 0.41016 0.73242

2 0.51548 0.39652 0.40637 0.52125 0.80389 1.44926

2 3 0.62564 0.53048 0.57266 0.75566 1.18365 2.15212

4 0.70724 0.64317 0.72314 0.97700 1.55126 2.84227

5 0.77194 0.74097 0.86127 1.18737 1.90811 3.52080

1 0.23594 0.10677 0.07019 0.05998 0.06274 0.07741

2 0.35102 0.18511 0.13058 0.11554 0.12304 0.15323

3 3 0.42660 0.24801 0.18422 0.16762 0.18126 0.22760

4 0.48271 0.30102 0.23284 0.21686 0.23765 0.30067

5 0.52725 0.34710 0.27752 0.26370 0.29243 0.37253

1 0.17896 0.06181 0.03113 0.02042 0.01642 0.01558

2 0.26662 0.10732 0.05797 0.03936 0.03222 0.03085

4 3 0.32433 0.14394 0.08186 0.05715 0.04748 0.04584

4 0.36723 0.17484 0.10353 0.07397 0.06227 0.06057

5 0.40132 0.20173 0.12347 0.08999 0.07664 0.07506

1 0.14425 0.04034 0.01650 0.00881 0.00577 0.00446

2 0.21512 0.07012 0.03076 0.01699 0.01132 0.00884

5 3 0.26185 0.09412 0.04345 0.02467 0.01669 0.01314

4 0.29663 0.11439 0.05499 0.03195 0.02190 0.01736

5 0.32429 0.13205 0.06561 0.03888 0.02696 0.02152

The first incomplete moment of X is important to determine the mean deviations,

which can be used to measure the amount of scatter in a population, and the Bonfer-
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roni and Lorenz curves, which are useful for applications in areas such as economics,

reliability, demography and many others. Based on equation (3.16), for n = 1, we have

T1(z) =
∞

∑
k=0

k+1

∑
i=0

{Γ(i + 2)− Γ[i + 2, z (k + 1)α]} vk,i

i! (k + 1)α
. (3.17)

The mean deviations of X about the mean µ = E(X) and about the median M are

given by δ1 =
∫ ∞

0 |x − µ| f (x)dx and δ2 =
∫ ∞

0 |x − M| f (x)dx, respectively, where

f (x) is the pdf (3.6). Using equation (3.17), these measures follow as

δ1(X) = 2[µ F(µ)− T1(µ)] and δ2(X) = µ− 2 T1(M),

where F(µ) is the cdf (3.5) evaluated at µ and T1(z) is given by (3.17).

Equation (3.17) can also be adopted to obtain the Bonferroni and Lorenz curves of

X given by B(p) = T1(q)/(pµ) and L(p) = T1(q)/µ, respectively, where q = Q(p) is

given by (3.14) and p is a specified probability.

3.4.5 Generating function

The mgf of X can be determined from (3.13) as

M(t) =
∞

∑
k=0

k+1

∑
i=0

vk,i

∫ ∞

0
etx π(x; i + 1, (k + 1)α)dx.

Then, for all t < (k + 1)α, we have

M(t) =
∞

∑
k=0

k+1

∑
i=0

[
1− t

(k + 1)α

]−(i+1)

vk,i.

3.4.6 Rényi entropy

The entropy of X is a measure of variation of the uncertainty. There are many

entropy measures studied and discussed in the literature, but the Rényi entropy is

perhaps one of the most popular. The Rényi entropy of X with density (3.6) is given

by
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IR(ρ) =
1

(1− ρ)
log
(∫ ∞

0
f (x)ρdx

)
. (3.18)

where ρ > 0 and ρ 6= 1.

Now, we consider the generalized binomial expansion

(1− z)b =
∞

∑
k=0

(−1)k
(

b
k

)
zk, (3.19)

which holds for any real non-integer b and |z| < 1. Using (3.19) twice in equation (3.4),

we can write

f (x)ρ = (ab)ρ
∞

∑
k, `=0

(−1)k+`

(
ρ(b− 1)

k

)(
ak + ρ(a− 1)

`

)
g(x)ρG(x)`. (3.20)

Inserting (3.1) and (3.2) in equation (3.20) and applying the binomial expansion

twice from [α + β− (β + α + αβx) e−αx]`, we obtain

f (x)ρ = (ab)ρ
∞

∑
k, `=0

`

∑
m=0

m

∑
n=0

(−1)k+`+m α2ρ+n βm−n

(α + β)ρ+m

(
ρ(b− 1)

k

)
×
(

ak + ρ(a− 1)
`

)(
`

m

)(
m
n

)
(1 + βx)ρ+n e−α(ρ+m)x.

(3.21)

Then, by inserting (3.21) in equation (3.18), the Rényi entropy reduces to

IR(ρ) =
1

(1− ρ)
log

{
(ab)ρ

∞

∑
k, `=0

`

∑
m=0

m

∑
n=0

(−1)k+`+m α2ρ+n eα(ρ+m)/β

βn+1−m (α + β)ρ+m

×
(

ρ(b− 1)
k

)(
ak + ρ(a− 1)

`

)(
`

m

)(
m
n

)
E[−(ρ + n), α(ρ + m)/β]

}
,

where E[ρ, z] =
∫ ∞

1 t−ρ e−ztdt is the exponential integral function.

3.4.7 Order statistics

The density function fi:n(x) of the ith order statistic, say Xi:n, for i = 1, . . . , n, from

a random sample X1, . . . , Xn having the EG distribution can be expressed as
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fi:n(x) =
f (x)

B(i, n− i + 1)
F(x)i−1 [1− F(x)]n−i,

where f (x) is the pdf (3.4) and F(x) is the cdf (3.3).

Applying the binomial expansion in the last equation, we have

fi:n(x) =
1

B(i, n− i + 1)

n−i

∑
j=0

(−1)j
(

n− i
j

)
f (x) F(x)i+j−1. (3.22)

Substituting (3.3) and (3.4) in equation (3.22) and applying the generalized bino-

mial expansion (3.19), we can write

fi:n(x) =
ab

B(i, n− i + 1)

∞

∑
`=0

n−i

∑
j=0

∞

∑
k=0

(−1)j+k+`

(
n− i

j

)(
b(i + j)− 1

k

)(
a(k + 1)− 1

`

)
× g(x) G(x)`.

Then, after a simple algebraic manipulation, we have

fi:n(x) =
∞

∑
`=0

q` h`+1(x), (3.23)

where q` is given by

q` =
ab

B(i, n− i + 1)

n−i

∑
j=0

∞

∑
k=0

(−1)j+k+`

`+ 1

(
n− i

j

)(
b(i + j)− 1

k

)(
a(k + 1)− 1

`

)
,

and h`+1(x) denotes the exp-G density function with power parameter `+ 1 (for ` ≥

0).

Equation (3.23) reveals that the density function of the EG order statistic is a linear

combination of exp-G densities. We emphasize that this result is not new and it is

given by [10]. However, we now give an alternative formula for the weights that

compose this linear combination.

By combining equations (3.11) and (3.23) and after some algebra, we obtain

fi:n(x) =
∞

∑
m=0

m+1

∑
s=0

dm,s π(x; s + 1, (m + 1)α), (3.24)
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where dm,s = ∑∞

`=m q` p(`+1)
m,s , the quantity p(`+1)

m,s is given by (3.12) and π(x; s + 1, (m +

1)α) denotes the Erlang density with shape parameter s + 1 and scale parameter (m +

1)α.

Thus, based on (3.24), we obtain an important result that gives the density of Xi:n

as a double linear combination of Erlang densities. Undoubtedly, there are many ap-

plications for equation (3.24), but the most important is to obtain the moments and the

mgf of the ith order statistic. The rth moment of Xi:n is given by

E(Xr
i:n) =

∞

∑
m=0

m+1

∑
s=0

dm,s

∫ ∞

0
xr π(x; s + 1, (m + 1)α)dx.

Based on the results presented in Section 3.4.3, the last equation reduces to

E(Xr
i:n) =

∞

∑
m=0

m+1

∑
s=0

(r + s)! dm,s

s! [(m + 1)α]r
.

Next, the mgf of Xi:n is given by

ϕ(t) =
∞

∑
m=0

m+1

∑
s=0

dm,s

∫ ∞

0
etx π(x; s + 1, (m + 1)α)dx.

Based on the results in Section 3.4.5, the last equation can be rewritten as

ϕ(t) =
∞

∑
m=0

m+1

∑
s=0

[
1− t

(m + 1)α

]−(s+1)

dm,s,

for all t < (m + 1)α.

3.4.8 Reliability

In this section, we derive the reliability, say R, for the EGEE model when

X1 ∼ EGEE(a1, b1, α, β) and X2 ∼ EGEE(a2, b2, α, β) are two independent random

variables with the same baseline parameters α and β. Let f1(x) denote the pdf of X1

and F2(x) denote the cdf of X2. The reliability can be expressed as R = P(X1 > X2) =∫ ∞
0 f1(x) F2(x)dx and using equations (3.8) and (3.9) gives
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R =
∞

∑
j,k=0

Ij,k

∫ ∞

0
hj+1(x) Hk+1(x)dx,

where Ij,k = ∑∞
m,n=1(−1)j+k+m+n+2 (b1

m) (
m a1
j+1) (

b2
n ) (

na2
k+1).

Thus, the reliability of X reduces to

R =
∞

∑
j,k=0

j+k+1

∑
`=0

`

∑
r=0

r+1

∑
i=0

(−1)` (j + 1) αr−i+1 β`+i−r i!
(`+ 1)i+1 (α + β)`+1

(
j + k + 1

`

)(
`

r

)(
r + 1

i

)
Ij,k.

3.5 Estimation and inference

Several approaches for parameter estimation were proposed in the literature but

the maximum likelihood method is the most commonly employed. The maximum

likelihood estimators (MLEs) enjoy desirable properties and can be used when con-

structing confidence intervals for the parameters and also in test statistics. Under con-

ditions of regularity already known, the normal approximation for these estimators in

large sample distribution theory is easily handled either analytically or numerically.

So, we consider the estimation of the unknown parameters a, b, α and β of the EGEE

distribution from complete samples only by maximum likelihood. Let x1, . . . , xn be a

random sample of size n from the EGEE distribution. The log-likelihood function for

the vector of parameters θ = (a, b, α, β)>, say `(θ), can be expressed as

`(θ) = n log(abα2)− nab log(α + β)− aα
n

∑
i=1

xi + (a− 1)
n

∑
i=1

log[z(xi)]

+
n

∑
i=1

log(1 + βxi) + (b− 1)
n

∑
i=1

log[(α + β)a − z(xi)
a e−aαxi ], (3.25)

where z(xi) = β + α + αβxi.

Equation (3.25) can be maximized either directly by using the Ox program (sub-

routine MaxBFGS), R (optim function) and SAS (PROC NLMIXED), or by solving the non-

linear likelihood equations obtained by differentiating `(θ). The elements of the score

vector are given by

∂`(θ)

∂a
=

n
a
+ (b− 1)

n

∑
i=1

{(α + β)a log(α + β)− z(xi)
a log[z(xi)] e−aαxi + α xi z(xi)

a e−aαxi}
[(α + β)a − z(xi)a e−aαxi ]
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− n b log(α + β) +
n

∑
i=1

log[z(xi)]− α
n

∑
i=1

xi,

∂`(θ)

∂b
=

n
b
− n a log(α + β) +

n

∑
i=1

log[(α + β)a − z(xi)
a e−aαxi ],

∂`(θ)

∂α
=

2n
α

+ (b− 1)
n

∑
i=1

a (α + β)a−1 − a z(xi)
a−1 (1 + βxi) e−aαxi + a xi z(xi)

a e−aαxi

[(α + β)a − z(xi)a e−a αxi ]

− n a b
α + β

− a
n

∑
i=1

xi + (a− 1)
n

∑
i=1

(1 + βxi)

z(xi)
,

∂`(θ)

∂β
= − n a b

α + β
+ (b− 1)

n

∑
i=1

a (α + β)a−1 − a z(xi)
a−1 (1 + αxi) e−aαxi

[(α + β)a − z(xi)a e−a αxi ]

+
n

∑
i=1

xi

(1 + βxi)
+ (a− 1)

n

∑
i=1

(1 + αxi)

z(xi)
.

