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Resumo

Este trabalho está dividido em quatro capítulos independentes. No primeiro, introduzi-
mos um método geral para obter distribuições de probabilidade mais flexíveis. Esse método
consiste em compor duas classes de distribuições: as classes Weibull estendida e de séries de
potências. O procedimento de composição segue a mesma ideia implementada por Adamidis e
Loukas (1998) e, mais recentemente, por Morais e Barreto-Souza (2011). Algumas propriedades
matemáticas da nova classe são estudadas, incluindo momentos e função geradora. O método
de máxima verossimilhança é utilizado para obter estimativas dos parâmetros. A utilidade
da nova classe é exemplicada através de dois exemplos com conjuntos de dados reais. No
segundo capítulo, introduzimos e estudamos as propriedades matemáticas de um novo gera-
dor de distribuições de probabilidade contínuas, que adiciona três parâmetros extras. A nova
densidade pode ser expressa como combinação linear de densidades exponencializadas da
distribuição de origem. Obtemos expressões explícitas para os momentos ordinários e incom-
pletos, funções quantílica e geradora, distribuição assintótica de valores extremos, entropias
de Shannon e Rényi e estatísticas de ordem, que valem para qualquer distribuição de origem.
O método de máxima verossimilhança é utilizado para obter estimativas dos parâmetros. A
potencialidade da nova classe é exemplicada através de dois exemplos com conjuntos de da-
dos reais. No terceiro, propomos um teste da razão de verossimilhanças baseado na estatística
de Cox (1961) para discriminar as distribuições exponencial-Poisson e gama. Para isso, con-
sideramos as duas hipóteses nulas: os dados seguem distribuição exponencial-Poisson/gama.
A distribuição do logaritmo da razão de verossimilhanças sob a hipótese nula é obtida para os
dois casos. Além disso, determinamos o tamanho mínimo de amostra para discriminar as duas
distribuições quando a probabilidade de seleção correta é previamente estabelecida. Estudos
de simulação e aplicação a dois conjuntos de dados reais exemplificam o comportamento e a
utilidade da metodologia proposta, respectivamente. Por fim, propomos um estimador mod-
ificado para o parâmetro de precisão para uma extensa classe de modelos de regressão. Por
exemplo, os resultados propostos valem para os modelos lineares generalizados (McCullagh e
Nelder, 1989), modelos de quase-verossimilhança (Wedderburn, 1974), entre outros. Sabemos
que estimador de Pearson para o parâmetro de dispersão funciona bem para ambos os mod-
elos de regressão citados, mas sua versão para o parâmetro de precisão é significativamente
viesada para pequenos e médios tamanhos de amostra. Propomos, então, um método sim-
ples para a redução do viés do parâmetro de precisão. Estudos de simulação são usados para
comparar o desempenho do estimador proposto com outros estimadores.

Palavras-chave: Classe Kumaraswamy generalizada; Distribuição Weibull estendida; Distribui-
ção exponencial-Poisson; Distribuição gama; Parâmetro de dispersão; Parâmetro de precisão;
Séries de potência.



Abstract

This work is divided in four independent papers. In the first one, we introduce a general
method for obtaining more flexible new distributions by compounding the extended Weibull
and power series distributions. The compounding procedure follows the same set-up carried
out by Adamidis and Loukas (1998) and, more recently, by Morais and Barreto-Souza (2011).
Some mathematical properties of the new class are studied including moments and generating
function. The method of maximum likelihood is used for estimating the model parameters.
We illustrate the usefulness of the new distributions by means of two applications to real data
sets. In the second chapter, we introduce and study general mathematical properties of a new
generator of continuous distributions with three extra parameters. The new density function
can be expressed as a linear combination of exponentiated densities based on the same baseline
distribution. Explicit expressions for the ordinary and incomplete moments, quantile and gen-
erating functions, asymptotic distribution of the extreme values, Shannon and Rényi entropies
and order statistics, which hold for any baseline model, are determined. We discuss the esti-
mation of the model parameters by maximum likelihood and illustrate the potentiality of the
family by means of two applications to real data. In the third chapter, we propose a likelihood
ratio test based on Cox’s statistic Cox (1961) to discriminate between the exponential-Poisson
and gamma distributions. We consider two null hypothesis: the data come from exponential-
Poisson/gamma distribution. The asymptotic distribution of the logarithm of the ratio of the
maximized likelihoods under the null hypothesis is provided for both cases. We also determine
the minimum sample size required for discriminating the two distributions when the proba-
bility of correct selection is previously stated. A simulation study and applications to real data
sets are presented in order to show the behavior and usefulness of the proposed methodol-
ogy. Finally, we propose a modified estimator for an extensive class of regression models. For
instance, our results hold for generalized linear models (see McCullagh and Nelder, 1989),
quasi-likelihood models (see Wedderburn, 1974), among others. The Pearson-based disper-
sion estimator is known to work well for both generalized linear models and quasi-likelihood
models, but the precision parameter version of this estimator is significatively biased in small
and medium sample sizes. We thus propose a simple bias-reduction method to reduce the
bias of this precision parameter estimator. Monte Carlo simulation is used to compare the
performance of the proposed estimator against others.

Keywords: Dispersion parameter; Exponential-Poisson distribution; Extended Weibull distri-
bution; Gamma distribution; Generalized Kumaraswamy class; Power series distribution; Pre-
cision parameter.
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CHAPTER 1

Introduction

This thesis is divided in three parts, composed by four independent papers. Two of them
introduce new families of distributions; the other two deal with a method to discriminate
the exponential-Poisson and gamma distributions, and a modified moment estimator for a
general class of regression models, respectively. So, we decide that, for this thesis, each of the
papers fills a distinct chapter. Therefore, each chapter can be read independently to each other,
since each is self-contained. Additionally, we emphasize that each chapter contains a thorough
introduction to the presented matter, so this general introduction only shows, quite briefly, the
context of each chapter.

In Chapters 1 and 2, we are interested in the study of probability distributions defined on
the positive real line. Roughly speaking, any probability distribution defined on the positive
real line can be considered as a lifetime distribution. Obviously, not all such distributions are
meaningful for describing an ageing (lifetime) phenomenon. The analysis of lifetime data is
an important topic in statistical literature, since its applications range from industrial applica-
tions to biological studies. Typically, "lifetime" refers to the time until a specified event, not
necessarily the end of a life, such as the life span of a device before it fails, the survival time
of a patient with serious disease from the date of diagnosis or major treatment, the time un-
til retirement, the time until marriage/divorce/remarriage amongst others. Because different
shapes of lifetime distributions are required for fitting various types of lifetime data, nume-
rous lifetime models were proposed and tested. In fact, Chapters 1 and 2 refer to methods of
construction of lifetime distributions that allow to expand the range of shapes of the hazard
rate function.

More specifically, Chapter 1 introduces a class of univariate distributions obtained by com-
pounding the extended Weibull and power series distributions. The compounding proce-
dure follows the same one carried out by Adamidis and Loukas (1998) or, more generally,
by Chahkandi and Ganjali (2009) and Morais and Barreto-Souza (2011). The hazard function
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of the proposed class can be decreasing, increasing, bathtub and upside down bathtub. This
extension can be derived as follows. Given N, let X1, . . . , XN be independent and identically
distributed (iid) continuous random variables following the extended Weibull distribution.
Let X(1) = min {Xi}N

i=1. If we assume that the Xi’s are independent of N, which follows a
power series distribution (truncated at zero), then X(1) has the extended Weibull power series
distribution. To attach a general interpretation to this extension, we may think of a situation
where failure, which follows the extended Weibull distribution, occurs due to the presence of
an unknown number, say N (which follows the power series distributions), of initial defects of
the same kind (a number of semiconductors from a defective lot, for example). The Xi’s repre-
sent their lifetimes and each defect can be detected only after causing failure, in which case it
is repaired perfectly. Then, the distributional assumptions given earlier lead to the extended
Weibull power series distribution for modeling the time to the first failure.

Chapter 2 presents a new family of probability distributions, which is based on the alterna-
tive gamma-generator defined by Ristíc and Balakrishnan (2011) and extends the generalized
Kumaraswamy class (Cordeiro and de Castro, 2011) of distributions, the proportional and re-
versed hazard rate models, Marshal-Olkin family of distributions and other sub-families. This
class provides greater flexibility of its tails and can be widely applied in many areas of en-
gineering and biology. The hazard function of the new family can be decreasing, increasing,
bathtub and upside down bathtub. For given parameters values, a physical interpretation of
the new distribution can be given as follows. Consider a system formed by α independent
components and that each component is made up of λ independent subcomponents. Suppose
that the system fails if any of the α components fails and that each component fails if all of
the λ subcomponents fail. Let Xj1, . . . , Xjλ denote the lifetimes of the subcomponents within
the jth component, j = 1, . . . , α, having a common cdf G. Let Xj denote de lifetime of the jth
component, for j = 1, . . . , α, and let X denote the lifetime of the entire system. Thus, the family
of distributions models precisely the time to failure of the entire system.

Chapter 3 deals with the discrimination of two popular lifetime models: the exponential-
Poisson and the gamma families. These models have many similarities and in a practical si-
tuation, an issue of interest is the selection of the most adequate model (between exponential-
Poisson and gamma distributions) to fit a certain continuous lifetime dataset. Therefore, we
propose a selection criterion between exponential-Poisson and gamma distributions. To do
this, we obtain the asymptotic distribution of the likelihood ratio statistic proposed by Cox
(1961, 1962) and with this, we propose a modified test statistic.

Finally, in Chapter 4, we study and reduce the bias of the Pearson-based precision pa-
rameter estimation for a large class of regression models. We are considering a large class of
regression models, namely, the class of regression models in which the response variables are
modelled through the mean, say µ, and which the variance has the form σ2V(µ), where σ2 is
a dispersion parameter, V(µ) is a function of the mean, and φ = σ−2 is called the precision
parameter. This class of regression models covers many important regression models, such
as the generalized linear models (see McCullagh and Nelder, 1989), the exponential family
nonlinear models (see Cordeiro and Paula, 1989), the quasi-likelihood models (see Wedder-
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burn, 1974), the extended quasi-likelihood models (see Nelder and Pregibon, 1987), the beta
regression models (see Ferrari and Cribari-Neto, 2004), the symmetrical models with mean
µ ∈ (0, ∞) (see Lange et al., 1989), the dispersion models which are modelled through the
mean (see Jørgensen, 1987), among others.
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CHAPTER 2

The compound class of extended Weibull power series distributions

Artigo publicado no periódico Computational Statistics and Data Analysis, 58, p. 352-367, 2013.

Resumo

Introduzimos um método geral para obter novas distribuições de probabilidade mais flexíveis
através da composição das distribuições Weibull estendida e de séries de potências. O pro-
cesso de composição é o mesmo estabelecido por Marshall e Olkin (1997) e define 68 novos
submodelos. A nova classe estende algumas distribuições compostas bem conhecidas como
Weibull séries de potências (Morais e Barreto-Souza, 2011) e exponencial séries de potências
(Chahkandi e Ganjali, 2009). Algumas propriedades matemáticas da nova classe são estu-
dadas, incluindo momentos e função geradora. Obtemos a densidade das estatísticas de or-
dem e seus momentos. O método de máxima verossimilhança é usado para a estimação dos
parâmetros. Distribuições especiais são investigadas. Ilustramos a utilidade da nova classe de
distribuições através de duas aplicações a conjuntos de dados reais.

Palavras-chave: Distribuição de séries de potências; Distribuição Weibull estendida; Distribuição
Weibull estendida séries de potências; Estatísticas de ordem.

Abstract

We introduce a general method for obtaining more flexible new distributions by compound-
ing the extended Weibull and power series distributions. The compounding procedure follows
the same set-up carried out by Marshall e Olkin (1997) and defines 68 new sub-models. The
new class of generated distributions includes some well-known compound distributions, such
as the Weibull power series (Morais and Barreto-Souza, 2011) and exponential power series
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(Chahkandi and Ganjali, 2009) distributions. Some mathematical properties of the new class
are studied including moments and generating function. We provide the density function of
the order statistics and their moments. The method of maximum likelihood is used for estimat-
ing the model parameters. Special distributions are investigated. We illustrate the usefulness
of the new distributions by means of two applications to real data sets.

Keywords: Extended Weibull distribution; Extended Weibull power series distribution; Order
statistic; Power series distribution.