The MLE θ̂ of θ can be obtained numerically. For interval estimation and hypoth-

esis tests on the parameters a, b, α and β, we determine the 4 × 4 observed infor-

mation matrix given by J(θ) = {−Urs}, whose elements Urs = ∂2`(θ)/(∂r∂s) for

r, s ∈ {a, b, α, β} can be obtained in the Appendix.

3.6 Applications to real data

Here, we present two applications to real data to illustrate the potentiality of the

new distribution. First, in addition to the EGEE model, we consider the three-parameter

EGEE
(
a, b, α, 0) and EGEE

(
a, b, α, 1) sub-models. Also, the three-parameter beta-Lin-

dley (BL) distribution, proposed by [57], is compared with the EGEE distribution and

its sub-models. All computations are performed using the SAS subroutine NLMixed.

The BL density is given by

η(x; a, b, α) =
α2 (1 + x) e−bαx

(α + 1)a+b−1 B(a, b)
(1 + α + αx)b−1 [α + 1− (1 + α + αx) e−αx]a−1,

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the beta function.

First, we consider the number of failures for the air conditioning system of jet air-

planes. These data were reported by [58] and [59]: 194, 413, 90, 74, 55, 23, 97, 50, 359,

50, 130, 487, 57, 102, 15, 14, 10, 57, 320, 261, 51, 44, 9, 254, 493, 33, 18, 209, 41, 58, 60, 48,

56, 87, 11, 102, 12, 5, 14, 14, 29, 37, 186, 29, 104, 7, 4, 72, 270, 283, 7, 61, 100, 61, 502, 220,
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120, 141, 22, 603, 35, 98, 54, 100, 11, 181, 65, 49, 12, 239, 14, 18, 39, 3, 12, 5, 32, 9, 438, 43,

134, 184, 20, 386, 182, 71, 80, 188, 230, 152, 5, 36, 79, 59, 33, 246, 1, 79, 3, 27, 201, 84, 27,

156, 21, 16, 88, 130, 14, 118, 44, 15, 42, 106, 46, 230, 26, 59, 153, 104, 20, 206, 5, 66, 34, 29,

26, 35, 5, 82, 31, 118, 326, 12, 54, 36, 34, 18, 25, 120, 31, 22, 18, 216, 139, 67, 310, 3, 46, 210,

57, 76, 14, 111, 97, 62, 39, 30, 7, 44, 11, 63, 23, 22, 23, 14, 18, 13, 34, 16, 18, 130, 90, 163,

208, 1, 24, 70, 16, 101, 52, 208, 95, 62, 11, 191, 14, 71. Some descriptive statistics for these

data are given below. The smallest and the largest values are 1 and 603, respectively.

Further, the mean, median and variance are 92.07, 54.00 and 11645.93, respectively.

Table 3.2 lists the MLEs of the model parameters (with the corresponding standard

errors in parentheses) for all fitted models and also the values of the Akaike informa-

tion criterion (AIC), Bayesian information criterion (BIC) and consistent Akaike infor-

mation criterion (CAIC) statistics. In general, it is considered that the lower values of

these criteria indicates the better fit to the data. The figures in Table 3.2 revels that the

EGEE model has the lowest AIC and BIC values among all fitted models. Thus, the

proposed EGEE distribution is the best model to explain these data.

Table 3.2: MLEs (and their standard errors in parentheses), AIC, BIC and CAIC statis-

tics for the number of successive failures for the air conditioning system.

Distribution â b̂ α̂ β̂ AIC BIC CAIC

EGEE 0.0639 0.6470 0.1497 183.90 2077.4 2077.6 2090.3

(0.0721)a (0.1254) (0.1667) (1248.4)

EGE 0.1010 0.9100 0.1010 0 2081.5 2081.6 2091.2

(2.3212)a (0.0866) (0.9112) (−)

EGL 0.05653 0.6951 0.1734 1 2078.0 2078.1 2087.7

(0.0577)a (0.1224) (0.1758) (−)

BL 0.4842 0.5379 0.0234 − 2086.6 2086.7 2096.3

(0.0577)a (0.3188) (0.0132) (−)

a Denotes the standard deviation of the MLEs.

Further, we consider the formal goodness-of-fit tests based on the Cramér-von

Mises (W∗) and Anderson-Darling (A∗) test statistics in order to verify which distri-
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bution fits better the current data. The W∗ and A∗ statistics are described in [39]. In

general, the lower values of these statistics indicate the better fit to the data. Table 3.3

gives the values of the W∗ and A∗ statistics for all fitted models. Based on the figures

in this table, we conclude that the EGEE distribution provides a better fit to these data

than its sub-models and the BL distribution.

Table 3.3: Goodness-of-fit tests for the number of successive failures for the air condi-

tioning system.

Model
Statistics

W∗ A∗

EGEE 0.1137 0.7136

EGE 0.1940 1.2030

EGL 0.1415 0.8886

BL 0.2491 1.5472

Plots of the estimated pdf and cdf of the EGEE distribution and the histogram of

the data are displayed in Figure 3.6. These plots clearly reveal that the EGEE model

fits the data adequately and then it can be chosen for modeling these data.
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Figure 3.6: (a) Estimated pdf of the EGEE model; (b) Estimated cdf of the EGEE model.
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Second, we consider the data presented by [40] on the failure times (in weeks) of

50 components. The data are: 0.013, 0.065, 0.111, 0.111, 0.163, 0.309, 0.426, 0.535, 0.684,

0.747, 0.997, 1.284, 1.304, 1.647, 1.829, 2.336, 2.838, 3.269, 3.977, 3.981, 4.520, 4.789,

4.849, 5.202, 5.291, 5.349, 5.911, 6.018, 6.427, 6.456, 6.572, 7.023, 7.087, 7.291, 7.787,

8.596, 9.388, 10.261, 10.713, 11.658, 13.006, 13.388, 13.842, 17.152, 17.283, 19.418, 23.471,

24.777, 32.795, 48.105. Some descriptive statistics of these data are presented below.

The minimum observed value is 0.013, while the maximum value is 48.105. The mean,

median and variance are 7.821, 5.320 and 84.76, respectively.

For [40]’s data, we compare the EGEE model with the EE ([11]) and Lindley sub-

models and other commonly used models in survival analysis, namely the log-logistic,

Fréchet and Birnbaum-Saunders (BS) distributions. The densities of these models

are given in the Wolfram alpha website (https://www.wolframalpha.com). Table 3.4

gives the MLEs of the fitted models to the current data with their corresponding stan-

dard errors, in addition to the AIC, BIC and CAIC statistics. Table 3.5 lists the values

of the A∗ and W∗ statistics.

The figures in Tables 3.4 and 3.5 suggest at least two important conclusions. The

first one is that the proposed model EGEE has the lowest values for the AIC, CAIC,

A∗ and W∗ statistics, and therefore, may be chosen as the best model to analyze the

current data. Moreover, these results confirm what has already been demonstrated

in the recent statistical literature: generalized models, as the proposed in this paper,

usually have superior performance in terms of adjustment when compared to non-

generalized models. These conclusions emphasize the importance of the proposed

model.

Finally, Figure 3.7 displays the estimated pdf and cdf of the EGEE model and the

histogram of the data. These plots reveal that the proposed model is quite suitable for

these data.

3.7 Conclusions

Recently, [10] introduced the exponentiated generalized (EG) class of continuous dis-

tributions with two extra shape parameters. In this chapter, we consider the EG
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Table 3.4: MLEs (and their standard errors in parentheses), AIC, BIC and CAIC statis-

tics for the failure times of 50 components.

Distribution α̂ β̂ â b̂ AIC BIC CAIC

EGEE 0.3659 0.3103 0.3239 0.6041 308.3 316.0 309.2

(0.9972)a (0.7977) (1.0123) (0.1946)

EE 0.1279 2.338E-7 1 1 309.7 313.5 309.9

(0.0352)a (0.0302) (-) (-)

Lindley 0.2317 1 1 1 324.6 326.5 324.6

(0.0234)a (−) (−) (−)

α̂ β̂

Log-logistic 4.0938 1.0834 316.0 319.8 316.3

(0.9218)a (0.1304)

σ̂ λ̂

Fréchet 1.2802 0.4791 341.3 345.1 341.5

(0.4028)a (0.0454)

α̂ β̂

BS 2.7621 1.2576 327.4 331.2 327.7

(0.2973)a (0.2721)

a Denotes the standard deviation of the MLE’s.

class to generalize the extended exponential (EE) distribution. So, we define a new

four-parameter lifetime model named the exponentiated generalized extended exponen-

tial (EGEE) distribution, witch include as special cases the exponential, Lindley and

exponentiated exponential distributions, among others. The hazard function of the

new model can take the classic bathtub, inverted bathtub, increasing, decreasing and

constant shapes. We demonstrate that the EGEE density can be expressed as a double
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Table 3.5: Goodness-of-fit tests for the failure times of 50 components.

Model
Statistics

W∗ A∗

EGEE 0.0512 0.2670

EE 0.0658 0.3295

Lindley 0.0657 0.3284

Log-logistic 0.2572 1.3816

Fréchet 0.6097 3.3138

BS 0.2794 1.5364
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Figure 3.7: (a) Estimated pdf of the EGEE model; (b) Estimated cdf of the EGEE model.

linear combination of Erlang densities. Further, we derive several basic mathematical

properties of the EGEE model, including explicit expressions for the quantile function,

ordinary and incomplete moments, mean deviations, Bonferroni and Lorenz curves,

generating function, Rényi entropy, density of the order statistics and reliability. We

discuss the estimation of the model parameters by maximum likelihood. We provide

the elements of the score vector. We conduct two applications to real data to illustrate

the flexibility of the new model.
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Appendix A: Observed information matrix.

Here, we provide the elements of the 4× 4 observed information matrix J(θ):

∂2`(θ)

∂a2 = − n
a2 − (b− 1)

n

∑
i=1

{(α + β)a log(α + β)− z(xi)
a log[z(xi)] e−aαxi}2

[(α + β)a − z(xi)a e−aαxi ]2

− (b− 1)
n

∑
i=1

[α xi z(xi)
a e−aαxi ]2

[(α + β)a − z(xi)a e−aαxi ]2

+ (b− 1)
n

∑
i=1

(α + β)a log2(α + β)− z(xi)
a log2[z(xi)] e−aαxi

(α + β)a − z(xi)a e−aαxi

+ (b− 1)
n

∑
i=1

2 α xi z(xi)
a log[z(xi)] e−aαxi − α2 x2

i z(xi)
a e−aαxi

(α + β)a − z(xi)a e−aαxi
,

∂2`(θ)

∂b2 = − n
b2 ,

∂2`(θ)

∂α2 = −2n
α2 +

nab
(α + β)2 − (a− 1)

n

∑
i=1

(1 + βxi)
2

z(xi)2

− (b− 1)
n

∑
i=1

[a (α + β)a−1 − a z(xi)
a−1 (1 + βxi) e−aαxi + a xi z(xi)

a e−aαxi ]2

[(α + β)a − z(xi)a e−aαxi ]2

+ (b− 1)
n

∑
i=1

a (a− 1) (α + β)a−2 − a (a− 1) z(xi)
a−2 (1 + βxi)

2 e−aαxi

(α + β)a − z(xi)a e−aαxi

+ (b− 1)
n

∑
i=1

2 a2 xi z(xi)
a−1 (1 + βxi) e−aαxi − a2 x2

i z(xi)
a e−aαxi

(α + β)a − z(xi)a e−aαxi
,

∂2`(θ)

∂β2 =
nab

(α + β)2 −
n

∑
i=1

x2
i

(1 + βxi)2 − (a− 1)
n

∑
i=1

(1 + αxi)
2

z(xi)2

− (b− 1)
n

∑
i=1

[a (α + β)a−1 − a z(xi)
a−1 (1 + αxi) e−aαxi ]2

[(α + β)a − z(xi)a e−aαxi ]2

+ (b− 1)
n

∑
i=1

a (a− 1) (α + β)a−2 − a (a− 1) z(xi)
a−2 (1 + αxi)

2 e−aαxi

(α + β)a − z(xi)a e−aαxi
,

∂2`(θ)

∂ab
= −n log(α + β) +

n

∑
i=1

(α + β)a log(α + β)− z(xi)
a log[z(xi)] e−aαxi

(α + β)a − z(xi)a e−aαxi

+
n

∑
i=1

α xi z(xi)
a e−aαxi

(α + β)a − z(xi)a e−aαxi
,

∂2`(θ)

∂aα
= − n b

α + β
−

n

∑
i=1

xi +
n

∑
i=1

(1 + β xi)

z(xi)

+ (b− 1)
n

∑
i=1

(α + β)a−1 + a (α + β)a−1 log(α + β)− z(xi)
a−1 (1 + βxi) e−aαxi

(α + β)a − z(xi)a e−aαxi

+ (b− 1)
n

∑
i=1

a z(xi)
a−1 (1 + βxi) log[z(xi)] e−aαxi + a α xi z(xi)

a−1 (1 + βxi) e−aαxi

(α + β)a − z(xi)a e−aαxi

+ (b− 1)
n

∑
i=1

xi z(xi)
a e−aαxi + a xi z(xi)

a log[z(xi)] e−aαxi − a α x2
i z(xi)

a e−aαxi

(α + β)a − z(xi)a e−aαxi
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− (b− 1)
n

∑
i=1

{
[a (α + β)a−1 − a z(xi)

a−1 (1 + βxi) e−a α xi + a xi z(xi)
a e−aαxi ]

[(α + β)a − z(xi)a e−aαxi ]

× [(α + β)a log(α + β)− z(xi)
a log[z(xi)] e−aαxi + α xi z(xi)

a e−aαxi ]

[(α + β)a − z(xi)a e−aαxi ]

}
,

∂2`(θ)

∂aβ
= − nb

α + β
+

n

∑
i=1

1 + αxi

z(xi)

+ (b− 1)
n

∑
i=1

(α + β)a−1 + a (α + β)a−1 log(α + β)− z(xi)
a−1 (1 + αxi) e−aαxi

(α + β)a − z(xi)a e−aαxi

+ (b− 1)
n

∑
i=1

a α xi z(xi)
a−1 (1 + αxi) e−aαxi − a z(xi)

a−1 (1 + αxi) log[z(xi)] e−aαxi

(α + β)a − z(xi)a e−aαxi

− (b− 1)
n

∑
i=1

{
[a (α + β)a−1 + a z(xi)

a−1 (1 + αxi) e−a α xi ]

[(α + β)a − z(xi)a e−aαxi ]

× [(α + β)a log(α + β)− z(xi)
a log[z(xi)] e−aαxi + α xi z(xi)

a e−aαxi ]

[(α + β)a − z(xi)a e−aαxi ]

}
,

∂2`(θ)

∂bα
= − na

α + β
+

n

∑
i=1

a (α + β)a−1 − a z(xi)
a−1 (1 + βxi) e−aαxi + a xi z(xi)

a e−aαxi

(α + β)a − z(xi)a e−aαxi
,

∂2`(θ)

∂bβ
= − na

α + β
+

n

∑
i=1

a (α + β)a−1 − a z(xi)
a−1 (1 + αxi) e−aαxi

(α + β)a − z(xi)a e−aαxi
,

∂2`(θ)

∂αβ
=

nab
(α + β)2 + (a− 1)

n

∑
i=1

[
xi

z(xi)
− (1 + αxi) (1 + βxi)

z(xi)2

]
+ (b− 1)

n

∑
i=1

a (a− 1) (α + β)a−2 − a (a− 1) z(xi)
a−2 (1 + αxi) (1 + βxi) e−aαxi

(α + β)a − z(xi)a e−aαxi

+ (b− 1)
n

∑
i=1

a2 xi z(xi)
a−1 (1 + αxi) e−aαxi − a xi z(xi)

a−1 e−aαxi

(α + β)a − z(xi)ae−aαxi

− (b− 1)
n

∑
i=1

{
[a (α + β)a−1 − a z(xi)

a−1 (1 + αxi) e−a α xi ]

[(α + β)a − z(xi)a e−aαxi ]

× [a (α + β)a−1 − a z(xi)
a−1 (1 + βxi) e−aαxi + a xi z(xi)

a e−aαxi ]

[(α + β)a − z(xi)a e−aαxi ]

}
,

where z(xi) = β + α + αβxi.



79

CHAPTER 4

The Exponentiated Generalized Standard Half-Logistic Distribution

Paper accepted for publication in the International Journal of Statistics and Probability.

Abstract

We introduce a new two-parameter lifetime model, called the exponentiated general-

ized standard half-logistic distribution, and study some of its general structural prop-

erties. This distribution extends the half-logistic distribution proposed by Balakrish-

nan in the eighties. We provide explicit expressions for the density function, ordinary

and incomplete moments, generating and quantile functions, mean deviations, Bon-

ferroni and Lorenz curves, and order statistics. Our formulas are manageable using

modern computer resources with analytic and numerical capabilities and they may

turn into adequate tools for applied statisticians. For most of the functions associated

with the proposed model, we provide numerical and graphical studies to illustrate

their practical use. The model parameters are estimated by maximum likelihood and

the observed information matrix is derived. An extensive Monte Carlo simulation

study reveals that these estimators have good properties such as low biases and vari-

ances, even in small or moderate sample sizes. We also show that the proposed model
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can be superior to some other lifetime models by means of a real data set.

Keywords: Exponentiated generalized distribution. Half-logistic distribution. Hazard

rate function. Lifetime distribution. Moments.

Resumo

Nós introduzimos um novo modelo com dois parâmetros que pode ser usado para

ajustar dados de sobrevivência, chamado de distribuição semi-logística padronizada

exponencializada generalizada. Esta distribuição estende a distribuição semi-logística

proposta por Balakrishnan nos anos oitenta. Nós fornecemos expressões explícitas

para a função de densidade, momentos ordinários e incompletos, funções geratriz de

momentos e quantílica, desvios médios, curvas de Bonferroni e Lorenz e estatísticas

de ordem. Nossas fórmulas são manejáveis usando recursos computacionais moder-

nos com capacidades analíticas e numéricas e podem se transformar em ferramentas

adequadas para estatísticos aplicados. Para a maioria das funções associadas ao mo-

delo proposto, fornecemos estudos numéricos e gráficos para ilustrar seu uso prático.

Os parâmetros do modelo são estimados por máxima verossimilhança e a matriz de

informação observada é derivada. Um extenso estudo de simulação de Monte Carlo

revela que estes estimadores têm boas propriedades, tais como baixos viéses e variân-

cias, mesmo em amostras pequenas ou moderadas. Mostramos também que o modelo

proposto pode ser superior a alguns outros modelos de vida por meio de um conjunto

de dados reais.

Palavras-chave: Distribuição exponencializada generalizada. Distribuição semi-logística

padronizada. Função de risco. Modelo de sobrevivência. Momentos.
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4.1 Introduction

The statistical literature points out that Balakrishnan (1985) pioneered the half-

logistic HL distribution as a lifetime model, which is the distribution of the absolute

value of a random variable following the logistic distribution. It has a monotonically

increasing hazard rate function (hrf) for all parameter values, which is a property

shared by relatively few distributions with support on the positive real line. Recently,

the HL distribution has been discussed by several authors. We shall refer to the follow-

ing works: [60] obtained approximate maximum likelihood estimates (MLEs) for the

location and scale parameters with type-II right-censoring; [61] presented the estima-

tion for the scaled HL distribution under type II censoring; [62] investigated bootstrap

confidence intervals for the process capability index under the HL distribution. More

recently, [63] introduced a new extension for the HL model by considering a standard-

ized version, say the standardized half-logistic (SHL) distribution, described below.

The fact that it does not have parameters makes the SHL distribution an attractive

model for statisticians and applied researchers. Its mathematical simplicity allows its

properties to be obtained in a very simple way. In particular, this distribution allows

the addition of parameters without difficulties. The cumulative distribution function

(cdf) and probability density function (pdf) (for t > 0) of the SHL distribution has

simple closed-forms. They are given by

G(t) =
1− e−t

1 + e−t (4.1)

and

g(t) =
2e−t

(1 + e−t)2 , (4.2)

respectively.

Let T be a random variable having density (4.2). The HL distribution is defined

by a linear transformation W = µ + σ T, with µ ∈ <+ and σ > 0. Without loss of

generality, we can work with the SHL model. The nth moment of T can be obtained

by direct integration
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E(Tn) = 2
∫ ∞

0

tn e−t

(1 + e−t)2 dt = 2n!(1− 21−n)ζ(n),

where ζ(·) is the Riemann zeta function. For details on the Riemann zeta function, see

the Wolfram website http: //mathworld.wolfram.com/RiemannZetaFunction.html.

In particular, the first two moments of T are E(T) = log(4) and E(T2) = π2/3. In

addition, the hazard rate function (hrf) of T is given by λ(t) = 1/(1 + e−t). The

moment generating function (mgf) of T, say MT(s) = E(e−sT), is

MT(s) = 2
∫ ∞

0
e−st e−t

(1 + et)2 dt = 2J1(1 + s, 1− s),

where Jp(a, b) =
∫ p

0
ua−1

(1+u)a+b (a, b > 0) is the type II incomplete beta function. For

more properties of the HL distribution we recommend to the readers the following

papers: [60], [61], [62], [63] and [64].

We believe that the addition of parameters to the SHL model may generate new

distributions with great adjustment capability and, for this reason, we propose a gen-

eralization of it. The recent literature has suggested several ways of extending well-

known distributions, among them, the generator approach. The generators allow us

to extend well-known distributions and at the same time develop more realistic statis-

tical models in a great variety of applications. Some of the most important generators

were recently discussed by [65].

For a baseline continuous cdf G(x), [10] defined the exponentiated generalized (EG

for short) class of distributions by

F(x) = {1− [1− G(x)]a}b, (4.3)

where a > 0 and b > 0 are two extra parameters whose role is to govern skewness

and generate distributions with heavier/ligther tails. They are sought as a manner to

furnish a more flexible distribution. Because of its tractable distribution function (4.3),

this class can be used quite effectively even if the data are censored. The EG class is

suitable for modeling continuous univariate data that can be in any interval of the real

line. The pdf corresponding to (4.3) is given by
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f (x) = a b [1− G(x)]a−1 {1− [1− G(x)]a}b−1 g(x), (4.4)

where g(x) = dG(x)/dx is the baseline pdf. The two parameters in (4.4) can control

both tail weights and possibly adding entropy to the center of the EG density. The

baseline pdf g(x) is a special case of (4.4) when a = b = 1. Setting a = 1 it gives

the exponentiated-G (“exp-G”) distribution. If b = 1, we obtain the Lehmann type II

distribution. So, the distribution (4.4) generalizes both Lehmann types I and II distri-

butions; that is, this method can be interpreted as a double construction of Lehmann

alternatives. Note that even if g(x) is a symmetric density, the density f (x) will not be

symmetric.