2.1 Introduction

The modeling and analysis of lifetimes is an important issue of statistical work in a wide
variety of scientific and technological fields. Several distributions have been proposed in the
literature to model lifetime data by compounding some useful lifetime distributions. Adamidis
and Loukas (1998) introduced a two-parameter exponential geometric (EG) distribution by
compounding the exponential and geometric distributions. In a similar manner, the exponen-
tial Poisson (EP) and exponential logarithmic (EL) distributions were introduced and studied
by Kus (2007) and Tahmasbi and Rezaei (2008), respectively. Recently, Chahkandi and Gan-
jali (2009) proposed the exponential power series (EPS) family of distributions, which contains
as special cases these distributions. Barreto-Souza et al. (2010) and Lu and Shi (2011) intro-
duced the Weibull geometric (WG) and Weibull Poisson (WP) distributions which naturally
extend the EG and EP distributions, respectively. In a recent paper, Morais and Barreto-Souza
(2011) defined the Weibull power series (WPS) class of distributions which includes as sub-
models the EPS distributions. The WPS distributions can have increasing, decreasing and
upside down bathtub failure rate functions. The generalized exponential power series (GEPS)
distributions were proposed by Mahmoudi and Jafari (2012) following the same approach de-
veloped by Morais and Barreto-Souza (2011). Another recent compounded distribution can be
found in Cancho et al. (2011, 2012) who introduced the Poisson exponential (PE) and geometric
Birnbaum-Saunders (GBS) distributions, and Barreto-Souza and Bakouch (2012) who defined
the Poisson Lindley (PL) distribution. Further, Louzada et al. (2011) and Cordeiro et al. (2012)
proposed the complementary exponential geometric (CEG) and the exponential COM Poisson
(ECOMP) distributions, respectively.

The Weibull distribution was one of the earliest and most popular model for failure times.
In recent years, many authors have proposed generalizations of the Weibull model based on
extended types of failure of a system. In the context of modeling random strength of brittle
materials and failure times, Gurvich et al (1997) proposed an extended Weibull (EW) family of
distributions. Nadarajah and Kotz (2005) and Pham and Lai (2007) presented much more than
twenty useful distributions in their family. The EW cumulative distribution function (cdf) is
given by

G(x; α, ξ) = 1− e−α H(x; ξ), x > 0, α > 0, (2.1)

where H(x; ξ) is a non-negative monotonically increasing function which depends on a para-
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meter vector ξ. The corresponding probability density function (pdf) becomes

g(x; α, ξ) = α h(x; ξ) e−α H(x; ξ), x > 0, α > 0, (2.2)

where h(x; ξ) is the first derivative of H(x; ξ). Many well-known models are special cases of
equation (2.1) such as:

(i) H(x; ξ) = x gives the exponential distribution;
(ii) H(x; ξ) = x2 yields the Rayleigh distribution (Burr type-X distribution);
(iii) H(x; ξ) = log(x/k) leads to the Pareto distribution;
(iv) H(x; ξ) = β−1[exp(βx)− 1] gives the Gompertz distribution.

We emphasize that several other distributions could be re-written in form (2.1) (see some
examples in Nadarajah and Kotz, 2005; and Pham and Lai, 2007). In this chapter, we define
the extended Weibull power series (EWPS) class of univariate distributions obtained by com-
pounding the extended Weibull and power series distributions. The compounding procedure
follows the key idea of Adamidis and Loukas (1998) or, more generally, by Chahkandi and
Ganjali (2009) and Morais and Barreto-Souza (2011). The new class of distributions includes
as special models the WPS distributions, which in turn extends the EPS distributions and de-
fines 68 (17 × 4) new sub-models as special cases. The hazard function of the proposed class
can be decreasing, increasing, bathtub and upside down bathtub. We are motivated to intro-
duce the EWPS distributions because of the wide usage of (2.1) and the fact that the current
generalization provides means of its continuous extension to still more complex situations.

This chapter is organized as follows. In Section 2.2, we define the EWPS class of distribu-
tions and demonstrate that there are many existing models which can be deduced as special
cases of the proposed unified model. In Section 2.3, we provide general properties of the
EWPS class including the density, survival and hazard rate functions, some useful expansions,
quantiles, ordinary and incomplete moments, generating function, order statistics and their
moments, reliability and average lifetime. Estimation of the parameters by maximum likeli-
hood is investigated in Section 2.4. In Section 2.5, we present suitable constraints leading to
the maximum entropy characterization of the new class. Three special models of the proposed
class are studied in Section 2.6. Applications to two real data sets are presented in Section 2.7.
Some concluding remarks are addressed in Section 2.8.

2.2 The new class

Let N be a discrete random variable having a power series distribution (truncated at zero)
with probability mass function

pn = P(N = n) =
an θn

C(θ)
, n = 1, 2, . . . , (2.3)

where an depends only on n, C(θ) = ∑∞
n=1 an θn and θ > 0 is such that C(θ) is finite. Table

2.1 summarizes some power series distributions (truncated at zero) defined according to (2.3)
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such as the Poisson, logarithmic, geometric and binomial distributions. The proposed class of
distributions can be derived as follows. Given N, let X1, . . . , XN be independent and identically
distributed (iid) random variables following (2.1). Let X(1) = min {Xi}N

i=1. The conditional
cumulative distribution of X(1)|N = n is given by

GX(1)|N=n(x) = 1− e−nαH(x;ξ),

i.e., X(1)|N = n has the general class of distributions (2.1) with parameters nα and ξ based on
the same H(x; ξ) function. Hence, we obtain

P(X(1) ≤ x, N = n) =
an θn

C(θ)

[
1− e−nαH(x;ξ)

]
, x > 0, n ≥ 1.

The EWPS class of distributions is defined by the marginal cdf of X(1):

F(x; θ, α, ξ) = 1− C(θ e−αH(x;ξ))

C(θ)
, x > 0. (2.4)

We provide at least four motivations for the EWPS class of distributions, which can be
applied in some interesting situations as follows:

1. Time to the first failure. Suppose that the failure of a device occurs due to the presence
of an unknown number N of initial defects of same kind, which can be identifiable only
after causing failure and are repaired perfectly. Define by Xi the time to the failure of
the device due to the ith defect, for i ≥ 1. If we assume that the Xi’s are iid EW ran-
dom variables independent of N, which follows a power series distribution (truncated at
zero), then the time to the first failure is appropriately modeled by the EWPS distribution.

2. Reliability. From the stochastic representations X = min {Xi}N
i=1 or X = max {Xi}N

i=1,
we note that the EWPS model arises in series (for the minimum of EW distributions) or
parallel systems (for the maximum of the EW distributions) with identical components,
which appear in many industrial applications and biological organisms.

3. Time to relapse of cancer under the first-activation scheme. Here N is the number of car-
cinogenic cells for an individual left active after the initial treatment and Xi is the time
spent for the ith carcinogenic cell to produce a detectable cancer mass, for i ≥ 1. As-
suming that {Xi}i≥1 is a sequence of iid EW random variables independent of N, which
follows a power series distribution (truncated at zero), we have that the time to relapse
of cancer of a susceptible individual can be modeled by the EWPS class of distributions.

4. Last-activation scheme. As discussed by Cooner et al. (2007), the first activation scheme
may be questioned by certain diseases. Let N be the number of latent factors that must all
be active by failure and Xi be the time of resistance to a disease manifestation due to the
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ith latent factor. In the last-activation scheme (for the maximum of the EW distributions),
it is assumed that failure occurs after all N factors have been active. So, if the Xi’s are iid
EW random variables independent of N, where N follows a zero-truncated power series
distribution, the EWPS class can be able for modeling the time to the failure under the
last-activation scheme.

Table 2.1: Useful quantities for some power series distributions.

Distribution an C(θ) C′(θ) C′′(θ) C(θ)−1 Θ

Poisson n!−1 eθ − 1 eθ eθ log(θ + 1) θ ∈ (0, ∞)

Logarithmic n−1 − log(1− θ) (1− θ)−1 (1− θ)−2 1− e−θ θ ∈ (0, 1)

Geometric 1 θ(1− θ)−1 (1− θ)−2 2(1− θ)−3 θ(θ + 1)−1 θ ∈ (0, 1)

Binomial (m
n) (θ + 1)m − 1 m(θ + 1)m−1 m(m− 1)

(θ + 1)2−m (θ − 1)1/m − 1 θ ∈ (0, 1)

Hereafter, the random variable X following (2.4) with parameters θ and α and vector of
parameters ξ is denoted by X ∼ EWPS(θ, α, ξ). Equation (2.4) extends several distributions
which have been studied in the literature. The EG distribution (Adamidis and Loukas, 1998) is
obtained by taking H(x; ξ) = x and C(θ) = θ(1− θ)−1 with θ ∈ (0, 1). Further, for H(x; ξ) =
x, we obtain the EP (Kus, 2007) and EL (Tahmasbi and Rezaei, 2008) distributions by taking
C(θ) = eθ − 1, θ > 0, and C(θ) = − log(1 − θ), θ ∈ (0, 1), respectively. In the same way,
for H(x; ξ) = xγ, we obtain the WG (Barreto-Souza et al., 2009) and WP (Lu and Shi, 2011)
distributions. The EPS distributions come from (2.4) by combining H(x; ξ) = x with any C(θ)
listed in Table 2.1 (see Chahkandi and Ganjali, 2009). Finally, we obtain the WPS distributions
from (2.4) by compounding H(x; ξ) = xγ with any C(θ) in Table 2.1 (see Morais and Barreto-
Souza, 2011). Table 2.2 displays some useful quantities and corresponding parameter vectors
for special distributions.

2.3 General properties

2.3.1 Density, survival and hazard functions

The density function associated to (2.4) is given by

f (x; θ, α, ξ) = θ α h(x; ξ) e−αH(x; ξ) C′(θ e−αH(x; ξ))

C(θ)
, x > 0. (2.5)

Proposition 1. The EW class of distributions with parameters cα and ξ is a limiting special case of the
EWPS class of distributions when θ → 0+, where c = min {n ∈N : an > 0}.
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Proof. This proof uses a similar argument given by Morais and Barreto-Souza (2011). Define
c = min {n ∈N : an > 0}. For x > 0, we have

lim
θ→0+

F(x) = 1− lim
θ→0+

∞

∑
n=c

an

(
θ e−αH(x;ξ)

)n

∞

∑
n=c

an θn

= 1− lim
θ→0+

e−cαH(x;ξ) + a−1
c

∞

∑
n=c+1

an θn−ce−nαH(x;ξ)

1 + a−1
c

∞

∑
n=c+1

an θn−c

= 1− e−cαH(x;ξ).

We now provide an interesting expansion for (2.5). We have C′(θ) = ∑∞
n=1 n an θn−1. By

using this result in (2.5), we obtain

f (x; θ, α, ξ) =
∞

∑
n=1

pn g(x; nα, ξ), (2.6)

where g(x; nα, ξ) is given by (2.2). Based on equation (2.6), we obtain

F(x; θ, α, ξ) = 1−
∞

∑
n=1

pn e−nαH(x; ξ).

Hence, the EWPS density function is an infinite mixture of EW densities. So, some mathe-
matical quantities (such as ordinary and incomplete moments, generating function and mean
deviations) of the EWPS distributions can be obtained by knowing those quantities for the
baseline density function g(x; nα, ξ). The EWPS survival function becomes

S(x; θ, α, ξ) =
C(θ e−αH(x; ξ))

C(θ)
, (2.7)

and the corresponding hazard rate function reduces to

τ(x; θ, α, ξ) = θα h(x; ξ) e−αH(x;ξ) C′(θ e−αH(x; ξ))

C(θ e−αH(x; ξ))
.

2.3.2 Quantiles, moments and order statistics

The EWPS distribution is simulated from (2.4) as follows: if U ∼ (0, 1), the solution of the
nonlinear equation

X = H−1
{
−1

α
log
[

C−1(C(θ)(1−U))

θ

]}
has the EWPS(θ, α, ξ) distribution, where H−1(·) and C−1(·) are the inverse functions of H(·)
and C(·), respectively. To simulate data from this nonlinear equation, we can use the matrix
programming language Ox through SolveNLE subroutine (see Doornik, 2007).
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Many of the important characteristics and features of a distribution are obtained through
the moment generating function (mgf) and moments. The rth raw moment of X can be deter-
mined from (2.6) and the monotone convergence theorem. So, for r ∈N, we obtain

E(Xr) =
∞

∑
n=1

pn E(Zr).

Hereafter, Z denotes a random variable with density function g(z; nα, ξ).
The incomplete moments (IX) and mgf (MX) of X can be determined from (2.6) using the

monotone convergence theorem:

IX(y) =
∫ y

0
xr f (x)dx =

∞

∑
n=1

pn IZ(y)

and

MX(t) =
∞

∑
n=1

pn E
(

etZ
)

.

Order statistics are among the most fundamental tools in non-parametric statistics and
inference. They enter in problems of estimation and hypothesis tests in a variety of ways. Then,
we now discuss some properties of the order statistics for the proposed class of distributions.
The pdf fi:m(x) of the ith order statistic from a random sample X1, . . . , Xm having density
function (2.5) is given by

fi:m(x) =
m!

(i− 1)!(m− i)!
f (x; θ, α, ξ)

[
1− C(θ e−αH(x; ξ))

C(θ)

]i−1 [
C(θe−αH(x; ξ))

C(θ)

]m−i

, x > 0.

(2.8)
By using the binomial expansion, we can write (2.8) as

fi:m(x) =
m!

(i− 1)!(m− i)!
f (x; θ, α, ξ)

i−1

∑
j=0

(−1)j
(

i− 1
j

)
S(x; θ, α, ξ)m+j−i,

where S(x; θ, α, ξ) is given by (2.7). The corresponding cumulative function becomes

Fi:m(x) =
k

∑
j=0

m

∑
k=i

(−1)j
(

k
j

)(
m
k

)
S(x; θ, α, ξ)m+j−k.

An alternative form for (2.8) can be obtained from (2.6) as

fi:m(x) =
m!

(i− 1)!(m− i)!

∞

∑
n=1

i−1

∑
j=0

ωj pn g(x; nα, ξ)S(x; θ, α, ξ)m+j−1, (2.9)

where ωj = (−1)j(i−1
j ). So, the sth raw moment of Xi:m comes immediately from the above

equation

E (Xs
i:m) =

m!
(i− 1)!(m− i)!

∞

∑
n=1

i−1

∑
j=0

ωj pn E
[

Zs S(Z; θ, α, ξ)m+j−i
]

. (2.10)
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2.3.3 Average lifetime

The average lifetime is given by

tm =
∞

∑
n=1

pn

∞∫
0

e−nαH(x; ξ) dx.

In fields such as actuarial sciences, survival studies and reliability theory, the concept of
mean residual life has been of much interest; see a survey by Guess and Proschan (1985).
Given that there was no failure prior to x0, the residual life is the period from time x0 until the
time of failure. The mean residual lifetime can be expressed as

m(x0; θ, α, ξ) = [Pr(X > x0)]
−1

∞∫
0

y f (x0 + y; θ, α, ξ)dy

= [S(x0)]
−1

∞

∑
n=1

pn

∞∫
0

y g(x0 + y; nα, ξ)dy.

The latter integral can be computed from the baseline EW distribution. Further, we have
that m(x0; θ, α, ξ) → E(X) as x0 → 0. Some results of this section can be obtained numer-
ically in any symbolic software such as MAPLE (Garvan, 2002), MATLAB (Sigmon and Davis,
2002), MATHEMATICA (Wolfram, 2003), Ox (Doornik, 2007) and R (R Development Core Team,
2009). The Ox (for academic purposes) and R are freely distributed and available at http:

//www.doornik.com and http://www.r-project.org, respectively. The infinity limit in these
sums can be substituted by a large positive integer such as 20 or 30 for most practical purposes.

2.4 Maximum likelihood estimation

Here, we determine the maximum likelihood estimates (MLEs) of the parameters of the
EWPS class of distributions from complete samples only. Let x1, . . . , xn be observed values
from the EWPS distribution with parameters θ, α and ξ. Let Θ = (θ, α, ξ)> be the p× 1 param-
eter vector. The total log-likelihood function for Θ is given by

`n = `n(Θ) = n [log(θ) + log(α)− log(C(θ))]− α
n

∑
i=1

H(xi; ξ) +
n

∑
i=1

log[h(xi; ξ)]

+
n

∑
i=1

log[C′(θ e−αH(xi ; ξ))]. (2.11)

The log-likelihood function can be maximized either directly by using the SAS (PROC NLMIXED)
or the Ox program (sub-routine MaxBFGS) (see Doornik, 2007) or by solving the nonlinear like-
lihood equations obtained by differentiating (2.11). The components of the score function
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Un(Θ) = (∂`n/∂θ, ∂`n/∂α, ∂`n/∂ξ)> are

∂`n

∂α
=

n
α
−

n

∑
i=1

H(xi; ξ)− θ
n

∑
i=1

H(xi; ξ)e−αH(xi ; ξ) C′′(θ e−αH(xi ; ξ))

C′(θ e−αH(xi ; ξ))
,

∂`n

∂θ
=

n
θ
− n

C′(θ)
C(θ)

+
n

∑
i=1

e−αH(xi ; ξ) C′′(θ e−αH(xi ; ξ))

C′(θ e−αH(xi ; ξ))
,

∂`n

∂ξk
=

n

∑
i=1

∂ log h(xi; ξ)
∂ξk

− α
n

∑
i=1

∂H(xi; ξ)

∂ξk

[
1 + θe−αH(xi ; ξ) C′′(θ e−αH(xi ; ξ))

C′(θ e−αH(xi ; ξ))

]
.

For interval estimation on the model parameters, we require the observed information ma-
trix

Jn(Θ) = −


Jθθ Jθα | J>θξ
Jαθ Jαα | J>αξ
−− −− −− −−
Jθξ Jαξ | Jξξ

 ,

whose elements are listed in Appendix A. Let Θ̂ be the MLE of Θ. Under standard regular
conditions (Cox and Hinkley, 1974) that are fulfilled for the proposed model whenever the
parameters are in the interior of the parameter space, we can approximate the distribution of
√

n(Θ̂− Θ) by the multivariate normal Np(0, K(Θ)−1), where K(Θ) = limn→∞
1
n Jn(Θ) is the

unit information matrix and p is the number of parameters of the compounded distribution.
Often with lifetime data and reliability studies, one encounters censoring. A very sim-

ple random censoring mechanism very often realistic is one in which each individual i is as-
sumed to have a lifetime Xi and a censoring time Ci, where Xi and Ci are independent random
variables. Suppose that the data consist of n independent observations xi = min(Xi, Ci) and
δi = I(Xi ≤ Ci) is such that δi = 1 if Xi is a time to event and δi = 0 if it is right censored for
i = 1, . . . , n. The censored likelihood L(Θ) for the model parameters is

L(Θ) ∝
n

∏
i=1

[ f (xi; θ, α, ξ)]δi [S(xi; θ, α, ξ)]1−δi ,

where f (x; θ, α, ξ) and S(x; θ, α, ξ) are given in (2.5) and (2.7), respectively.

2.5 Maximum entropy identification

The concept of Shannon entropy is the central role of information theory sometimes re-
ferred as measure of uncertainty. The entropy of a random variable is defined in terms of its
probability distribution and can be shown to be a good measure of randomness or uncertainty.
Shannon (1948) introduced the probabilistic definition of entropy which is closely connected
with the definition of entropy in statistical mechanics. Let X be a random variable of a contin-
uous distribution with density f . The Shannon entropy of X is defined by

HSh( f ) = −
∫

R
f (x; θ, α, ξ) log [ f (x; θ, α, ξ)] dx. (2.12)
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Jaynes (1957) introduced one of the most powerful techniques employed in the field of
probability and statistics called the “maximum entropy method”. This method is closely related
to the Shannon entropy and considers a class of density functions

F =
{

f (x; θ, α, ξ) : E f (Ti(X)) = αi, i = 0, . . . , m
}

,

where T1(X), . . . , Tm(X) are absolutely integrable functions with respect to f , and T0(X) =

a0 = 1. In the continuous case, the maximum entropy principle suggests deriving the un-
known density function of the random variable X by the model that maximizes the Shannon
entropy in (2.12), subject to the information constraints defined in the class F. Shore and John-
son (1980) treated the maximum entropy method axiomatically. This method has been suc-
cessfully applied in a wide variety of fields and has also been used for the characterization
of several standard probability distributions; see, for example, Kapur (1989), Soofi (2000) and
Zografos and Balakrishnan (2009).

The maximum entropy distribution is the density of the class F, denoted by f ME, deter-
mined as the solution of the optimization problem

f ME(x; θ, α, ξ) = arg max
f∈F

HSh.

Jaynes (1957, p. 623) states that the maximum entropy distribution f ME obtained by the
constrained maximization problem described above, “is the only unbiased assignment we can
make; to use any other would amount to arbitrary assumption of information which by hypothesis we do
not have”. It is the distribution which should not incorporate additional exterior information
other than which is specified by the constraints. We now derive suitable constraints in order
to provide a maximum entropy characterization for the class (2.4). For this purpose, the next
result plays an important role.

Proposition 2. Let X be a random variable with pdf given by (2.5). Then,

C1. E
{

log[C′(θ e−αH(X; ξ))]
}
=

θ

C(θ)
E
{

C′(θ e−αH(Y; ξ)) log[C′(θ e−αH(Y; ξ))]
}

;

C2. E {log[h(X; ξ)]} = θ

C(θ)
E
{

C′(θ e−αH(Y; ξ)) log[h(Y; ξ)]
}

;

C3. E [H(X; ξ)] =
θ

C(θ)
E
[
C′(θ e−αH(Y; ξ))H(Y; ξ)

]
,

where Y follows the EW distribution with density function (2.2).

Proof. The constraints C1, C2 and C3 are easily demonstrated and then the proofs are omitted.

The next proposition reveals that the EWPS distribution has maximum entropy in the class
of all probability distributions specified by the constraints stated in the previous proposition.
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Proposition 3. The pdf f of a random variable X, given by (2.5), is the unique solution of the optimiza-
tion problem

f (x; θ, α, ξ) = arg max
τ

HSh,

under the constraints C1, C2 and C3 presented in the Proposition 2.

Proof. Let τ be a pdf representing the distribution of X that satisfies the constraints C1, C2 and
C3. The Kullback-Leibler divergence between τ and f is

D(τ, f ) =
∫

R
τ(x; θ, α, ξ) log

[
τ(x; θ, α, ξ)
f (x; θ, α, ξ)

]
dx.

Following Cover and Thomas (1991), we obtain

0 ≤ D(τ, f ) =
∫

R
τ(x; θ, α, ξ) log [τ(x; θ, α, ξ)] dx−

∫
R

τ(x; θ, α, ξ) log [ f (x; θ, α, ξ)] dx

= −HSh(τ; θ, α, ξ)−
∫

R
τ(x; θ, α, ξ) log [ f (x; θ, α, ξ)] dx.

From the definition of f and based on the constraints C1, C2 and C3, we have∫
R

τ(x) log [ f (x)] dx = log(θα) +
θ

C(θ)
E
{

C′(θ e−αH(Y; ξ)) log [h(Y; ξ)]
}
− log [C(θ)]

− α
θ

C(θ)
E
[
C′(θ e−αH(Y; ξ))H(Y; ξ)

]
+

θ

C(θ)
E
{

log
[
C′(θ e−αH(Y; ξ))

]
C′(θ e−αH(Y; ξ))

}
=

∫
R

f (x; θ, α, ξ) log [ f (x; θ, α, ξ)] dx = −HSh( f ),

where Y is defined as before. So, we obtain HSh(τ) ≤ HSh( f ) with equality if and only if
τ(x; θ, α, ξ) = f (x; θ, α, ξ) for all x, except for a null measure set, thus proving the uniqueness.

The intermediate steps in the above proof in fact provide the following explicit expression
for the Shannon entropy of X

HSh( f ) = − log(θα)− θ

C(θ)
E
{

C′(θ e−αH(Y; ξ)) log [h(Y; ξ)]
}
+ log [C(θ)]

+α
θ

C(θ)
E
[
C′(θ e−αH(Y; ξ))H(Y; ξ)

]
− θ

C(θ)
E
{

C′(θ e−αH(Y; ξ)) log
[
C′(θ e−αH(Y; ξ))

]}
.

For some EWPS distributions, the above results can only be obtained numerically.

2.6 Special models

In this section, we study three special models of the EWPS class of distributions. We pro-
vide plots of the density and hazard rate functions for selected parameter values to illustrate
the flexibility of these distributions. We offer some explicit expressions for the moments and
moments of the order statistics.
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2.6.1 Modified Weibull geometric distribution

The modified Weibull geometric (MWG) distribution is defined by the cdf (2.4) with H(x; ξ) =
xγ exp(λx) and C(θ) = θ(1− θ)−1 leading to

F(x; θ, α, γ, λ) = 1−
(1− θ) exp

(
−αxγeλx)

1− θ exp (−αxγeλx)
, x > 0,

where θ ∈ (0, 1). The associated pdf and hazard rate function are

f (x; θ, α, γ, λ) = α(1− θ)(γ + λx) xγ−1 exp
(
λx− αxγeλx)

[1− θ exp (−αxγeλx)]
2

and

τ(x; θ, α, γ, λ) = α(γ + λx) xγ−1 exp (λx)
1− θ exp (−αxγeλx)

,

respectively. The MWG distribution includes the WG distribution (Barreto-Souza et al., 2010)
when λ = 0. Further, for λ = 0 and γ = 1, we obtain the EG distribution (Adamidis and
Loukas, 1998). Figures 2.1 and 2.2 display the density and hazard functions of the MWG dis-
tribution for selected parameter values.
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(a) α = 2, γ = 1.5 and λ = 0.5
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(b) α = 2, γ = 0.8 and λ = 0.01
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(c) α = 0.1, γ = 6 and λ = 0.5

Figure 2.1: Plots of the MWG density function for θ = 0.01 (solid line), θ = 0.2 (dashed line),
θ = 0.5 (dotted line) and θ = 0.9 (dotdash line).