The above properties and many others have been discussed and explored in recent

works for the EG class. We refer to the papers: [37], [53], [66], [36] [67], [55], [68],

[56], [69] and [54], which used the EG class to extend the Burr III, Birnbaum-Saunders,

inverse Weibull, inverted exponential, generalized gamma, Gumbel, extended expo-

nential, Fréchet, modified Weibull and Dagum distributions, respectively.

In this Chapter, we define the exponentiated generalized standard half-logistic (EGSHL)

distribution by inserting (4.1) in equation (4.3). As we shall see later, our model has

only two parameters, does not involve any complicated functions and is quite flexi-

ble. Its hrf can take non-monotonous forms, such as bathtub and inverted bathtub,

which explain many real phenomenons. In addition, we prove that the density of

the proposed model can be expressed as a linear combination of exp-SHL densities

([63]). Thus, many properties of the new model can be obtained using this represen-

tation. Additionally, for each important equation associated with the new model, we

provide plots and numerical studies in order to illustrate its usefulness. We hope that

the EGSHL distribution can be useful for modelling real data and, for this reason,

we present a practical study that illustrates the power of adjustment of the proposed

model.

The rest of the Chapter is organized as follows. In Section 4.2, we present the

EGSHL distribution. In Section 4.3, we provide a small study for the shapes of the

EGSHL pdf and hrf. A detailed study of the quantile function (qf) and its applications

is presented in Section 4.4. In Section 4.5, we obtain a useful linear representation for
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the density function as a linear combination of exp-SHL densities. So, many properties

of the exp-SHL model are presented in Section 4.6. Explicit expressions for the ordi-

nary and incomplete moments, cumulants, mean deviations, Bonferroni and Lorenz

curves and generating function of the EGSHL distribution are determined in Section

4.7. Sections 4.8 and 4.9 are related to the probability weighted moments (PWMs) and

Rényi entropy, respectively. The order statistics and their moments are investigated in

Section 4.10. We discuss maximum likelihood estimation of the model parameters in

Section 4.11. In Section 4.12, we present a simulation study. An application to real data

in Section 4.13 shows the usefulness of the proposed distribution. Finally, concluding

remarks are addressed in Section 4.14.

4.2 The new distribution

Let X be a random variable with support on the positive real line having the

EGSHL(a, b) distribution, say X ∼ EGSHL(a, b). The cdf of X is defined by insert-

ing (4.1) in equation (4.3)

F(x) = F(x; a, b) =
[(1 + e−x)a − 2a e−ax]b

(1 + e−x)ab , (4.5)

where a > 0 and b > 0. Note that (4.5) has a simple closed-form, which is an important

aspect to generate EGSHL variables in a very simple manner by using the method of

inversion. The density of X, for x > 0, can be reduced to

f (x) = f (x; a, b) =
a b 2a e−ax [(1 + e−x)a − 2a e−ax]b−1

(1 + e−x)ab+1 . (4.6)

For brevity of notation, we shall drop the explicit reference to the parameters a and

b unless otherwise stated.

For a = b = 1, equation (4.6) reduces to the SHL density. The EGSHL model

also includes the Lehmann type I and type II transformations of the SHL distribution,

from now on denoted by ESHLI and ESHLII. For example, the exponentiated SHL

distribution, say ESHLI, follows when a = 1. Some plots of the pdf (4.6) are displayed

in Figure 4.1. Theses plots reveal that the EGSHL pdf is quite flexible and can take
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symmetric and asymmetric forms, among others. In summary, these plots reinforce

the importance of the proposed model.
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Figure 4.1: Plots of the EGSHL density function for some parameter values.
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Figure 4.2: Plots of the EGSHL density function for some parameter values.

Besides the cdf (4.5) and pdf (4.6), other functions can be used to characterize the

EGSHL model such as the survival function (sf) and hrf. These are particularly impor-

tant to analyze survival data that involve the time associated to an event of interest

such as the time that a certain component fails, the death of a patient or a disease

relapse. Here, it is worth quoting [70] Chapter 2, page 8:

The distribution of survival times is usually described or characterized by

three functions: (1) the survivorship function, (2) the probability density

function, and (3) the hazard function. These three functions are mathemat-

ically equivalent - if one of them is given, the other two can be derived.

The sf and hrf of X are given by

S(x) =
(1 + e−x)ab − [(1 + e−x)a − 2a e−ax]b

(1 + e−x)ab (4.7)
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and

τ(x) =
a b 2a e−ax [(1 + e−x)a − 2a e−ax]b−1

(1 + e−x){(1 + e−x)ab − [(1 + e−x)a − 2a e−ax]b}
, (4.8)

respectively.

Some plots of the hrf (4.8) are displayed in Figure 4.3. Besides monotone forms, the

hrf of X can take bathtub and inverted bathtub shapes. This non-monotone form is

particularly important because of its great practical applicability. The time of human

life is just one of many phenomena that the bathtub shape hrf is applicable [70].
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Figure 4.3: Plots of the EGSHL hazard function for some parameter values.

As a further characterization of the EGSHL distribution, we provide the cumulative

hazard rate (chrf) H(x) and reversed hazard rate (rhrf) r(x) functions:

H(x) = − log

[
(1 + e−x)ab − [(1 + e−x)a − 2a e−ax]b

(1 + e−x)ab

]
and

r(x) =
a b 2a e−ax

(1 + e−x)[(1 + e−x)a − 2a e−ax]
,

respectively. These last two functions are less used in practical situations. However,
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they have outstanding theoretical importance. For example, we can expressed f (x) =

r(x) exp{−H(x)}. For more details, see [70].

4.3 Shapes

For a detailed mathematical approach for the EGSHL model, we investigate the

shapes of its pdf and hrf using their first and second derivatives. The first derivative

of log{ f (x)} is given by

d log{ f (x)}
dx

= − a + (1 + ab) e−x η−1(x)− a (1− b) e−x v2(x) v−1
1 (x),

where η(x) = 1 + e−x, v1 = − 2a e−a x + ηa(x) and v2 = 2a ex(1−a) − ηa−1(x).

Thus, the critical values of f (x) are the roots of the equation:

− a + (1 + ab) e−x η−1(x) = a (1− b) e−x v2(x) v−1
1 (x).

The value x0, which solves the equation above can be a maximum, minimum or in-

flection point. To check this, we evaluate the sign of the second derivative of log{ f (x)}
at x = x0. We have

d2 log{ f (x)}
dx2 =

(1 + ab) e−x [e−x − η(x)]
η2(x)

+ a (1− b) e−2x v−2
1 (x)

{
a 22a e2x(1−a) + η−2(x)

[
1− a + a η2a(x)− ex η(x)

]
− 2a e−a x ηa−2(x)

[
1− a + ex η(x)(1 + a− a ex η(x))

]}
.

It is often difficult to obtain an analytical solution for the critical value of this

function. Therefore, it is common to obtain numerical solutions with high accuracy

through optimization routines in most mathematical and statistical platforms. Some

plots of the first derivative of log{ f (x)} for selected parameter values are displayed

in Figure 4.4. These plots are constructed using the Wolfram Mathematica software.

Similarly, we provide the first and second derivatives of log{h(x)} for the EGSHL

model. The critical values of log{h(x)} are the roots of the equation:
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Figure 4.4: Plots of the first derivative of log{ f (x)}.

d log{h(x)}
dx

= − a (1− b) e−x v2(x) +
e−x + (4− a) η(x)

η(x)

+
a b e−x ηa b−1(x) + a b e−x v2(x) vb−1

1 (x)
ηa b(x)− vb

1(x)
.

The second derivative of log{h(x)} is given by

d2 log{h(x)}
dx2 =

e−2 x − e− x η(x)
η2(x)

+ a e− x v−2
1 (x)

{
(1− b)

[
a e− x v2

2(x) + v1(x) v3(x)
]

− b
[
ηa b−1(x) + v2(x) vb−1

1 (x)
]2 − b

[
ηa b(x)− vb

1(x)
]

×
[
ηa b−1(x)− (1− a b) e− x ηa b−2(x) + a (1− b) e− x v2

2(x) vb−2
1 (x)

+vb−1
1 (x) v3(x)

]}
,

where v3(x) = 2a a ex(1−a) + (1− a) e−x ηa−2(x)− ηa−1(x).

Some plots of the first derivative of log{h(x)} for the EGSHL distribution for se-

lected parameter values are displayed in Figure 4.5.
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Figure 4.5: Plots of the first derivative of log{h(x)}.
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4.4 Quantile function

In previous sections, we provide several important functions that characterize the

random variable X ∼ EGSHL(a, b). Here, we present the qf for the EGSHL model. By

inverting (4.5), we obtain

Q(u) = − log

[
(1− u1/b)1/a

2− (1− u1/b)1/a

]
, (4.9)

where u ∈ (0, 1). The EGSHL distribution is easily simulated from a uniform random

variable U by X = Q(U). Next, we use (4.9) to generate 100 EGSHL (1.5, 1.2) occur-

rences. Figure 4.6 displays the histogram and empirical cdf for the simulated data and

also the exact pdf and cdf of the EGSHL model. As we can see, the setting is quite

adequate and reinforces that the model has good potential for simulation studies. For

similar studies, we refer [29] and [30], among others.
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Figure 4.6: Plots of the EGSHL(1.5, 1.2) pdf, histogram, exact and empirical cdfs for

simulated data with n = 100.

As mentioned earlier, the qf practical uses are numerous. For example, Q(1/2)

determines the median of the model. Table 4.1 shows a small simulation study using

the R software. The goal is to compare the empirical medians (EMed), calculated from

random samples of size n = 10, 20, 40, 100, generated for different parameter values,

with their corresponding theoretical medians (Med) obtained by Q(1/2). As expected,

the difference between EMed and Med decreases when n increases.

Finally, we use the qf of X to determine the Bowley skewness [27] (B) and Moors
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Table 4.1: Theoretical and empirical medians (for n = 10, 20, 40, 100) of X for some

parameter values.
a b Med EMed (n = 10) EMed (n = 20) EMed (n = 40) EMed (n = 100)

1.5 3.3 1.6220 1.0295 1.2260 1.5061 1.6586

1.5 1.5 1.0579 0.5052 0.6796 0.9446 1.0940

3.3 1.5 0.5325 0.2436 0.3328 0.4720 0.5518

kurtosis [28] (M). The shortcomings of the classical kurtosis measure are well-known.

The effects of the additional shape parameters a and b on the skewness and kur-

tosis of the EGSHL model can be based on quantile measures. The Bowley skew-

ness is based on quartiles B = [Q(3/4) − 2Q(1/2) + Q(1/4)]/[Q(3/4) − Q(1/4)],

whereas the Moors kurtosis is based on octiles M = [Q(7/8) − Q(5/8) + Q(3/8) −

Q(1/8)]/[Q(6/8) − Q(2/8)]. These two measures are less sensitive to outliers and

they exist even for distributions without moments. Since M is based on octiles, it is not

sensitive to variations of the values in the tails or to variations of the values around

the median. These measures are fairly considered in the literature. Here, we refer to

the following works: [53], [54], [55] and [56], among others.