The rth raw moment of the random variable X having the MWG distribution is determined
in closed-form from (2.6) as

E(Xr) =
∞

∑
n=1

pn µr(n), (2.13)

where µr(n) =
∫ ∞

0 xr g(x; nα, γ, λ)dx denotes the rth raw moment of the MW distribution with
parameters nα, γ and λ. Here, pn corresponds to the geometric probability function. Carrasco
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et al. (2008) obtained an infinite representation for the rth raw moment of the MW distribution
with these parameters given by

µr(n) =
∞

∑
i1,...,ir=1

Ai1,...,ir Γ(sr/γ + 1)
(nα)sr/γ

, (2.14)

where
Ai1,...,ir = ai1 × . . .× air and sr = i1 + . . . + ir,

and

ai =
(−1)i+1ii−2

(i− 1)!

(
λ

γ

)i−1

.

Hence, the ordinary moments of X can be obtained directly from equations (2.13) and
(2.14).
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(a) α = 2, γ = 1.5 and λ = 0.5
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(b) α = 2, γ = 0.8 and λ = 0.01
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(c) α = 0.1, γ = 6 and λ = 0.5

Figure 2.2: Plots of the MWG hazard rate function for θ = 0.01 (solid line), θ = 0.2 (dashed
line), θ = 0.5 (dotted line) and θ = 0.9 (dotdash line).

The density of the ith order statistic Xi:m in a random sample of size m from the MWG
distribution is given by (for i = 1, . . . , m)

fi:m(x) =
m!

(i− 1)!(m− i)!

∞

∑
n=1

i−1

∑
j=0

ωj pn

[
(1− θ) exp

(
−αxγeλx)

1− θ exp (−αxγeλx)

]m+j−i

g(x; nα, γ, λ),

where g(x; nα, γ, λ) denotes the MW density function with parameters nα, γ and λ. From (2.10),
we obtain

E (Xs
i:m) =

m!
(i− 1)!(m− i)!

∞

∑
n=1

i−1

∑
j=0

ωj pn E

Xs

[
(1− θ) exp

(
−αXγeλX)

1− θ exp (−αXγeλX)

]m+j−i
 .
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2.6.2 Pareto Poisson distribution

The Pareto Poisson (PP) distribution is defined by taking H(x; ξ) = log(x/k), for x ≥ k,
and C(θ) = eθ − 1 in (2.4) leading to

F(x; θ, α, k) = 1−
exp

[
θ (k/x)α]− 1
eθ − 1

, x ≥ k.

The corresponding pdf and hazard rate function are

f (x; θ, α, k) =
θ α kα exp

[
θ (k/x)α]

(eθ − 1) xα+1

and

τ(x; θ, α, k) =
θ α kα exp

[
θ (k/x)α]

xα+1
{

exp
[
θ (k/x)α]− 1

} ,

respectively. We obtain the Pareto distribution as a sub-model when θ → 0. The rth moment
of the random variable X having the PP distribution becomes

E(Xr) =
αkr

(eθ − 1)

∞

∑
n=1

θn

(n− 1)! (nα− r)
, nα > r. (2.15)

In particular, setting r = 1 in (2.15), the mean of X reduces to

µ =
αk

eθ − 1

∞

∑
n=1

θn

(n− 1)! (nα− 1)
, nα > 1.
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(b) α = 2, γ = 0.8 and λ = 0.01
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(c) α = 0.1, γ = 6 and λ = 0.5

Figure 2.3: Plots of the PP density function for θ = 0.01 (solid line), θ = 0.2 (dashed line),
θ = 0.5 (dotted line) and θ = 0.9 (dotdash line).

From equation (2.10), the sth moment of the ith order statistic (for i = 1, . . . , m) is given by

E (Xs
i:m) =

m!
(i− 1)!(m− i)!

∞

∑
n=1

i−1

∑
j=0

ωj pn E

[
Xs
(

exp(θ (k/X)α)− 1
eθ − 1

)m+j−i
]

,
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(a) α = k = 0.5
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(b) α = 2 and k = 1
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Figure 2.4: Plots of the PP hazard rate function for θ = 0.01 (solid line), θ = 0.2 (dashed line),
θ = 0.5 (dotted line) and θ = 0.9 (dotdash line).

where pn denotes the Poisson probability function. In addition, after some algebra, the Shan-
non entropy for the PP distribution reduces to

HSh( f ) = log
(

eθ − 1
θα

)
− θ

eθ − 1
(µ1 − αµ2 + µ3) ,

where

µ1 = E
[

exp
{

θ

(
k
X

)α}
log
(

1
X

)]
=

1
2(eθ − 1)

{
Chi(2θ)− log(2θ) + Shi(2θ)− γ

α
− (e2θ − 1) log k

}
,

µ2 = E
[

exp
{

θ

(
k
X

)α}
log
(

X
k

)]
=

Chi(2θ)− log(2θ) + Shi(2θ)− γ

2α(eθ − 1)

and

µ3 = E
[

θ exp
{

θ

(
k
X

)α}( k
X

)α]
=

α θ k2α

4(eθ − 1)

{
1− (2θ + 1)e2θ

}
,

where
Chi(z) = γ + log z +

∫ z

0

cosh(t)− 1
t

dt

is the hyperbolic cosine integral,

Shi(z) =
∫ z

0

sinh(t)− 1
t

dt

is the hyperbolic sine integral and γ ≈ 0.577216 is the Euler-Mascheroni constant.

2.6.3 Chen logarithmic distribution

The Chen logarithmic (CL) distribution is defined by the cdf (2.4) with H(x; ξ) = exp(xβ)−
1 and C(θ) = − log(1− θ) leading to

F(x) = 1−
log
{

1− θ exp
[
−α(exp(xβ)− 1)

]}
log(1− θ)

, x > 0,
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where θ ∈ (0, 1). The associated pdf and hazard rate function are

f (x) =
θ α β xβ−1 exp

{
xβ − α

[
exp(xβ)− 1

]}
log(1− θ)

{
θ exp

[
−α(exp(xβ)− 1)

]
− 1
}

and

τ(x) =
θ α β xβ−1 exp

[
xβ − α(exp(xβ)− 1)

]{
θ exp

[
−α(exp(xβ)− 1)

]
− 1
}

log
{

1− θ exp
[
−α(exp(xβ)− 1)

]} ,

respectively.
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(b) α = b = 1.5
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(c) α = 2.5 and b = 3

Figure 2.5: Plots of the CL density function for θ = 0.01 (solid line), θ = 0.2 (dashed line),
θ = 0.5 (dotted line) and θ = 0.9 (dotdash line).

Proposition 1 implies that the Chen distribution is a limiting special case when θ → 0+.
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(a) α = 2 and b = 1
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(b) α = 3.5 and b = 7
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Figure 2.6: Plots of the CL hazard rate function for θ = 0.01 (solid line), θ = 0.2 (dashed line),
θ = 0.5 (dotted line) and θ = 0.9 (dotdash line).

The density of the ith order statistic Xi:m in a random sample of size m from the CL distri-
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bution is given by (for i = 1, . . . , m)

fi:m(x) =
m!

(i− 1)!(m− i)!

∞

∑
n=1

i−1

∑
j=0

ω∗j pn g(x; nα, b)
{

log
[
1− θ exp(α− α exb

)
]}m+j−1

,

where g(x; nα, b) denotes the Chen density function with parameters nα and b and pn denotes
the logarithmic probability function and

ω∗j = (−1)j
(

i− 1
j

) [
1

log(1− θ)

]m+j−1

.

In a similar manner, the sth raw moment of Xi:m is obtained directly from

E (Xs
i:m) =

m!
(i− 1)!(m− i)!

∞

∑
n=1

i−1

∑
j=0

ωj pn E
{

Zs exp
[
nα(m + j− 1)(1− exp(Zb))

]}
,

where Z ∼ Chen(nα, b).

2.7 Applications

In this section, we compare the results of the fitted special models of the EWPS class by
means of two real data sets for illustrative purposes. In order to estimate the parameters of
these special models, we adopt the maximum likelihood method (as discussed in Section 4)
and all the computations were done using the subroutine NLMixed of the SAS software. A
good alternative is to use the software R for which Nadarajah et al. (2012) introduced the
package Compounding for dealing with continuous distributions obtained by compounding
continuous distributions with discrete distributions. They demonstrated its use by computing
values of the cumulative and density functions, quantile and hazard rate functions, generating
random samples from a population with compounding distribution, and computing mean and
variance of a random variable with a compounding distribution.

First, we consider a data set from Fonseca and França (2007), who studied the soil fertility
influence and the characterization of the biologic fixation of N2 for the Dimorphandra wilsonii
rizz growth. For 128 plants, they made measures of the phosphorus concentration in the leaves.
The data are listed in Table 2.3. We fit the Gompertz Poisson (GP), Chen Poisson (CP) and
CL models to these data. We also fit the three-parameter sub-model WG (Barreto-Souza et al.,
2010).

Tables 2.4 and 2.5 display some descriptive statistics and the MLEs (with corresponding
standard errors in parentheses), the maximized log-likelihood and the Kolmogorov-Smirnov
statistic for the fitted models. Since the values of the Akaike information criterion (AIC),
Bayesian information criterion (BIC) and consistent Akaike information criterion (CAIC) are
smaller for the CL distribution compared with those values of the other models, this new dis-
tribution seems to be a very competitive model for these data.

Plots of the pdf and cdf of the fitted WG, GP, CP and CL models to these data are displayed
in Figure 2.7. They indicate that the CL distribution is better than the other distributions in
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0.22 0.17 0.11 0.10 0.15 0.06 0.05 0.07 0.12 0.09 0.23 0.25 0.23
0.24 0.20 0.08 0.11 0.12 0.10 0.06 0.20 0.17 0.20 0.11 0.16 0.09
0.10 0.12 0.12 0.10 0.09 0.17 0.19 0.21 0.18 0.26 0.19 0.17 0.18
0.20 0.24 0.19 0.21 0.22 0.17 0.08 0.08 0.06 0.09 0.22 0.23 0.22
0.19 0.27 0.16 0.28 0.11 0.10 0.20 0.12 0.15 0.08 0.12 0.09 0.14
0.07 0.09 0.05 0.06 0.11 0.16 0.20 0.25 0.16 0.13 0.11 0.11 0.11
0.08 0.22 0.11 0.13 0.12 0.15 0.12 0.11 0.11 0.15 0.10 0.15 0.17
0.14 0.12 0.18 0.14 0.18 0.13 0.12 0.14 0.09 0.10 0.13 0.09 0.11
0.11 0.14 0.07 0.07 0.19 0.17 0.18 0.16 0.19 0.15 0.07 0.09 0.17
0.10 0.08 0.15 0.21 0.16 0.08 0.10 0.06 0.08 0.12 0.13

Table 2.3: Phosphorus concentration in leaves data.

Min. Q1 Q2 Mean Q3 Max. Var.
0.0500 0.1000 0.1300 0.1408 0.1800 0.2800 0.0030

Table 2.4: Descriptive statistics.

Model θ̂ α̂ γ̂ AIC BIC CAIC K–S −2`(Θ̂)

WG 0.9995 2.4471 4.2041 −378.5 −370.0 −378.3 0.0873 −384.5
(0.0017) (8.7059) (0.3022)

θ̂ α̂ β̂

GP 2.9478 0.3169 19.7047 −368.7 −360.2 −368.5 0.1201 −374.7
(1.2627) (0.1473) (1.6135)

θ̂ α̂ b̂

CP 15.4386 14.7817 2.9212 −383.7 −375.2 −383.5 0.1159 −389.7
(22.8318) (28.1576) (0.2634)

CL 0.9999 52232 7.5882 −395.8 −387.2 −395.6 0.0678 −401.8
(0.0001) (0.0000) (0.2039)

Table 2.5: MLEs of the parameters with corresponding SE’s (given in parentheses) and max-
imized log-likelihoods of the WG, GP, CP and CL models for the first data set. The statistics
AIC, BIC and CAIC are also displayed.
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Figure 2.7: Estimated (a) pdf and (b) cdf for the CL, CP, WG and GP models to the percentage
of Phosphorus concentration in leaves data.

terms of model fitting. Based on these plots, we conclude that the CL distribution provides a
better fit to these data than the WG, GP and CP models.