In Figures 4.7 and 4.8, we present 3D plots of B and M measures for several param-

eters values. These plots are obtained using the Wolfram Mathematica software. Based

on these plots, it is possible to conclude that changes in the additional parameters a

and b have a considerable impact on the skewness and kurtosis of the EGSHL model,

thus showing its greater flexibility. So, theses plots reinforce the importance of the

additional parameters.

4.5 Linear representation

We provide useful linear representations for equations (4.3) and (4.4) based on

the exponentiated class of distributions. Mathematical properties of the exponenti-

ated distributions have been published by many authors in the 90s and more recently.

See, for example, [18] for exponentiated exponential, [35] for exponentiated Lindley,

[71] for exponentiated linear failure rate and, more recently, [33] for the exponentiated
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Figure 4.7: Plots of the Bowley skewness for the EGSHL distribution.
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Figure 4.8: Plots of the Moors kurtosis for the EGSHL distribution.
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Nadarajah-Haghighi and [63] for the SHL distribution distribution.

For an arbitrary baseline cdf G(x), a random variable Yc has the exponentiated-G

(exp-G) class with power parameter c > 0, say Yc ∼exp-G(c), if its cdf and pdf are

given by Hc(x) = G(x)c and hc(x) = c g(x) G(x)c−1, respectively. For a comprehen-

sive discussion about the exponentiated class, see a recent paper by [65].

Here, we consider the generalized binomial expansion

(1− z)b =
∞

∑
k=0

(−1)k
(

b
k

)
zk, (4.10)

which holds for any real non-integer b and |z| < 1.

Using (4.10) twice in equation (4.4), the EG density function can be expressed as

f (x) =
∞

∑
j=0

wj+1 hj+1(x), (4.11)

where wj+1 = ∑∞
m=1(−1)j+m+1 ( b

m) (
m a
j+1) and hj+1(x) = (j + 1) g(x) G(x)j is the exp-G

pdf with power parameter j + 1. Equation (4.11) reveals that the EG density is a linear

combination of exp-G densities. It is the main result of this section, which aims to

derive some structural properties of the EG class from those exp-G properties. The cdf

F(x) comes from (4.11) by simple integration, namely

F(x) =
∞

∑
j=0

wj+1 Hj+1(x), (4.12)

where Hj+1(x) = G(x)j+1 is the exp-G cdf with power parameter j + 1.

Here, it is worth mentioning that the results presented in equations (4.11) and (4.12)

are general and, therefore, are valid for any baseline distribution G(x). These expres-

sions agree with those provided by [53]. It is not difficult to show numerically that

∑∞
j=0 wj+1 = 1. Moreover, for most practical purposes, we can set the upper limits

equal to 50.

We can adopt (4.11) for the EGSHL distribution and obtain its mathematical prop-

erties from those properties of the exp-SHL distribution. Let Yj+1 be a random variable

having the exp-SHL density with power parameter j + 1 (j ≥ 0) given by



93

hj+1(x) =
2 (j + 1) e−x (1− e−x)j

(1 + e−x)j+2 . (4.13)

Clearly, several mathematical properties of X (such as the ordinary and incomplete

moments, mean deviations and generating function) can be determined from those of

the exp-SHL distribution using the linear representation (4.11). Some mathematical

properties of the exp-SHL distribution are obtained by [63], which are reported in the

next section.

4.6 Properties of the exp-SHL distribution

Henceforth, let Yj+1 ∼exp-SHL(j + 1) have the density function (4.13). We use

throughout an equation for a power series raised to an integer j = 1, 2, . . .

(
∞

∑
i=0

ai xi

)j

=
∞

∑
i=0

cj,i xi, (4.14)

where a0 6= 0, cj,0 = aj
0 and the coefficients cj,i (for i ≥ 1) are determined recursively

by

cj,i =
1

ia0

i

∑
m=0

[m(j + 1)− i] am cj,i−m. (4.15)

The nth moment of Yj+1 derived by expanding the binomial terms is given by

E(Yn
j+1) = 2(j + 1)

∫ ∞

0
xn e−x (1− e−x)j

(1 + e−x)j+2 dx = (j + 1)
∞

∑
i=0

cn,i

(j + 1 + i + n)
, (4.16)

where the quantities cn,i’s are obtained from equation (4.15) by taking

ai = [1 + (−1)i]/(i + 1) (for i ≥ 0).

For empirical purposes, the shape of many distributions can be usefully described

by the incomplete moments. They form natural building blocks for measuring in-

equality: for example, the Lorenz and Bonferroni curves depend upon the first incom-

plete moment of an income distribution. The nth incomplete moment of Yj+1 is given

by

mj+1(n; z) =
∫ z

0
xn hj+1(x) dx = (j + 1)

∞

∑
i=0

cn,i tanh(z/2)j+1+i+n

(j + 1 + i + n)
, (4.17)
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where tanh(·) is the hyperbolic tangent function.

The mgf of Yj+1, say Mj+1(s) = E(esYj+1), can be expressed as

Mj+1(s) = (j + 1)! Γ(1− s) 2F̃1[j + 1,−s; j + 2− s;−1], (4.18)

where 2F̃1 is the regularized hypergeometric function defined by

2F̃1[a, b; c; z] =
∞

∑
k=0

(a)k (b)k
Γ(c + k)

zk

k!
, |z| < 1,

(a)k = a(a− 1) . . . (a− k + 1) (for k > 1) is the falling factorial, (a)0 = 1, and Γ(a) =∫ ∞
0 xa−1 e−xdx is the gamma function. For |z| < 1 and arbitrary parameters a, b and c,

the above infinite sum is convergent. See [63].

4.7 Properties of the EGSHL distribution

In this section, we obtain explicit expressions for moments, cumulants, mean de-

viations, Bonferroni and Lorenz curves and generating function of the EGSHL dis-

tribution. The formulae derived can be handled in most symbolic computation plat-

forms such as Mathematica and Maple and they can be more efficient than computing

the mathematical quantities directly by numerical integration of the density function

(4.6). The infinity limit in these formulae can be substituted by a large positive integer

such as 20 or 30 for most practical purposes.

4.7.1 Moments

The statistical relevance for calculating moments, especially in applied research, is

widely know in the literature. Next, we provide two ways to compute the nth moment

of X with density (4.6). The first formula follows as

µ′n = E(Xn) =
∫ ∞

0
xn a b 2a e−ax [(1 + e−x)a − 2a e−ax]b−1

(1 + e−x)ab+1 dx. (4.19)

Although we do not have a closed-solution to the integral above, it is very simple

to calculate the nth moment of X computationally, from equation (4.19). For illus-

trative purposes, we provide a small numerical study by computing E(Xn) and the
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variance of X from (4.19) numerically. We consider several parameters values and

n = 1, 2, 3, 4, 5. The results are given in Table 4.2 with five decimal digits of precision.

All computations are performed using Wolfram Mathematica platform. Some plots of

the EGSHL moments for some parameter values are display in Figure 4.9.

Based on the values in Table 4.2 and the plots in Figure 4.9, we conclude that the

additional parameters a and b have large impact on the moments of X. Theses values

and plots reveals that, in general, for fixed a parameter value, the moments and the

variance increases when b increase. The inverse happens when we set values for b and

the parameter a increases.

(a) n = 1 (b) n = 2 (c) n = 3

(d) n = 1 (e) n = 2 (f) n = 3

Figure 4.9: Plots of the EGSHL moments for some parameter values.

Alternatively, the nth moment of X can be obtained from equations (4.11) and (4.16)

as

µ′n =
∞

∑
j, i=0

(j + 1)wj+1 cn,i

(j + 1 + i + n)
, (4.20)

where the quantities cn,i are defined in (4.16).

The central moments (µn) and cumulants (κn) of X can be determined from the
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Table 4.2: First five moments and variance of X for several a and b values.
a b E(X) E(X2) E(X3) E(X4) E(X5) E(X6) Var(X)

1 1.38629 3.28987 10.8185 45.4576 233.309 1419.19 1.36807

2 2.00000 5.54518 19.7392 86.5481 454.576 2799.70 1.54518

1 3 2.38629 7.28987 27.4540 124.414 666.049 4146.65 1.59549

4 2.66667 8.72690 34.3189 159.759 869.290 5463.90 1.61577

5 2.88629 9.95653 40.5444 1.93052 1065.45 6754.52 1.62586

1 0.77259 1.03456 1.89782 4.36705 12.0417 38.6822 0.43766

2 1.12149 1.74814 3.45960 8.29363 23.3966 76.1291 0.49040

2 3 1.34151 2.29938 4.80462 11.8926 34.1919 112.506 0.49989

4 1.50061 2.75176 5.99586 15.2347 44.5172 147.941 0.49993

5 1.62474 3.13723 7.07113 18.3678 54.4388 182.532 0.49745

1 0.54518 0.52394 0.69195 1.14285 2.24819 5.11402 0.22672

2 0.79560 0.88925 1.26465 2.17282 4.36906 10.0624 0.25627

3 3 0.95453 1.17288 1.75929 3.11793 6.38539 14.8667 0.26175

4 1.06985 1.40625 2.19804 3.99600 8.31344 19.5434 0.26167

5 1.15990 1.60536 2.59437 4.81925 10.1654 24.1058 0.25999

1 0.42369 0.32098 0.33603 0.44048 0.68689 1.23528 0.14147

2 0.62075 0.54682 0.61577 0.83882 1.33604 2.43152 0.16149

4 3 0.74656 0.72307 0.85829 1.20520 1.95400 3.59362 0.16572

4 0.83814 0.86856 1.07395 1.54616 2.54548 4.72537 0.16608

5 0.90980 0.99296 1.26911 1.86623 3.11402 5.82982 0.16522

1 0.34738 0.21827 0.19059 0.20891 0.27257 0.40988 0.09760

2 0.51045 0.37296 0.35006 0.39844 0.53067 0.80725 0.11240

5 3 0.61507 0.49422 0.48878 0.57318 0.77674 1.19363 0.11591

4 0.69146 0.59461 0.61244 0.73610 1.01256 1.57020 0.11649

5 0.75134 0.68063 0.72456 0.88925 1.23945 1.93788 0.11612

ordinary moments µ′n as

µn =
r

∑
k=0

(−1)k
(

n
k

)
µ′n1 µ′n−k and κn = µ′n −

n−1

∑
k=1

(
n− 1
k− 1

)
κk µ′n−k,
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respectively, where κ1 = µ′1. The skewness γ1 = κ3/κ3/2

2 and kurtosis γ2 = κ4/κ2
2 of X

follow from the third and fourth standardized cumulants.

The pth descending factorial moment of X is

µ′(p) = E[X(p)] = E[X(X− 1)× · · · × (X− p + 1)] =
p

∑
k=0

s(p, k) µ′k,

where s(r, k) = (k!)−1[dkx(r)/dxk]x=0 is the Stirling number of the first kind. So, we

can obtain the factorial moments from the ordinary moments given before.

4.7.2 Incomplete moments and their applications

The nth incomplete moment of X, say m(n; y) =
∫ y

0 xn f (x) dx, can be determined

from (4.11) and (4.17) as

m(n; y) =
∞

∑
j,i=0

(j + 1)wj+1 cn,i tanh(z/2)j+1+i+n

(j + 1 + i + n)
. (4.21)

Generally, there has been a great interest in obtaining the first incomplete moment

of a distribution. The mean residual function follows from (4.21) with n = 1 as µ′1 −

m(1; y) − y. Based on the first incomplete moment, we can obtain mean deviations

from the mean and the median defined by δ1 = E(|X − µ′1|) = 2µ′1 F(µ′1)− 2m(1; µ′1)

and δ2 = E(|X −M|) = µ′1 − 2m(1; M), where the mean µ′1 and the median M follow

from (4.20) and (4.9), respectively.