As a second application, we consider the data consisting of the failure times of 20 mechan-
ical components given in Murthy et al. (2004) and listed in Table 2.6. Obviously, due to the
genesis of the EW family, the failure times are ideally modeled by this distribution. Thus, the
use of the EWPS class for fitting these data is justified.

0.067 0.068 0.076 0.081 0.084 0.085 0.085 0.086 0.089 0.098
0.098 0.114 0.114 0.115 0.121 0.125 0.131 0.149 0.160 0.485

Table 2.6: The failure times of 20 mechanical components.

Tables 2.7 display some descriptive statistics. The MLEs of the parameters (standard errors
between parentheses), the Kolmogorov-Smirnov statistic, −2`(Θ̂) and the values of the AIC,
BIC and CAIC statistics are listed in Table 2.8. The values of these statistics indicate that the
WG model yields a better fit to these data than the GP and CP models.

Min. Q1 Q2 Mean Q3 Max. Var.
0.0670 0.0848 0.0980 0.1216 0.1220 0.4850 0.0080

Table 2.7: Descriptive statistics.

Plots of the estimated pdf and cdf of the fitted WG, GP and CP models to these data are
displayed in Figure 2.8. They indicate that the WG distribution is better then the other distribu-
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Model θ̂ α̂ γ̂ AIC BIC CAIC K–S −2`(Θ̂)

WG 0.9999 8.1443 5.0876 −66.4 −63.4 −64.9 0.1810 −72.4
(0.0001) ( 0.0137) (0.8002)

θ̂ α̂ β̂

GP 5.4566 0.9909 6.5683 −41.9 −38.9 −40.4 0.3312 −47.9
(2.4140) (0.5504) (2.2144)

θ̂ α̂ b̂

CP 6.2426 25.3554 2.3796 −54.7 −51.7 −53.2 0.2214 −60.7
(2.2755) (15.8907) (0.3380)

Table 2.8: MLEs of the parameters with corresponding SE’s (given in parentheses) and max-
imized log-likelihoods of the WG, GP and CP models for the second data set. The statistics
AIC, BIC and CAIC are also displayed.

tions in terms of model fitting. From these figures, we conclude that this distribution provides
a better fit to these data than the GP and CP models.
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Figure 2.8: Estimated (a) pdf and (b) cdf for the WG, GP and CP models to the failure times.

2.8 Concluding remarks

We define a new class of lifetime distributions called the extended Weibull power series
(EWPS) class, which generalizes the Weibull power series class of distributions (Morais and
Barreto-Souza, 2011). Further, the new class extends the exponential power series distribu-
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tions (Chahkandi and Ganjali, 2009). We provide a mathematical treatment of the new class
including expansions for the density function, moments, generating function, incomplete mo-
ments and reliability. Further, explicit expressions for the order statistics and Shannon entropy
are derived. The EWPS density function can be expressed as a mixture of extended Weibull
(EW) density functions. This mixture representation is important to derive several properties
of the new class. Maximum likelihood inference is implemented straightforwardly for esti-
mating the model parameters. We obtain the observed information matrix. Maximum entropy
identification was discussed and some special models are explored. We fit some EWPS distri-
butions to two real data sets to show the usefulness of the proposed class. In conclusion: we
define a general approach for generating new lifetime distributions, at least 68 distributions,
some of them known and the great majority new ones. Further, we motivate the use of the
new class in four different ways. We think these two facts combined may attract more com-
plex applications in the literature of lifetime distributions. Finally, the formulae derived are
manageable by using modern computer resources with analytic and numerical capabilities.

Appendix A

The elements of the p× p information matrix Jn(Θ) are

Jθθ = −
n
θ2 − n

[
C′′(θ)
C(θ)

−
(

C′(θ)
C(θ)

)2
]
+ θ

n

∑
i=1

(
z2i

z1i

)2

H(xi; ξ)e−2αH(xi ; ξ)

− θ
n

∑
i=1

z3i

z1i
H(xi; ξ)e−2αH(xi ; ξ)

Jαα = − n
α2 + θ

n

∑
i=1

z2i

z1i
H2(xi; ξ)e−αH(xi ; ξ) + θ2

n

∑
i=1

(z3i − z2
2i)

z1i
H2(xi; ξ)e−2αH(xi ; ξ)

Jαθ = θ
n

∑
i=1

[(
z2i

z1i

)2

− z3i

z1i

]
H2(xi; ξ)e−2αH(xi ; ξ) −

n

∑
i=1

z2i

z1i
H2(xi; ξ)e−αH(xi ; ξ)

Jαξk = −
n

∑
i=1

∂H(xi; ξ)
∂ξk

− θ
n

∑
i=1

z2i

z1i

∂H(xi; ξ)

∂ξk
e−αH(xi ; ξ) [1− αH(xi; ξ)]

+ αθ2
n

∑
i=1

[
z3i

z1i
−
(

z2i

z1i

)2
]

∂H(xi; ξ)

∂ξk
H(xi; ξ)e−2αH(xi ; ξ)

Jθξk = θα
n

∑
i=1

[(
z2i

z1i

)2

− z3i

z1i

]
∂H(xi; ξ)

∂ξk
e−2αH(xi ; ξ) − α

n

∑
i=1

z2i

z1i

∂H(xi; ξ)
∂ξk

e−αH(xi ; ξ)

Jξkξl = −α
n

∑
i=1

∂2H(xi; ξ)
∂ξk∂ξl

−
n

∑
i=1

1
H(xi; ξ)2

∂H(xi; ξ)
∂ξk

∂H(xi; ξ)
∂ξl

+
n

∑
i=1

1
H(xi; ξ)

∂2H(xi; ξ)
∂ξk∂ξl

+ (αθ)2
n

∑
i=1

[(
z2i

z1i

)2

+
z3i

z1i

]
∂H(xi; ξ)

∂ξk

∂H(xi; ξ)
∂ξl

e−2αH(xi ; ξ)

− αθ
n

∑
i=1

z2i

z1i

∂2H(xi; ξ)

∂ξk∂ξl
e−αH(xi ; ξ) + α2θ

n

∑
i=1

z2i

z1i

∂H(xi; ξ)

∂ξk

∂H(xi; ξ)
∂ξl

e−αH(xi ;ξ)

where z1i = C′(θe−αH(xi ; ξ)), z2i = C′′(θe−αH(xi ; ξ)) and z3i = C′′′(θe−αH(xi ; ξ)), for i = 1, . . . , n.
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CHAPTER 3

A New Wider Family of Continuous Models: The Extended Cordeiro and de
Castro Family

Artigo atualmente submetido para publicação.

Resumo

Introduzimos e estudamos propriedades matemáticas gerais de um novo gerador de distri-
buições contínuas com três parâmetros extras chamado família Cordeiro e Castro estendida
de distribuições. Investigamos as assíntotas e formas das funções de densidade e de risco. A
nova função densidade pode ser expressa como uma combinação linear das densidades de
origem exponencializadas. Obtemos uma série de potências para a função quantílica. Ex-
pressões explícitas para os momentos ordinários e incompletos, funções quantílica e geradora,
a distribuição assintótica dos valores extremos, entropias de Shannon e Rényi e estatísticas de
ordem, que valem para qualquer modelo de origem, são determinados. Discutimos a estima-
tiva dos parâmetros do modelo por máxima verossimilhança e ilustramos a potencialidade da
nova família por meio de duas aplicações a dados reais.

Palavras-chave: Entropia de Rényi; Estatística de ordem; Família generalizada; Função quan-
tílica; distribuição exponencial geométrica generalizada; Máxima verossimilhança ; Momen-
tos.

Abstract

We introduce and study general mathematical properties of a new generator of continuous
distributions with three extra parameters called the extended Cordeiro and de Castro family. We
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investigate the asymptotes and shapes of the density and hazard rate functions. The new den-
sity function can be expressed as a linear combination of exponentiated densities based on the
same baseline distribution. We derive a power series for the quantile function of this family.
Explicit expressions for the ordinary and incomplete moments, quantile and generating func-
tions, asymptotic distribution of the extreme values, Shannon and Rényi entropies and order
statistics, which hold for any baseline model, are determined. We discuss the estimation of
the model parameters by maximum likelihood and illustrate the potentiality of the family by
means of two applications to real data.

Keywords: Generalized exponential geometric distribution; Generated family; Maximum like-
lihood; Moment; Order statistic; Quantile function; Rényi entropy.

3.1 Introduction

In the past few years, several ways of generating new distributions from classic ones were
developed and discussed. Jones (2004) studied a family of distributions that arises naturally
from the distribution of the order statistics. The beta-generated family proposed by Eugene et
al. (2002) was disscussed in Zografos and Balakrishnan (2009), who introduced the gamma-
generated family of distributions. Based on a baseline continuous distribution G(x) with sur-
vival function G(x) and probability density function (pdf) g(x), Zografos and Balakrishnan
(2009) defined the cumulative distribution function (cdf) and the pdf of the gamma-generator
(for x ∈ R) by

F(x) =
1

Γ(δ)

∫ − log[G(x;ξ)]

0
tδ−1 e−tdt (3.1)

and

f (x) =
1

Γ(δ)
{
− log

[
G(x; ξ)

]}δ−1 g(x; ξ), (3.2)

respectively, where Γ(·) is the gamma function. Ristíc and Balakrishnan (2011) proposed an
alternative gamma-generator defined by the cdf and pdf (for x ∈ R) given by

F(x) = 1− 1
Γ(δ)

∫ − log[G(x;ξ)]

0
tδ−1e−tdt, δ > 0 (3.3)

and

f (x) =
1

Γ(δ)
{− log [G(x; ξ)]}δ−1 g(x; ξ), (3.4)

respectively.
Based on this paper, by replacing the gamma distribution by the more flexible three pa-

rameter generalized exponential-geometric (GEG) distribution (Silva et al., 2010), we propose
a new wider family of distributions given by

F(x) = 1−
∫ − log[G(x;ξ)]

0

αλ(1− p)e−λt[1− e−λt]α−1

[1− p e−λt]α+1 dt = 1−
[

1− G(x; ξ)λ

1− p G(x; ξ)λ

]α

, (3.5)
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where G(x; ξ) is the baseline cdf depending on a parameter vector ξ and α > 0, λ > 0 and
p ∈ (0, 1) are three additional parameters. For each baseline G, the extended Cordeiro and de
Castro-G (“ECC-G” for short) family of distributions is defined by the cdf (3.5). Equation (3.5)
is a wider family of continuous distributions. It includes the generalized Kumaraswamy class
(Cordeiro and de Castro, 2011) of distributions, the proportional and reversed hazard rate
models, Marshal-Olkin family of distributions and other sub-families. Some special models
are given in Table 3.1.

Table 3.1: Some special models.

λ α p G(x) Reduced distribution

- - 0 - Generalized Kumaraswamy distribution (Cordeiro and de Castro, 2011)

1 1 0 - G(x)

- 1 0 - Reversed hazard rate model (Gupta and Gupta, 2007)

1 - 0 - Proportional hazard rate model (Gupta and Gupta, 2007)

- 1 p - Marshall-Olkin family of distributions (Marshall-Olkin, 1997)

- - 0 Generalized Rayleigh Kumaraswamy generalized Rayleigh distribution (Gomes et al., 2012)

- - 0 Burr XII distribution Kumaraswamy Burr XII distribution (Paranaíba et al., 2012)

- - 0 Modified Weibull distribution Kumaraswamy modified Weibull distribution (Cordeiro et al., 2012)

- - 0 Pareto distribution Kumaraswamy Pareto distribution (Bourguignon et al., 2012)

This chapter is organized as follows. In Section 2, we provide a physical interpretation of
the ECC-G family. Four special cases of this family are defined in Section 3. Some useful expan-
sions are derived in Section 4. In Section 5, we propose explicit expressions for the moments
and generating function using a power series expansion for the quantile function. Further, we
present general expressions for the Rényi and Shannon entropies and mean deviations are ad-
dressed. Estimation of the model parameters by maximum likelihood is performed in Section
6. Applications to two real data sets illustrate the performance of the new family in Section 7.
The chapter is concluded in Section 8.

3.2 The new family

The corresponding density function to (3.5) is given by

f (x; α, λ, p, ξ) = α λ (1− p) g(x; ξ) G(x; ξ)λ−1 [1− G(x; ξ)λ]α−1

[1− p G(x; ξ)λ]α+1 , (3.6)

where g(x; ξ) is the baseline pdf. Equation (3.6) will be most tractable when the cdf G(x) and
the pdf g(x) have simple analytic expressions. Hereafter, a random variable X with density
function (3.6) is denoted by X ∼ ECC-G(p, α, λ, ξ). Further, we can omit sometimes the de-
pendence on the vector ξ of the parameters and write simply G(x) = G(x; ξ).

When p > 0, we consider a system formed by α independent components following the
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Marsha-Olkin cdf (see Table 3.1) given by

H(x) =
(1− p) G(x)λ

1− p G(x)λ
.

Suppose the system fails if any of the α components fails and let X denote the lifetime of the
entire system. Then, the cdf of X is

F(x) = 1− [1− H(x)]α = 1−
[

1− G(x)λ

1− p G(x)λ

]α

,

which is the proposed generator.
When p = 0, a physical interpretation of the ECC-G distribution can be given as follows.

Consider a system formed by α independent components and that each component is made
up of λ independent subcomponents. Suppose that the system fails if any of the α components
fails and that each component fails if all of the λ subcomponents fail. Let Xj1, . . . , Xjλ denote
the lifetimes of the subcomponents within the jth component, j = 1, . . . , α, having a common
cdf G. Let Xj denote de lifetime of the jth component, for j = 1, . . . , α, and let X denote the
lifetime of the entire system. Then, the cdf of X is

P(X ≤ x) = 1− P(X1 > x, . . . , Xα > x) = 1− P(X1 > x)α

= 1− [1− P(X1 ≤ x)]α = 1− [1− P(X11 ≤ x, . . . , X1λ)]
α

= 1−
[
1− P(X11 ≤ x)λ

]α
= 1−

[
1− G(x)λ

]α
.

Thus, the family of distributions (3.6) with p = 0 is precisely the time to failure of the entire
system.

The hazard rate function (hrf) of X becomes

h(x; α, λ, p, ξ) = α λ (1− p) g(x; ξ) G(x; ξ)λ−1
[

1− p G(x; ξ)λ

1− G(x; ξ)λ

]
. (3.7)

The ECC-G family of distributions is easily simulated by inverting (3.5) as follows: if u has
a uniform U(0, 1) distribution, the solution of the nonlinear equation

xq = G−1
[

1− (1− u)1/α

1− p (1− u)1/α

]1/λ

, q ∈ (0, 1), (3.8)

has the density function (3.6).

3.3 Special ECC-G distributions

For p = 0, we obtain, as an important special case of (3.6), the Cordeiro and de Castro’s (CC)
(2011) class of density functions. This class provides greater flexibility of its tails and can be
widely applied in many areas of engineering and biology. Here, we present some special cases
of the ECC-G family since it extends several useful distributions in the literature. For all cases
listed below, p ∈ (0, 1), α > 0 and λ > 0.
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3.3.1 The ECC-normal (ECCN) distribution

The ECCN distribution is defined from (3.6) by taking G(x) and g(x) to be the cdf and pdf
of the normal N(µ, σ2) distribution. Its density function is given by

f (x) =
α λ (1− p)

σ
φ

(
x− µ

σ

) [
Φ
(

x− µ

σ

)]λ−1 [1−Φ( x−µ
σ )λ]α−1

[1− p Φ( x−µ
σ )λ]α+1

, (3.9)

where x ∈ R, µ ∈ R is a location parameter, σ > 0 is a scale parameter, and φ(·) and Φ(·)
are the pdf and cdf of the standard normal distribution, respectively. A random variable with
density function (3.9) is denoted by X ∼ ECCN(p, α, λ, µ, σ2). For µ = 0, σ = 1 and p → 0,
we obtain the standard Kumaraswamy-normal (KwN) distribution. Furthermore, the KwN
distribution with λ = 1 and α = 1 reduces to the normal distribution.

Plots of the ECCN density function for selected parameter values are displayed in Fig-
ure 3.1. Based on these plots, we note that the parameter σ has the same dispersion property
such as in the normal density.
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Figure 3.1: Plots of the ECCN density function for some parameter values.

3.3.2 The ECC-Weibull (ECCW) distribution

Taking G(x) as the Weibull cumulative distribution with scale parameter β > 0 and shape
parameter c > 0, say G(x) = 1 − e−(βx)c

, it follows from equation (3.6) the ECCW density
function (for x > 0)

f (x) = α λ (1− p) c βc xc−1 e−(βx)c
[
1− e−(βx)c

]λ−1

[
1−

(
1− e−(βx)c

)λ
]α−1

[
1− p

(
1− e−(βx)c)λ

]α+1 . (3.10)
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For p = 0 and α = λ = 1, the ECCW distribution reduces to the classical Weibull distribu-
tion. A random variable with density function (3.10) is denoted by X ∼ ECCW(p, α, λ, β, c).
For c = 1, the ECCW model reduces to the Kumaraswamy-exponential-geometric (KwEG)
distribution. The Kumaraswamy-Weibull (KwW) distribution follows as a special case when
p→ 0.

The hrf corresponding to (3.10) is given by

h(x) = α λ (1− p) c βc xc−1 e−(βx)c
[
1− e−(βx)c

]λ−1

1− p
(

1− e−(βx)c
)λ

1−
(
1− e−(βx)c)λ

 . (3.11)

Plots of the ECCW density and hrf for selected parameter values are displayed in Figure
3.2 and 3.3, respectively.
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Figure 3.2: Plots of the ECCW density function for some parameter values.

3.3.3 The ECC-gamma (ECCG) distribution

Consider the gamma distribution with shape parameter a > 0 and scale parameter b > 0,
where the pdf and cdf (for x > 0) are given by

g(x) =
ba

Γ(a)
xa−1 e−bx and G(x) =

γ(a, bx)
Γ(a)

,
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Figure 3.3: Plots of the ECCW hrf for some parameter values.

where γ(a, bx) is the incomplete gamma function. Inserting these expressions in (3.6) gives the
ECCG density function

f (x) =
α λ (1− p) ba

Γ(a)λ
xa−1 e−bx γ(a, bx)λ−1

[
1−

(
γ(a, bx)

Γ(a)

)λ
]α−1

[
1− p

(
γ(a, bx)

Γ(a)

)λ
]α+1 .

The Kumaraswamy-gamma (KwG) distribution follows from this model when p→ 0. Plots of
the ECCG density and its hrf for selected parameter values are displayed in Figures 3.4 and 3.5,
respectively.

3.3.4 The ECC-beta (ECCB) distribution

Consider the beta distribution with positive shape parameters a and b and pdf and cdf (for
0 < x < 1) given by

g(x) =
1

B(a, b)
xa−1 (1− x)b−1 and G(x) =

Ix(a, b)
B(a, b)

,

where Ix(a, b) =
∫ x

0 wa−1(1−w)b−1dw is the incomplete beta function and B(a, b) =
∫ 1

0 wa−1(1−
w)b−1dw = Γ(a)Γ(b)/Γ(a + b) is the beta function. Inserting these expressions in (3.6) yields
the ECCB density function (for 0 < x < 1)

f (x) =
α λ (1− p)

B(a, b)λ
xa−1 (1− x)b−1 Ix(a, b)λ−1

[
1−

(
Ix(a,b)
B(a,b)

)λ
]α−1

[
1− p

(
Ix(a,b)
B(a,b)

)λ
]α+1 .
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Figure 3.4: Plots of the ECCG density function for some parameter values.
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Figure 3.5: Plots of the ECCG hrf for some parameter values.
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The Kumaraswamy beta (KwB) distribution arises as a special case when p → 0. The beta
distribution corresponds to the limiting case: p→ 0 and α = λ = 1. Plots of the ECCB density
function for selected parameter values are displayed in Figure 3.6.
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Figure 3.6: Plots of the ECCB density function for some parameter values.

3.4 Useful expansions

We can demonstrate that the cdf (3.5) of X has the expansion

F(x) = 1−
∞

∑
j,k=0

wj,k H(j+k)λ(x), (3.12)

where
wj,k = (−1)j+k

(
−α

j

)(
α

k

)
and Ha(x) = G(x)a denotes the exponentiated-G (“exp-G” for short) cumulative distribution.
Some structural properties of the exp-G distributions are studied by Mudholkar et al. (1996),
Gupta and Kundu (2001) and Nadarajah and Kotz (2006), among others.

The density function of X can be expressed as an infinite linear combination of exp-G den-
sity functions

f (x; α, λ, p, ξ) =
∞

∑
j,k=0

ωj,k hλ(j+k+1)(x), (3.13)

where

ωj,k =
α λ (1− p) pk

λ (j + k + 1)
(−1)j+k

(
α− 1

j

)(
−α− 1

k

)
and hλ(j+k+1)(x; ξ) = λ(j + k + 1) g(x; ξ) G(x; ξ)λ(j+k+1)−1 denotes the exp-G density function
with power parameter λ(j + k + 1). Hereafter, a random variable having this density function
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is denoted by Yj,k ∼ exp-G(λ(j + k + 1)). Equation (3.13) reveals that the ECC-G density func-
tion is a linear combination of exp-G density functions. Thus, some mathematical properties
of the new model can be derived from those properties of the exp-G distribution. For exam-
ple, the ordinary and incomplete moments and moment generating function (mgf) of X can be
obtained from those quantities of the exp-G distribution.

The formulae derived throughout the paper can be easily handled in most symbolic com-
putation software plataforms such as Maple, Mathematica. These plataforms have currently
the ability to deal with analytic expressions of formidable size and complexity. Established ex-
plicit expressions to calculate statistical measures can be more efficient than computing them
directly by numerical integration. The infinity limit in these sums can be substituted by a large
positive integer such as 20 or 30 for most practical purposes.

3.5 General properties

3.5.1 Characterization

The shapes of the density and hazard rate functions can be described analytically. The
critical points of the ECC-G density function are the roots of the equation:

(λ− 1)
g(x)
G(x)

+
g′(x)
g(x)

= λ g(x) G(x)λ−1
[

α− 1
1− G(x)λ

+
p (α + 1)

1− p G(x)λ

]
. (3.14)

There may be more than one root to (3.14). Let λ(x) = ∂2 log[ f (x)]/∂x2. We have

λ(x) = (λ− 1)
g′(x)G(x)− g(x)2

G(x)2 +
g′′(x)g(x)− g′(x)2

g(x)2

− λg′(x)G(x)λ−1
[

α− 1
1− G(x)λ

+
p (α + 1)

1− p G(x)λ

]
− λ(λ− 1)g(x)2G(x)λ−2

[
α− 1

1− G(x)λ
+

p (α + 1)
1− p G(x)λ

]
− λ2g(x)2G(x)2λ−2

[
α− 1

(1− G(x)λ)2 +
p (α + 1)

(1− p G(x)λ)2

]
.

If x = x0 is a root of (3.14) then it corresponds to a local maximum if λ(x0) > 0 for all x < x0

and λ(x0) < 0 for all x > x0. It corresponds to a local minimum if λ(x0) < 0 for all x < x0 and
λ(x0) > 0 for all x > x0. It refers to a point of inflexion if either λ(x) > 0 for all x 6= x0 in the
neighbourhood of x0 or λ(x) < 0 for all x 6= x0 in the neighbourhood of x0.

The critical point of h(x) is obtained from the equation

g′(x)
g(x)

+ (λ− 1)
g(x)
G(x)

− p λ g(x)
G(x)λ−1

1− pG(x)λ−1 = λ g(x)
G(x)λ−1

1− G(x)λ−1 . (3.15)
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There may be more than one root to (3.15). Let τ(x) = d2 log[h(x)]/dx2. We have

τ(x) =
g′′(x)g(x)− [g′(x)]2

g(x)2 + (λ− 1)
g′(x)G(x)− [g(x)]2

G(x)2

− p λ g′(x)
G(x)λ−1

1− p G(x)λ
− p λ (λ− 1) g(x)2 G(x)λ−2

1− p G(x)λ
− p2λ2g(x)2 G(x)2λ−2

[1− p G(x)λ]2

− λ g′(x)
G(x)λ−1

1− G(x)λ
− λ (λ− 1) g(x)2 G(x)λ−2

1− G(x)λ
− λ2g(x)2 G(x)2(λ−1)

[1− G(x)λ]2
= 0.

If x = x0 is a root of (3.15) then it refers to a local maximum if τ(x0) > 0 for all x < x0 and
τ(x0) < 0 for all x > x0. It corresponds to a local minimum if τ(x0) < 0 for all x < x0 and
τ(x0) > 0 for all x > x0. It gives an inflexion point if either τ(x) > 0 for all x 6= x0 or τ(x) < 0
for all x 6= x0.

3.5.2 Quantile power series

Power series methods are at the heart of many aspects of applied mathematics and statis-
tics. Quantile functions are in widespread use in probability distributions and general statistics
and often find representations in terms of power series. The quantile function for a distribution
has many uses in both the theory and statistical applications. It may be used to generate val-
ues of a random variable having F(x) as its distribution function. This fact serves as the basis
of a method for simulating a sample from an arbitrary distribution with the aid of a random
number generator.