Equation (4.21) with n = 1 is also useful to derive the Bonferroni and Lorenz curves

defined (for a given probability π) by B(π) = m(1; q)/(π µ′1) and L(π) = m(1; q)/µ′1,

respectively, where q = Q(π) follows from (4.9).

As further applications of mn(y) one has the mean residual life and mean waiting

time given by v(t) = {[1−m1(t)]/S(t)} − t and µ(t) = t− [m1(t)/F(t)], respectively,

where S(t) and F(t) are obtained from (4.7) and (4.5).
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4.7.3 Generating function

The mgf of X, say M(s) = E(esX), can be obtained from (4.11) and (4.18) (for s 6=

0, 1, 2, . . .) as

M(s) =
∞

∑
j=0

(j + 1)wj+1 Γ(1− s) 2F̃1[j + 1,−s; j + 2− s;−1].

4.7.4 Reliability

Here, we derive the reliability, say R, for the EGSHL model when X1 ∼ EGSHL(a1, b1)

and X2 ∼ EGSHL(a2, b2) are two independent random variables. Let f1(x) denote

the pdf of X1 and F2(x) denote the cdf of X2. The reliability can be expressed as

R = P(X1 > X2) =
∫ ∞

0 f1(x) F2(x)dx and using equations (4.11) and (4.12) gives

R =
∞

∑
j,k=0

Ij,k

∫ ∞

0
hj+1(x) Hk+1(x)dx,

where Ij,k = ∑∞
m,n=1(−1)j+k+m+n+2 (b1

m) (
m a1
j+1) (

b2
n ) (

na2
k+1).

Thus, the reliability of X reduces to

R =
∞

∑
j,k=0

Ij,k

∫ ∞

0

2 (j + 1) e−x (1− e−x)j+k+1

(1 + e−x)j+k+3 dx

and then

R =
∞

∑
j,k=0

(j + 1) Ij,k

(j + k + 2)
. (4.22)

Table 4.3 gives some values of R for the EGSHL model considering different pa-

rameter values. Naturally, for a1 = a2 and b1 = b2 we obtain R = P(X1 > X2) = 1/2.

All computations are obtained using Wolfram Mathematica software and we consider

de upper limits equal 30 in (4.22).

4.8 Probability weighted moments

The PWMs are used to derive estimators of the parameters and quantiles of gen-

eralized distributions. The moment method of estimation is formulated by equating
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Table 4.3: The reliability of X ∼ EGSHL for (a1 = 2, a2 = 2) and some of b1 and b2

values.

b2 2 3 4 5 6

b1

2 0.50000 0.40000 0.33333 0.28571 0.25000

3 0.60000 0.50000 0.42857 0.37500 0.33333

4 0.66667 0.57143 0.50000 0.44444 0.40000

5 0.71429 0.62500 0.55556 0.50000 0.45455

6 0.75000 0.66667 0.60000 0.54545 0.50000

the population and sample PWMs. These moments have low variances and no severe

biases, and they compare favorably with estimators obtained by maximum likelihood.

The (s, r)th PWM of X is defined by δs,r = E[Xs F(x)r]. Clearly, the ordinary moments

follow as δs,0 = E(Xs). Next, we derive simple expressions for the PWMs of X defined

as

δs,r =
∫ ∞

0
xs F(x)r f (x)dx. (4.23)

Inserting (4.5) and (4.6) in equation (4.23), the PWMs of X can be expressed in a

simple form:

δs,r =
∫ ∞

0
xs a b 2a e−ax [(1 + e−x)a − 2a e−ax]b(r+1)−1

(1 + e−x)ab(r+1)+1
dx. (4.24)

Table 4.4 gives the values of δs,r for X ∼ EGSHL(2, 3) and several values of s and r

by using (4.24). All computations are obtained using Wolfram Mathematica software.

We can go further and present a simpler expression to the PWM of X. Under simple

algebraic manipulation, we can write δs,r as

δs,r =
1

(r + 1)

∫ ∞

0
xs f [x; a, (r + 1)b]dx. (4.25)
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Table 4.4: The PWM of X ∼ EGSHL(2, 3) and several values of s and r.

r 1 2 3 4 5 6 7

s

1 0.86311 0.65040 0.52742 0.44636 0.38851 0.34493 0.31083

2 1.73709 1.43084 1.23227 1.09076 0.98370 0.89926 0.83057

3 4.02758 3.53658 3.18774 2.92247 2.71156 2.53844 2.39258

4 10.6632 9.79486 9.13100 8.59828 8.15643 7.78109 7.45605

where f [x; a, (r + 1)b] is the EGSHL density with parameters a and (r + 1)b. This is

the most important result of this section. Equation (4.25) revels that the PWM of X can

be expressed in terms of the ordinary moments of X ∼ EGSHL[a, (r + 1)b].

4.9 Rényi Entropy

Given a certain random phenomenon under study, it is important to quantify the

uncertainty associated with the random variable of interest. In this context, several

statistical methods are available in the literature. One of the most popular measures

used to quantify the variability of X is the Rényi entropy. Here, we make reference

to the following papers: [72], for the gamma extended Fréchet model; [73] for the

Marshall-Olkin extended modified Weibull distribution and [74] for an extension of

the logistic distribution, among others.

The Rényi entropy of X with density (4.6), say IR(ρ), is given by

IR(ρ) =
1

(1− ρ)
log
(∫ ∞

0
f (x)ρdx

)
, (4.26)

where ρ > 0 and ρ 6= 1.

By inserting (4.6) in equation (4.26), we obtain

IR(ρ) =
1

(1− ρ)
log

(∫ ∞

0

[
a b 2a e−ax [(1 + e−x)a − 2a e−ax]b−1

(1 + e−x)ab+1

]ρ

dx

)
. (4.27)
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Equation (4.27) can be easily implemented computationally and values of IR(ρ) are

obtained in a few seconds. Table 4.5 shows some values of IR(ρ) for the EGSHL model,

considering different parameter values. Naturally, the higher the value of IR(ρ), indi-

cates the greater uncertainty about the phenomenon under study. All computations

are obtained using Wolfram Mathematica software, which have numerical integration

routines with great precision. Based on the figures in Table 4.5, we note that, indepen-

dently of a and b, IR(ρ) decreases when ρ increases. For fixed ρ, the Rényi entropy is

larger for a < b.

Table 4.5: Rényi entropy of X for several ρ, a and b values.

a b ρ = 2 ρ = 4 ρ = 6 ρ = 8 ρ = 10

2 3 0.80620 0.68292 0.62861 0.59677 0.57546

2 2 0.76897 0.64952 0.59687 0.56595 0.54522

3 2 0.44012 0.32050 0.26770 0.23670 0.21590

Although, as we cited before, equation (4.27) is easily manageable computation-

ally, we provide an expression in closed-form to compute IR(ρ). Using (4.10) twice in

equation (4.4), we can write

f (x)ρ = (ab)ρ
∞

∑
k, `=0

(−1)k+`

(
ρ(b− 1)

k

)(
ak + ρ(a− 1)

`

)
g(x)ρG(x)`. (4.28)

Substituting (4.1) and (4.2) in the equation (4.28), we have

IR(ρ) =
1

(1− ρ)
log
{1

2
√

π (a b)ρ Γ(1 + ρ)
∞

∑
k, `=0

(−1)k+` 2`
(

ρ(b− 1)
k

)
×
(

ak + ρ(a− 1)
`

)
K(`, ρ)

}
,

where

K(`, ρ) = ` Γ
(

1+`
2

)
3F̃2

[
1
2 − `, 1− `, 1+`

2 ; 3
2 , 3+`

2 + ρ; 1
]

+Γ
(

1
2

)
3F̃2

[
1
2 − `, −`, 1

2 ; 1
2 , 1 + ρ + `

2 ; 1
]
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is the regularized hypergeometric function defined by

3F̃2[a, b, c; d, e; z] =
∞

∑
k=0

(a)k (b)k (c)k
Γ(d + k) Γ(e + k)

zk

k!
, |z| < 1.

4.10 Order statistics

The importance of order statistics and their applications is widely disseminated

in the literature. As define by [75], the main objective of the order statistics is the

investigation of properties and applications of ordered random variables, as well as

functions of these variables. The density function fi:n(x) of the ith order statistic, say

Xi:n, based on a random sample X1, . . . , Xn, can be expressed as (for i = 1, . . . , n)

fi:n(x) =
1

B(i, n− i + 1)

n−i

∑
j=0

(−1)j
(

n− i
j

)
f (x) F(x)i+j−1.

By inserting (4.5) and (4.6) in the above expression, the density function of the

EGSHL order statistics follow as

fi:n(x) =
1

B(i, n− i + 1)

n−i

∑
j=0

(−1)j
(

n− i
j

)
a b 2a e−ax [(1 + e−x)a − 2a e−ax]b(i+j)−1

(1 + e−x)ab(i+j)+1
. (4.29)

There are many practical applications in which we can employ the above equation.

Perhaps, the most important of these refers to the moments of Xi:n. The r-th moment

of Xi:n comes from (4.29) as

E(Xr
i:n) = (4.30)

1
B(i, n− i + 1)

n−i

∑
j=0

(−1)j
(

n− i
j

) ∫ ∞

0
xr a b 2ae−ax[(1 + e−x)a − 2a e−ax]b(i+j)−1

(1 + e−x)ab(i+j)+1
dx.

The r-th moment of Xi:n can be easily obtained numerically using (4.30) through

any symbolic computing platform. In Table 4.6, we present a small illustration, in

which we calculate the first five moments of Xi:10 for a = b = 2 and some values of r

and i. All computations are performed using the Wolfram Mathematica platform. For a

similar study, readers may see a paper by [76], who evaluated E(Xr
i:n) numerically for

the Weibull-geometric distribution.
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Table 4.6: The first five moments of Xi:10 for a = b = 2 and some values of r and i.

r → 1 2 3 4 5

i ↓

1 0.30388 0.12086 0.05784 0.03183 0.01991

5 0.93164 0.92874 0.98474 1.10008 1.33621

9 1.81708 3.49876 7.13339 15.3918 35.1363

10 2.38815 6.16922 17.2845 52.6660 174.968

Finally, we provide a linear representation for fi:n(x). After a simple algebraic

manipulation, we can write

fi:n(x) =
1

B(i, n− i + 1)

n−i

∑
j=0

ξi, j f [x; a, (i + j)b], (4.31)

where ξi, j = [(−1)j/(i + j)] (n−i
j ) and f [x; a, (i + j)b] is the EGSHL density with pa-

rameters a and (i + j)b. Equation (4.31) revels that the pdf of Xi:n is a linear combina-

tion of EGSHL densities. So, the moments, incomplete moments and other quantities

for the EGSHL order statistics can be determined from the above expression.

4.11 Estimation and Inference

Several approaches for parameter estimation were proposed in the literature but

the maximum likelihood method is the most commonly employed. The maximum

likelihood estimators (MLEs) enjoy desirable properties and can be used when con-

structing confidence intervals and regions and also in test statistics. The normal ap-

proximation for these estimators in large sample distribution theory is easily handled

either analytically or numerically. So, we consider the estimation of the unknown

parameters for this family from complete samples only by maximum likelihood. Let

x1, . . . , xn be observed values from the EGSHL distribution with parameters a and b.