We derive explicit expressions for the moments and generating function of the ECC family
of distributions using a power series for the quantile function x = Q(u) = F−1(u) of X ob-
tained by expanding (3.8), which is easily computed using a linear recurrent equation for its
coefficients. If the G quantile function, say QG(u), does not have a closed-form expression, it
can usually be expressed in terms of a power series

QG(u) =
∞

∑
i=0

ai ui, (3.16)

where the coefficients ai’s are suitably chosen real numbers which depend on the parameters of
the G distribution. For several important distributions, such as the normal, Student t, gamma
and beta distributions, QG(u) does not have explicit expressions but it can be expanded as
in equation (3.16). As a simple example, for the normal N(0, 1) distribution, ai = 0 for i =

0, 2, 4, . . . and ai = b(i−1)/2 for i = 1, 3, 5, . . ., where the quantities b(i−1)/2 can be determinated
recursively from

bk+1 =
1

2(2k + 3)

k

∑
r=0

(2r + 1) (2k− 2r + 1) br bk−r

(r + 1) (2r + 1)
.

We have a1 = 1, a3 = 1/6, a5 = 7/120 and a7 = 127/7560, . . ..
From now on, we use a result by Gradshteyn and Ryzhik (2000, Section 0.314) for a power

series raised to a positive integer n (for n ≥ 1)

QG(u)n =

(
∞

∑
i=0

ai ui

)n

=
∞

∑
i=0

cn,i ui, (3.17)
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where the coefficients cn,i (for i = 1, 2, . . .) are easily obtained from the recurrence equation
(with cn,0 = an

0 )

cn,i = (i a0)
−1

i

∑
m=1

[m(n + 1)− i] am cn,i−m. (3.18)

Clearly, the quantity cn,i can be determined from cn,0, . . . , cn,i−1 and then from the quantities
a0, . . . , ai. The coefficient cn,i can be given explicitly in terms of the coefficients ai’s, although
it is not necessary for programming numerically our expansions in any algebraic or numerical
software. For the normal N(0, 1) distribution, the coefficients cn,i can be obtained from (3.17)
using the ai’s given above.

Next, we derive an expansion for the argument of QG(·) in (3.8)

A =
[1− (1− u)1/α]1/λ

[1− p (1− u)1/α]1/λ
.

Using the generalized binomial expansion three times since u ∈ (0, 1), we can write

A =
∞

∑
r,s,t=0

(−1)r+s+t pr
(
−λ−1

r

)(
λ−1

s

)(
(r + s)α−1

t

)
ut.

Then, the quantile function of X can be expressed from (3.8) as

Q(u) = QG

(
∞

∑
t=0

δt ut

)
, (3.19)

where

δt =
∞

∑
r,s=0

(−1)r+s+t pr
(

λ−1

r

)(
λ−1

s

)(
(r + s)α−1

t

)
.

For any baseline G distribution, we combine (3.16) and (3.19) to obtain

Q(u) = QG

(
∞

∑
t=0

δt ut

)
=

∞

∑
i=0

ai

(
∞

∑
t=0

δt ut

)i

,

and then using (3.17) and (3.18), we have

Q(u) =
∞

∑
t=0

et ut, (3.20)

where et = ∑∞
i=0 ai di,t, di,0 = δi

0 and (for t > 1)

di,t = (t δ0)
−1

t

∑
m=1

[m(i + 1)− t] δm di,t−m.

Equation (3.20) is the main result of this section. It allows to obtain various mathematical
quantities for the ECC-G family as demonstrated in the next sections.
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3.5.3 Generating function

Here, we provide two general formulae for the mgf M(t) = E(et X) of X. A first formula
for M(t) follows from (3.13) as

M(t) =
∞

∑
j,k=0

ωj,k Mj,k(t), (3.21)

where Mj,k(t) is the mgf of Yj,k. Hence, M(t) can be immediately determined from the genera-
ting function of the exp-G distribution. We now provide three applications of equation (3.21).
For example, the generating functions of the ECC-exponential (with parameter β) (for t <

1/β), ECCPa (with parameter ν > 0 real non integer) and ECCSL (for t < 1) distributions
follow from equation (3.21) as

M(t) =
∞

∑
j,k=0

[λ(j + k + 1)] B(λ(j + k + 1), 1− βt)ωj,k,

M(t) = e−t
∞

∑
j,k,m=0

[λ(j + k + 1)] B
(

λ(j + k + 1), 1−mν−1
)

ωj,k
tm

m!

and

M(t) =
∞

∑
j,k=0

[λ(j + k + 1)] B(t + λ(j + k + 1), 1− t)ωj,k,

respectively.
We now provide a fourth application of (3.21) by taking again as the baseline the Weibull

distribution with scale parameter β and shape parameter c (see Section 3.2). The generating
function of the exp-Weibull distribution with power parameter λ(j + k + 1) is given by

Mj,k(t) =
∞

∑
r=0

v(r)j,k Ir(t), (3.22)

where

v(r)j,k = β cβ [λ(j + k + 1)]
∞

∑
i=0

(−1)i+r
(
[λ(j + k + 1)](i + 1)− 1

r

)
,

δr = β (r + 1)1/c and

Ir(t) =
∫ ∞

0
xc−1 exp{t x− (δr x)c}dx.

Pascoa et al. (2011) derived two different formulae for Ir(t) which hold for: (i) c > 1 or (ii) for
c = p/q, where p ≥ 1 and q ≥ 1 are co-prime integers. The first representation for Ir(t) is
given in terms of the Wright generalized hypergeometric function (Wright, 1935) defined by

pΨq

[
(α1, A1) , · · · ,

(
αp, Ap

)
(β1, B1) , · · · ,

(
βq, Bq

) ; x

]
=

∞

∑
n=0

p

∏
j=1

Γ(αj + Aj n)

q

∏
j=1

Γ(β j + Bj n)

xn

n!
.
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We can write

Ir(t) =
∞

∑
m=0

tm

m!

∫ ∞

0
xm+β−1 exp{−(δr x)c}dx =

1

β δ
β
r

∞

∑
m=0

tm

δm
r m!

Γ(mc−1 + 1)

=
1

β δ
β
r

1Ψ0

[
(1, β−1)

−
;

t
δr

]
. (3.23)

The function Ir(t) exists if 1 + ∑
q
j=1 Bj −∑

p
j=1 Aj > 0.

Using equations (3.21), (3.22) and (3.23), we obtain (assuming that λ > 1)

M(t) = c−1
∞

∑
j,k,r=0

ωj,k v(r)j,k

δr
1Ψ0

[
(1, c−1)

−
;

t
δr

]
. (3.24)

A second representation for Ir(t) is based on the Meijer G-function defined by

Gm,n
p,q

(
x

∣∣∣∣∣ a1, . . . , ap

b1, . . . , bq

)
=

1
2πi

∫
L

m

∏
j=1

Γ
(
bj + t

) n

∏
j=1

Γ
(
1− aj − t

)
p

∏
j=n+1

Γ
(
aj + t

) p

∏
j=m+1

Γ
(
1− bj − t

) x−tdt,

where i =
√
−1 is the complex unit and L denotes an integration path; see Section 9.3 in

Gradshteyn and Ryzhik (2000) for a description of this path. The Meijer G-function contains
many integrals with elementary and special functions (Prudnikov et al., 1986). From the result

exp{−g(x)} = G1,0
0,1

(
g(x) | −

0

)
for an arbitrary g(·) function, Ir(t) becomes

Ir(t) =
∫ ∞

0
xc−1 exp{sx− (δr x)c}dx =

∫ ∞

0
xv−1 esx G1,0

0,1

(
δc

r xc| −
0

)
dx.

We now assume that c = p/q, where p ≥ 1 and q ≥ 1 are co-prime integers. Note that
this condition for calculating the integral Ir(t) is not restrictive since every real number can
be approximated by a rational number. Using equation (2.24.1.1) in Prudnikov et al. (1986,
volume 3), we have

Ir(t) =
pp/q−1/2(−t)−p/q

(2π)(p+q)/2−1
Gp,q

q,p

(
δ

q
r pp+q

(−t)pq2q

∣∣∣∣ q−p
pq , 2q−p

pq , . . . , pq−p
pq

0, 1
q , . . . , q−1

q

)
. (3.25)

Using (3.21), (3.22) and (3.25), we can obtain M(t) for the ECCW distribution.
A second general formula for M(t) can be derived from (3.13) as

M(t) =
∞

∑
j,k=0

[λ(j + k + 1)]ωj,k ρ(t, λ(j + k + 1)− 1), (3.26)

where ρ(t, a) can be determined from the baseline quantile function QG(x) by

ρ(t, a) =
∫ ∞

−∞
et x G(x)a g(x)dx =

∫ 1

0
exp {t QG(u)} uadu. (3.27)
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An alternative expression for ρ(t, a) in terms of the coefficients of the G quantile function
follows using the power series for the exponential function and (3.17) and then integrating the
result. We obtain

ρ(t, a) =
∞

∑
n,i=0

cn,i tn

(a + i + 1) n!
. (3.28)

We can derive the mgf’s of several ECC distributions from equations (3.21) and (3.26), the
last one combining with (3.27) or (3.28). Equations (3.21) and (3.26) are the main results of this
section.

3.5.4 Moments

Here, we provide two general formulae for the nth moment of X. The first one is obtained
from (3.13) as

µ′n = E(Xn) =
∞

∑
j,k=0

ωj,k E(Yn
j,k) =

∞

∑
j,k=0

ωj,k

∫ ∞

−∞
xn hλ(j+k+1)(x; ξ). (3.29)

Expressions for moments of some exponentiated distributions are given by Nadarajah and
Kotz (2006). They can be used to obtain µ′n. We now provide an application of (3.29) for the
ECCW distribution discussed in Section 3.2, where G(x) = 1− e−(β x)c

, c > 0 is a shape param-
eter and β > 0 a scale parameter. The corresponding exp-Weibull (exp-W) density function
with power parameter λ(j + k + 1) is given by

hλ(j+k+1)(x; β, c) = λ(j + k + 1) c βc xc−1 e−(βx)c
[1− e−(βx)c

]λ(j+k+1)−1. (3.30)

The nth moment of (3.30), say ρ
(n)
j,k , can be obtained from Cordeiro et al. (2011) as

ρ
(n)
j,k =

Γ(n/c + 1)
βn

∞

∑
r=0

w(r)
j,k

(r + 1)n/c , (3.31)

where

w(r)
j,k =

[λ(j + k + 1)]
(r + 1)

∞

∑
i=0

(−1)i+r
(
[λ(j + k + 1)](i + 1)− 1

r

)
.

Combining equations (3.29) and (3.31), we can write µ′n as

µ′n =
Γ(n/c + 1)

βn

∞

∑
k,j,r,i=0

(−1)i+r [λ(j + k + 1)]ωj,k

(r + 1)n/c+1

(
[λ(j + k + 1)](i + 1)− 1

r

)
.

Next, we provide two more examples from (3.29). First, for the ECC-Pareto (ECCPa) dis-
tribution, where the baseline cdf is G(x) = 1− (1 + x)−ν and ν > 0, we obtain (for ν real non
integer)

µ′n =
∞

∑
k,j,m=0

(−1)n+m [λ(j + k + 1)] B(λ(j + k + 1)− 1, 1−mν−1)ωj,k

(
n
m

)
.

57



Second, for the ECC-standard logistic (ECCSL) distribution, where G(x) = (1 + e−x)−1, we
can write using a result by Prudnikov et al. (1986, Section 2.6.13, equation 4) (for t < 1)

µ′n =
∞

∑
k,j=0

[λ(j + k + 1)]ωj,k

(
∂

∂t

)n

B(t + λ(j + k + 1), 1− t)
∣∣∣∣
t=0

.

A second general formula for µ′n follows from (3.13) and the baseline quantile function
QG(u). We can write

µ′n =
∞

∑
k,j=0

(α + k + j)ωj,k τ(n, λ(j + k + 1)− 1), (3.32)

where τ(n, a) is given by

τ(n, a) =
∫ ∞

−∞
xn G(x)a g(x)dx =

∫ 1

0
QG(u)n uadu.

Inserting (3.17) in the last equation and integrating, we obtain

τ(n, a) =
∞

∑
i=0

cn,i

(a + 1)
, (3.33)

where the quantities cn,i can be determined from (3.18).
The central moments (µn) and cumulants (κn) of X can be determined from (3.29) or (3.32)

as

µn =
r

∑
k=0

(−1)k
(

n
k

)
µ′n1 µ′n−k and κn = µ′n −

n−1

∑
k=1

(
n− 1
k− 1

)
κk µ′n−k,

respectively, where κ1 = µ′1. Thus, κ2 = µ′2 − µ′21 , κ3 = µ′3 − 3µ′2µ′1 + 2µ′31 , κ4 = µ′4 − 4µ′3µ′1 −
3µ′22 + 12µ′2µ′21 − 6µ′41 , etc. The skewness γ1 = κ3/κ3/2

2 and kurtosis γ2 = κ4/κ2
2 can be calcu-

lated from the third and fourth standardized cumulants.