The log-likelihood function for the vector of parameters θ = (a, b)>, say `(θ), can
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be expressed as

`(θ) = n log(ab2a)− a
n

∑
i=1

xi + (b− 1)
n

∑
i=1

log[(1 + e−xi)a − 2a e−axi ]− (ab + 1)
n

∑
i=1

log(1 + e−xi).

(4.32)

Equation (4.32) can be maximized either directly by using the R (optim function),

SAS (PROC NLMIXED) or Ox program (sub-routine MaxBFGS) or by solving the nonlinear

likelihood equations obtained by differentiating (4.32). The components of the score

function are:

∂`(θ)

∂a
= −

n

∑
i=1

xi − b
n

∑
i=1

log(1 + e−xi) + n a−1 [1 + a log(2)]

+ (b− 1)
n

∑
i=1

2a xi e−axi − 2a log(2) e−axi + (1 + e−xi)a log(1 + e−xi)

(1 + e−xi)a − 2a e−axi
,

∂`(θ)

∂b
=

n
b
− a

n

∑
i=1

log(1 + e−xi) +
n

∑
i=1

log[(1 + e−xi)a − 2a e−axi ].

The elements of the observation matrix J(θ) are given by

∂2`(θ)

∂a2 = −(b− 1)
n

∑
i=1

2a+1 log(2) xi e−axi − 2a x2
i e−axi − 2a [log(2)]2 e−axi

(1 + e−xi)a − 2a e−axi

+ (b− 1)
n

∑
i=1

(1 + e−xi)a[log(1 + e−xi)]2

(1 + e−xi)a − 2a e−axi

− (b− 1)
n

∑
i=1

[2a xi e−axi −−2a [log(2)]2 e−axi + (1 + e−xi)a log(1 + e−xi)]2

[(1 + e−xi)a − 2a e−axi ]2

+ n a−1 {2 log(2) + a [log(2)]2} − n a−2 [1 + a log(2)]− n a−1 log(2) [1 + a log(2)],

∂2`(θ)

∂b2 =
n
b2 ,

∂2`(θ)

∂ab
=

n

∑
i=1

log(1 + e−xi) +
n

∑
i=1

2a xi e−axi − 2a log(2) e−axi + (1 + e−xi)a log(1 + e−xi)

(1 + e−xi)a − 2a e−axi
.

For large n and under conditions of regularity already known, the distribution of

(θ̂ − θ) can be approximated to a bivariate normal distribution with zero means and

variance-covariance matrix J(θ)−1. Some structural properties of θ̂ can be derived

based on this normal approximation.
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4.12 Simulation Study

Among the many estimation methods presented in the literature, the maximum

likelihood method is the most commonly used by applied researchers. But, once the

estimation method is chosen, it is necessary to observe if the parameters of the model

are obtained with precision, because the resulting inferences and the decision pro-

cesses will depend directly on the quality of the estimates. In this section we present

a Monte Carlo simulation study, with the aim of investigating the behavior of the

MLEs for the parameters of the EGSHL model. For doing this, we generate samples

sizes n = 20, 40, 80, 120 using (4.9) and 10, 000 replications. We select some values

for a and b. The entire simulation process is performed in the R software, using the

simulated-annealing (SANN) maximization method in maxLik package. To ensure the

reproducibility of the experiment we use the seed for the random number generator:

set.seed (103). Finally, it should be mentioned that our methodology used, as an ad

hoc rule, initial kicks are equal to half of the true value of the parameters in each sce-

nario considered.

The results of the simulations are presented in Tables 4.7 and 4.8, which contains

all the estimates for each case considered and also the variance between parentheses.

These results show that EGSHL estimates have good properties even for small to mod-

erate sample sizes . In general, the biases and variances decrease as the sample size

increases, as expected.

4.13 Application to real data

In this section, we present a small application study to a real data set. The objective

is to demonstrate that the EGSHL distribution can be used in practical situations for

real data modeling. We consider the set of data presented by [63] referring to the

soil fertility influence and the characterization of the biologic fixation of N2 for the

Dimorphandra wilsonii rizz growth. The phosphorus concentration, in the leaves, for

128 plants are:

0.22, 0.17, 0.11, 0.10, 0.15, 0.06, 0.05, 0.07, 0.12, 0.09, 0.23, 0.25, 0.23, 0.24, 0.20, 0.08,
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0.11, 0.12, 0.10, 0.06, 0.20, 0.17, 0.20, 0.11, 0.16, 0.09, 0.10, 0.12, 0.12, 0.10, 0.09, 0.17, 0.19,

0.21, 0.18, 0.26, 0.19, 0.17, 0.18, 0.20, 0.24, 0.19, 0.21, 0.22, 0.17, 0.08, 0.08, 0.06, 0.09, 0.22,

0.23, 0.22, 0.19, 0.27, 0.16, 0.28, 0.11, 0.10, 0.20, 0.12, 0.15, 0.08, 0.12, 0.09, 0.14, 0.07, 0.09,

0.05, 0.06, 0.11, 0.16, 0.20, 0.25, 0.16, 0.13, 0.11, 0.11, 0.11, 0.08, 0.22, 0.11, 0.13, 0.12, 0.15,

0.12, 0.11, 0.11, 0.15, 0.10, 0.15, 0.17, 0.14, 0.12, 0.18, 0.14, 0.18, 0.13, 0.12, 0.14, 0.09, 0.10,

0.13, 0.09, 0.11, 0.11, 0.14, 0.07, 0.07, 0.19, 0.17, 0.18, 0.16, 0.19, 0.15, 0.07, 0.09, 0.17, 0.10,

0.08, 0.15, 0.21, 0.16, 0.08, 0.10, 0.06, 0.08, 0.12, 0.13.

Figure 4.10 shows the dispersion of the data, while Table 4.9 provides some descrip-

tive statistics. It is possible to observe, for example, that the mean and the variance are

0.1408 and 0.0030, respectively. We adopt the maximum likelihood method to estimate

the model parameters and all computations are performed using the SAS subroutine

NLMixed.
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Dispersion of the 128 data units

Figure 4.10: Dispersion of the 128 data units of the phosphorus concentration in the

leaves

In addition to the EGSHL model and its sub-models ESHLI and ESHLII, we con-

sider the McDonald half-logistic (MCSHL) distribution and Kumaraswamy half-logistic

(KWSHL) models, introduced by [63]. Table 4.10 lists the MLEs of the model parame-

ters (with the corresponding standard errors in parentheses) for all fitted models and

also the values of the Akaike information criterion (AIC), Bayesian information crite-

rion (BIC) and consistent Akaike information criterion (CAIC) statistics. In general, it

is considered that the lower values of these criteria indicates the better fit to the data.

The figures in Table 4.10 revels that the EGSHL model has the lowest AIC, BIC and

CAIC values among all fitted models. Thus, the proposed EGSHL distribution is the

best model to explain these data.
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Finally, Figure 4.11 displays the estimated pdf and cdf of the EGSHL model and

the histogram of the data. These plots reveal that the proposed model is quite suitable

for these data.

x

D
en

si
ty

0.0 0.1 0.2 0.3 0.4

0
2

4
6

8 EGHL

(a) Estimated pdf of the EGSHL model

0.0 0.1 0.2 0.3 0.4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

cd
f

EGHL

(b) Estimated cdf of the EGSHL model

Figure 4.11: Estimated pdf and cdf of the EGSHL model for phosphorus concentration

in leaves data

4.14 Conclusions

In this paper, we introduce a univariate continuous distribution with two parame-

ters that govern the asymmetry and kurtosis, named the exponentiated generalized stan-

dard half-logistic model, say EGSHL. We provide a comprehensive mathematical treat-

ment and show by numerical studies that the formulas related to the new model are

computationally manageable. In particular, the maximum likelihood estimators are

easily estimated. These estimators have good properties, such as low biases and vari-

ances, even in small or moderate sample sizes. A study using real data shows that the

new distribution can be used in practical situations due to its great power of adjust-

ment when compared to other competitive models. We hope that this EGSHL model

can be useful for applied statisticians and other researchers who refer to a model with

few parameters but flexible to accommodate supported data in real positives. For
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future research, we will study bias correction via bootstrap for estimators in small

samples.
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Table 4.7: MLEs for several a and b parameter values (variances in parentheses).
n = 20 n = 40 n = 80 n = 120

a b â b̂ â b̂ â b̂ â b̂

1 1 1.1364 1.1665 1.0679 1.0780 1.0322 1.0362 1.0219 1.0244

(0.1291) (0.1816) (0.0533) (0.0608) (0.0234) (0.0244) (0.0152) (0.0156)

1 2 1.1079 2.4438 1.0542 2.2022 1.0257 2.0922 1.0176 2.0620

(0.0861) (1.1979) (0.0369) (0.3524) (0.0166) (0.1336) (0.0108) (0.0843)

1 3 1.0975 3.7774 1.0495 3.3564 1.0235 3.1610 1.0160 3.1078

(0.0714) (3.2781) (0.0315) (1.0175) (0.0142) (0.3703) (0.0093) (0.2316)

1 4 1.0901 5.1139 1.0471 4.5328 1.0224 4.2394 1.0152 4.1599

(0.0617) (6.0177) (0.0286) (2.1581) (0.0130) (0.7694) (0.0085) (0.4777)

1 5 1.0825 6.3945 1.0453 5.7225 1.0216 5.3249 1.0147 5.2169

(0.0535) (8.6183) (0.0267) (3.7875) (0.0122) (1.3586) (0.0080) (0.8401)

1 6 1.0739 7.5949 1.0435 6.9057 1.0211 6.4185 1.0144 6.2786

(0.0465) (10.8839) (0.0250) (5.6409) (0.0117) (2.1707) (0.0076) (1.3332)

2 1 2.2728 1.1665 2.1358 1.0780 2.0644 1.0362 2.0439 1.0244

(0.5161) (0.1815) (0.2130) (0.0608) (0.0938) (0.0244) (0.0606) (0.0156)

2 2 2.2158 2.4432 2.1083 2.2021 2.0515 2.0923 2.0351 2.0620

(0.3442) (1.1851) (0.1476) (0.3523) (0.0663) (0.1336) (0.0433) (0.0844)

2 3 2.1946 3.7732 2.0989 3.3562 2.0471 3.1610 2.0320 3.1078

(0.2844) (3.2076) (0.1259) (1.0163) (0.0569) (0.3700) (0.0372) (0.2317)

2 4 2.1784 5.0913 2.0940 4.5316 2.0447 4.2392 00000 00000

(0.2433) (5.6459) (0.1143) (2.1459) (0.0519) (0.7688) (000000) (000000)

2 5 2.1610 6.3515 2.0905 5.7206 2.0433 5.3254 2.0295 5.2170

(0.2085) (8.1286) (0.1066) (3.7591) (0.0488) (1.3598) (0.0319) (0.8398)

2 6 2.1413 7.5129 2.0873 6.9111 2.0423 6.4184 2.0289 6.2790

(0.1784) (10.0107) (0.1002) (5.7568) (0.0467) (2.1702) (0.0306) (1.3345)

3 1 3.4091 1.1665 3.2037 1.0780 3.0967 1.0362 3.0658 1.0244

(1.1614) (0.1816) (0.4793) (0.0608) (0.2110) (0.0244) (0.1364) (0.0156)

3 2 3.3236 2.4429 3.1626 2.2023 3.0773 2.0923 3.0527 2.0620

(0.7739) (1.1783) (0.3322) (0.3523) (0.1493) (0.1336) (0.0973) (0.0843)

3 3 3.2920 3.7749 3.1484 3.3562 3.0706 3.1609 3.0481 3.1078

(0.6405) (3.2347) (0.2832) (1.0168) (0.1280) (0.3701) (0.0836) (0.2318)

3 4 3.2681 5.0951 3.1411 4.5327 3.0670 4.2391 3.0457 4.1599

(0.5486) (5.6934) (0.2575) (2.1610) (0.1168) (0.7687) (0.0764) (0.4779)

3 5 3.2416 6.3449 3.1355 5.7184 3.0649 5.3253 3.0442 5.2170

(0.4708) (7.9364) (0.2393) (3.7228) (0.1099) (1.3602) (0.0719) (0.8397)

3 6 3.2104 7.4949 3.1293 6.8942 3.0634 6.4181 3.0432 6.2787

(0.4016) (9.7370) (0.2218) (5.4756) (0.1050) (2.1678) (0.0687) (1.3336)

4 1 4.5455 1.1665 4.2715 1.0780 4.1289 1.0362 4.0878 1.0244

(2.0640) (0.1815) (0.8520) (0.0607) (0.3753) (0.0244) (0.2424) (0.0156)

4 2 4.4313 2.4427 4.2168 2.2024 4.1031 2.0923 4.0702 2.0619

(1.3750) (1.1782) (0.5907) (0.3527) (0.2654) (0.1336) (0.1729) (0.0843)

4 3 4.3891 3.7720 4.1979 3.3560 4.0941 3.1609 4.0641 3.1077

(1.1352) (3.1640) (0.5032) (1.0154) (0.2275) (0.3701) (0.1486) (0.2316)

4 4 4.3588 5.1031 4.1880 4.5314 4.0895 4.2391 4.0609 4.1599

(0.9799) (5.7925) (0.4573) (2.1404) (0.2077) (0.7686) (0.1359) (0.4780)

4 5 4.3254 6.3667 4.1805 5.7169 4.0865 5.3253 4.0590 5.2171

(0.8448) (8.2116) (0.4245) (3.7004) (0.1953) (1.3602) (0.1278) (0.8398)

4 6 4.2843 7.5198 4.1724 6.8951 4.0846 6.4182 4.0577 6.2787

(0.7193) (9.9206) (0.3944) (5.4947) (0.1866) (2.1674) (0.1221) (1.3317)
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Table 4.8: MLEs for several a and b parameter values (variances in parentheses).
n = 20 n = 40 n = 80 n = 120

a b â b̂ â b̂ â b̂ â b̂

5 1 5.6817 1.1665 5.3393 1.0780 5.1612 1.0362 5.1097 1.0244

(3.2234) (0.1815) (1.3307) (0.0607) (0.5864) (0.0244) (0.3787) (0.0156)

5 2 5.5387 2.4418 5.2707 2.2021 5.1287 2.0923 5.0877 2.0620

(2.1444) (1.1620) (0.9228) (0.3524) (0.4147) (0.1336) (0.2702) (0.0844)

5 3 5.4866 3.7734 5.2473 3.3561 5.1176 3.1609 5.0802 3.1078

(1.7733) (3.1906) (0.7866) (1.0163) (0.3555) (0.3702) (0.2323) (0.2317)

5 4 5.4483 5.1013 5.2350 4.5321 5.1117 4.2390 5.0762 4.1598

(1.5275) (5.7708) (0.7149) (2.1531) (0.3245) (0.7685) (0.2122) (0.4777)

5 5 5.4088 6.3755 5.2258 5.7183 5.1083 5.3253 5.0738 5.2172

(1.3238) (8.3123) (0.6646) (3.7192) (0.3051) (1.3594) (0.1996) (0.8400)

5 6 5.3610 7.5440 5.2161 6.8971 5.1057 6.4179 5.0721 6.2787

(1.1379) (10.1558) (0.6190) (5.5159) (0.2915) (2.1674) (0.1909) (1.3327)

6 1 6.8182 1.1665 6.4072 1.0780 6.1935 1.0362 6.1315 1.0244

(4.6354) (0.1815) (1.9166) (0.0607) (0.8443) (0.0244) (0.5458) (0.0156)

6 2 6.6464 2.4416 6.3250 2.2021 6.1544 2.0922 6.1052 2.0620

(3.0857) (1.1553) (1.3287) (0.3524) (0.5973) (0.1336) (0.3893) (0.0844)

6 3 6.5814 3.7674 6.2971 3.3564 6.1410 3.1609 6.0961 3.1077

(2.5331) (3.1065) (1.1329) (1.0158) (0.5120) (0.3702) (0.3342) (0.2316)

6 4 6.5345 5.0899 6.2817 4.5315 6.1340 4.2391 6.0914 4.1598

(2.1763) (5.5942) (1.0288) (2.1487) (0.4672) (0.7686) (0.3055) (0.4777)

6 5 6.4870 6.3639 6.2714 5.7206 6.1298 5.3254 6.0884 5.2170

(1.8878) (8.1698) (0.9581) (3.7620) (0.4393) (1.3597) (0.2875) (0.8395)

6 6 6.4294 7.5291 6.2615 6.9092 6.1268 6.4178 6.0865 6.2788

(1.6218) (9.9311) (0.8991) (5.7015) (0.4197) (2.1642) (0.2749) (1.3334)

7 1 7.9522 1.1663 7.4750 1.0780 7.2256 1.0362 7.1535 1.0244

(6.2724) (0.1811) (2.6087) (0.0608) (1.1489) (0.0244) (0.7424) (0.0156)

7 2 7.7540 2.4417 7.3791 2.2022 7.1803 2.0923 7.1228 2.0620

(4.1999) (1.1631) (1.8074) (0.3523) (0.8131) (0.1336) (0.5296) (0.0844)

7 3 7.6759 3.7623 7.3464 3.3563 7.1645 3.1610 7.1121 3.1078

(3.4208) (3.0301) (1.5413) (1.0165) (0.6967) (0.3701) (0.4551) (0.2318)

7 4 7.6208 5.0854 7.3288 4.5315 7.1564 4.2391 7.1066 4.1598

(2.9346) (5.5863) (1.3999) (2.1457) (0.6361) (0.7687) (0.4159) (0.4778)

7 5 7.5606 6.3387 7.3166 5.7200 7.1514 5.3252 7.1033 5.2171

(2.5330) (7.8692) (1.3043) (3.7473) (0.5979) (1.3601) (0.3912) (0.8395)

7 6 7.4924 7.4992 7.3040 6.9033 7.1480 6.4181 7.1008 6.2785

(2.1695) (9.6662) (1.2178) (5.6022) (0.5715) (2.1686) (0.3742) (1.3331)

8 1 9.0832 1.1657 8.5427 1.0780 8.2579 1.0362 8.1753 1.0244

(8.0944) (0.1800) (3.4079) (0.0608) (1.5003) (0.0244) (0.9699) (0.0156)

8 2 8.8614 2.4406 8.4332 2.2021 8.2060 2.0923 8.1402 2.0619

(5.4792) (1.1425) (2.3624) (0.3523) (1.0618) (0.1336) (0.6919) (0.0844)

8 3 8.7708 3.7586 8.3956 3.3560 8.1882 3.1610 8.1282 3.1077

(4.4672) (2.9786) (2.0137) (1.0162) (0.9102) (0.3703) (0.5945) (0.2316)

8 4 8.6995 5.0610 8.3757 4.5316 8.1788 4.2391 8.1219 4.1598

(3.7735) (5.2886) (1.8292) (2.1457) (0.8304) (0.7687) (0.5433) (o.4778)

8 5 8.6215 6.2896 8.3616 5.7194 8.1730 5.3253 8.1180 5.2170

(3.1863) (7.3155) (1.7022) (3.7422) (0.7809) (1.3598) (0.5109) (0.8396)

8 6 8.5478 7.4592 8.3467 6.9028 8.1691 6.4183 8.1151 6.2784

(2.7600) (9.3019) (1.5899) (5.6189) (0.7459) (2.1677) (0.4886) (1.3321)
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Table 4.9: Descriptives statistics for phosphorus concentration in leaves data.

Statistic

n 128

Mean 0.1408

Median 0.1300

Variance 0.0030

Minimum 0.0500

Maximum 0.2800

Table 4.10: MLEs (and the corresponding standard errors in parentheses), AIC, BIC

and CAIC statistics for phosphorus concentration in leaves data.

Distribution â b̂ AIC BIC CAIC

EGSHL 39.5048 9.7074 −388.6 −382.9 -388.5

(3.1128) (1.8281)

ESHLI 1 0.3659 −5.4 −2.5 −5.3

(−) (0.03234)

ESHLII 13.6554 1 −251.1 −248.2 −251.0

(1.2070) (−)

â b̂ ĉ

MCSHL 13.915 58.358 0.614 −388.1 −379.5 −387.9

(2.781) (0.682) (125.480)

KWSHL 1314.13 1 2.8298 −385.7 −380.0 −385.6

(18.9075) (−) (0.03691)
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CHAPTER 5

General conclusions and future works

Based on the present doctoral thesis, follows the general conclusions:

• The exponentiated generalized (EG) class of distributions with two extra shape pa-

rameters a > 0 and b > 0 constitutes a simple way of adding two parameters to

a continuous distribution.

• The EG family of distributions has desirable properties such as: they have no

complicated functions and will be always tractable when the cdf and pdf of the

baseline distribution have simple analytical expressions; contain as special cases

the two classes of Lehmann’s alternatives and then, the EG family can be derived

from a double transformation using these classes; the two extra parameters a and

b in the EG density can control both tail weights, allowing generating flexible

distributions, with heavier or lighter tails, as appropriate and among others.

• The EG hazard function can take the classic shapes: bathtub, inverted bathtub,

increasing, decreasing and constant, among others. These shapes are important

for reliability studies, survival analysis, among others.

• The sub-models proposed and studied in this thesis, say the exponentiated gen-

eralized Gumbel (“EGGu” for short), the exponentiated generalized extended expo-
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nential (EGEE) and exponentiated generalized standard half-logistic (EGSHL) distri-

butions, are mathematically and computationally manageable. Moreover, they

have shown to be competitive in terms of adjustment to real data, when com-

pared to several classical models well-established in the literature. In summary,

the models studied in this thesis have proved to be important and can be widely

used by applied researchers.

Due to the recognized importance of the EG family of distributions, we believe

that more needs to be done in the study of their properties and sub-models. Thus,

an additional contribution of the present thesis is the proposition of new researches

related to this class. Specifically, we propose an exploration of the sub-models:

• The exponentiated generalized generalized Gompertz (EGEG) distribution:

F(x) =
{

1−
[
1−

(
1− e−

β
γ (eγ x−1)

)θ]a}b
,

where a > 0, b > 0, β > 0, γ ≥ 0, θ > 0 and x ≥ 0.

• The exponentiated generalized generalized power Weibull (EGGPW) distribution:

F(x) = {1− exp[{1− [1 + (x/β)α]θ}a]}b,

where a > 0, b > 0, β > 0, α > 0, θ > 0 and x ≥ 0.

• The Odd log-logistic Generalized Exponentiated Gumbel (OLLEGGu) distribution:

F(x; µ, σ, a, b, α) =

{
1− [1− e−u]

a}b α{
1− [1− e−u]a

}b α
+
{

1−
{

1− [1− e−u]a
}b
}α ,

where u = e−(x−µ)/σ, a, b, α, σ > 0 and µ, x ∈ IR.

• The Exponentiated Generalized Marshall–Olkin (EGMO-G) family of distributions:

F(x) =
{

1−
[

αḠ(x)
1− ᾱḠ(x)

]a}b

,

in which the dependence on the parameters of G(x) are implicit.
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Although it has not been detailed here, all the above models are being studied and

the future submission of related works will refer to the present thesis.
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