3.5.5 Incomplete moments

The answers to many important questions in economics require more than just knowing
the mean of a distribution, but its shape as well. This is obvious not only in the study of
econometrics (for example, asymmetric error terms cannot be generated by the commonly as-
sumed spherical distributions) and income distribution, but in other areas as well. Incomplete
moments of the income distribution form natural building blocks for measuring inequality:
for example, the Lorenz and Bonferroni curves and Pietra and Gini measures of inequality all
depend upon the incomplete moments of the income distribution.

The nth incomplete moment of X is defined as mn(y) = E(Xn|X < y) =
∫ y
−∞ xr f (x)dx.

Here, we propose two methods to determine the incomplete moments of the new family. First,
the nth incomplete moment of X can be expressed as

mn(y) =
∞

∑
j,k=0

[λ(j + k + 1)]ωj,k

∫ G(y; ξ)

0
QG(u)n uλ(j+k+1) du. (3.34)
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The integral in (3.34) can be computed at least numerically for most baseline distributions.
A second method to obtain the incomplete moments of X follows from (3.34) using equations
(3.17) and (3.18). We obtain

mn(y) =
∞

∑
j,k,i=0

[λ(j + k + 1)]ωj,k cn,i

[λ(j + k + 1) + i]
G(y; ξ)λ(j+k+1)+i. (3.35)

3.5.6 Mean deviations

Let X ∼ ECC-G(p, α, λ, ξ). The mean deviations about the mean (δ1(X)) and about the
median (δ2(X)) can be expressed as

δ1(X) = E(|X− µ′1|) = 2µ′1F(µ′1)− 2T(µ′1) and δ2(X) = E(|X−M|) = µ′1 − 2T(M),

respectively, where µ′1 = E(X), M = Median(X) denotes the median, F(µ′1) comes from equa-
tion (3.5) and T(z) =

∫ z
−∞ x f (x)dx. The median M follows from equation (3.5) as

M = G−1

[(
1− 2−1/α

1− p 2−1/α

)1/λ
]

.

Then, using ordinary and incomplete moments, we can easily obtain δ1(X) and δ2(X).

3.5.7 Quantile measure

The effects of the shape parameters a and b on the skewness and kurtosis can be based
on quantile measures. The shortcomings of the classical kurtosis measure are well-known.
The Bowley skewness (Kenney and Keeping, 1962) is one of the earliest skewness measures
defined by the average of the quartiles minus the median, divided by half the interquartile
range, namely

B =
Q
( 3

4

)
+ Q

( 1
4

)
− 2Q

( 1
2

)
Q
( 3

4

)
−Q

( 1
4

) .

Since only the middle two quartiles are considered and the other two quartiles are ignored,
this adds robustness to the measure. The Moors kurtosis (Moors, 1998) is based on octiles

M =
Q
( 3

8

)
−Q

( 1
8

)
+ Q

( 7
8

)
−Q

( 5
8

)
Q
( 6

8

)
−Q

( 2
8

) .

These measures are less sensitive to outliers and they exist even for distributions without
moments. Plots of the skewness and kurtosis for the distributions ECCW and ECCN (dis-
cussed in Section 3) and selected parameter values are displayed in Figures 3.7 and 3.8, respec-
tively. These plots indicate how both measures B and M vary depending on the values of the
shape parameters.
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Figure 3.7: Skewness (a) and Kurtosis (b) of the ECCW distribution.
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Figure 3.8: Skewness (a) and Kurtosis (b) of the ECCN distribution.

60



3.5.8 Entropies

An entropy is a measure of variation or uncertainty of a random variable X. Two popular
entropy measures are the Rényi and Shannon entropies (Shannon, 1948; Rényi, 1961). The
Rényi entropy of a random variable with pdf f (x) is defined as

IR(c) =
1

1− c
log
(∫ ∞

0
f c(x)dx

)
,

for c > 0 and c 6= 1. After some algebraic developments, we obtain an alternative expression
for IR(c)

IR(c) =
1

1− c
log
[
(αλ(1− p))c

λ

] ∞

∑
i=0

(−p)iB(i + 1, (α− 1)c + 1)EYi

{
gc−1

[
G−1

(
Y1/λ

)]}
,

where Yi ∼ B(i + 1, (α − 1)c + 1). The Shannon entropy of a random variable X is defined
by E {− log [ f (X)]}. It is the special case of the Rényi entropy when c ↑ 1. Direct calculation
yields

E {− log [ f (X)]} = − log [αλ(1− p)]− E {log [g(X; ξ)]} − (λ− 1)E {log [G(x; ξ)]}
− (α− 1)E

{
log
[
1− G(x; ξ)λ

]}
+ (α + 1)E

{
log
[
1− p G(x; ξ)λ

]}
.

After some algebraic manipulations we obtain:

Proposition 4. Let X be a random variable with pdf (3.6). Then,

E {log [G(X)]} = (1− α)

λ

∞

∑
i=0

(−p)i
(
−α− 1

i

)
B(i + 1, α) [ψ(i + 1)− ψ(i + α + 1)],

E
{

log
[
1− G(X)λ

]}
= α(1− p)

∞

∑
i=0

(−p)i
(
−α− 1

i

)
B(i + 1, α) [ψ(α)− ψ(i + α + 1)],

E
{

log
[
1− p G(X)λ

]}
= α(1− p)

∞

∑
i=0

(−p)i B(α, i + 1)
[

d
dt

(
t− α− 1

i

)∣∣∣∣
t=0

]
,

where ψ(·) is the digamma function.

The simplest formula for the entropy of X is given by

E {− log[ f (X)]} = − log[αλ(1− p)]− E {log[g(X; ξ)]}

+
(α− 1)(λ− 1)

λ

∞

∑
i=0

(−p)i
(
−α− 1

i

)
B(i + 1, α) [ψ(i + 1)− ψ(i + α + 1)]

+ α (1− α)(1− p)
∞

∑
i=0

(−p)i
(
−α− 1

i

)
B(i + 1, α) [ψ(α)− ψ(i + α + 1)]

+ α (α + 1)(1− p)
∞

∑
i=0

(−p)i B(α, i + 1)
[

d
dt

(
t− α− 1

i

)∣∣∣∣
t=0

]
.
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3.5.9 Extreme values

If X = (X1 + · · · + Xn)/n denotes the mean of a random sample from (3.5), then by the
usual central limit theorem

√
n(X − E(X))/

√
Var(X) approaches the standard normal dis-

tribution as n → ∞ under suitable conditions. Sometimes one would be interested in the
asymptotics of the extreme values Mn = max(X1, . . . , Xn) and mn = min(X1, . . . , Xn).

First, suppose that G belongs to the max domain of attraction of Gumbel extreme value
distribution. Then by Leadbetter et al. (1987, Chapter 1), there must exist a strictly positive
function, say h(t), such that

lim
t→∞

1− G(t + xh(t))
1− G(t)

= e−x,

for every x ∈ (−∞, ∞). But

lim
t→∞

1− F(t + xh(t))
1− F(t)

= lim
t→∞

[
1− G(t + xh(t))λ

1− G(t)λ

]α

= lim
t→∞

[
1− G(t + xh(t))

1− G(t)

]α

= e−αx,

for every x ∈ (−∞, ∞). So, it follows by Leadbetter et al. (1987, Chapter 1) that F belongs to
the max domain of attraction of the Gumbel extreme value distribution with

lim
n→∞

P[an(Mn − bn ≤ x)] = exp [− exp(−λx)]

for some suitable norming constants an > 0 and bn. Second, suppose that G belongs to the max
domain of attraction of the Fréchet extreme value distribution. Then by Leadbetter et al. (1987,
chapter 1), there must exist a β > 0 such that

lim
t→∞

1− G(t + xh(t))
1− G(t)

= xβ

for every x ∈ (−∞, ∞). But

lim
t→∞

1− F(t + xh(t))
1− F(t)

= lim
t→∞

[
1− G(t + xh(t))λ

1− G(t)λ

]α

= lim
t→∞

[
1− G(t + xh(t))

1− G(t)

]α

= xαβ,

for every x > 0. So, it follows by Leadbetter et al. (1987, chapter 1) that F belongs to the max
domain of attraction of the Gumbel extreme value distribution with

lim
n→∞

P[an(Mn − bn ≤ x)] = exp(−xαβ)

for some suitable norming constants an > 0 and bn. Third, suppose that G belongs to the max
domain of attraction of the Weibull extreme value distribution. Then, by Leadbetter et al. (1987,
chapter 1), there must exist a γ > 0 such that

lim
t→0

G(tx)
G(t)

= xγ
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for every x < 0. But

lim
t→0

F(tx)
F(t)

= lim
t→0

[
G(tx)
G(t)

]α

= xαγ

for every x < 0. So, it follows by Leadbetter et al. (1987, chapter 1) that F belongs to the max
domain of attraction of the Weibull extreme value distribution with

lim
n→∞

P[an(Mn − bn ≤ x)] = exp [−(−x)αγ]

for some suitable norming constants an > 0 and bn. We conclude that F belongs to the same
min domain of attraction as that of G. If X ∼ ECCG(ξ, λ, p, α), then Mn ∼ ECCG(ξ, λ, p, nα).

3.6 Estimation

Here, we determine the maximum likelihood estimates (MLEs) of the model parameters of
the new family from complete samples only. Let x1, . . . , xn be observed values from the ECC-G
distribution with parameters p, α, λ and ξ. Let Θ = (p, α, λ, ξ)> be the r× 1 parameter vector.
The total log-likelihood function for Θ is given by

`n = `n(Θ) = n log α + n log λ + n log(1− p) +
n

∑
i=1

log [g(x; ξ)] + (λ− 1)
n

∑
i=1

log [G(x; ξ)]

+ (α− 1)
n

∑
i=1

log
[
1− G(x; ξ)λ

]
− (α + 1)

n

∑
i=1

log
[
1− p G(x; ξ)λ

]
. (3.36)

The log-likelihood function can be maximized either directly by using the SAS (PROC
NLMIXED) or the Ox program (sub-routine MaxBFGS) (see Doornik, 2007) or by solving the
nonlinear likelihood equations obtained by differentiating (3.36). The components of the score
function Un(Θ) = (∂`n/∂p, ∂`n/∂α, ∂`n/∂λ, ∂`n/∂ξ)> are

∂`n

∂p
= (α + 1)

n

∑
i=1

G(x; ξ)λ

1− p G(x; ξ)λ
− n

1− p
,

∂`n

∂α
=

n
α
+

n

∑
i=1

log
[
1− G(x; ξ)λ

]
−

n

∑
i=1

log
[
1− p G(x; ξ)λ

]
,

∂`n

∂λ
=

n
λ
+

n

∑
i=1

log [G(x; ξ)]− (α− 1)
n

∑
i=1

G(x; ξ)λ log [G(x; ξ)]
1− G(x; ξ)λ

+ p (α + 1)
n

∑
i=1

G(x; ξ)λ log [G(x; ξ)]
1− p G(x; ξ)λ

and

∂`n

∂ξ
= p λ (α + 1)

n

∑
i=1

G(x; ξ)λ−1[
1− p G(x; ξ)λ

]G(ξ)(x; ξ)− λ(α− 1)
n

∑
i=1

G(x; ξ)λ−1[
1− G(x; ξ)λ

]G(ξ)(x; ξ)

+
n

∑
i=1

g(ξ)(x; ξ)
g(x; ξ)

+ (λ− 1)
n

∑
i=1

G(ξ)(x; ξ)
G(x; ξ)

,

where h(ξ)(·) means the derivative of the function h with respect to ξ. For interval estimation
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on the model parameters, we require the observed information matrix

Jn(Θ) = −


Upp Upα Upλ | U>pξ
Uαp Uαα Uαλ | U>αξ
Uλp Uλα Uλλ | U>λξ
−− −− −− −− −−
Uξp Uξα Uξλ | Uξξ

 ,

whose elements are listed in Appendix A. Let Θ̂ be the MLE of Θ. Under standard regularity
conditions (Cox and Hinkley, 1974) that are fulfilled for the proposed model whenever the
parameters are in the interior of the parameter space, we can approximate the distribution of
√

n(Θ̂ − Θ) by the multivariate normal Nr(0, K(Θ)−1), where K(Θ) = limn→∞
1
n Jn(Θ) is the

unit information matrix and r is the number of parameters of the new distribution.

3.7 Empirical illustrations

In this section, we compare the fits of some special models of the ECC-G family by means
of two real data sets to show the potentiality of the new family. In order to estimate the pa-
rameters of these special models, we adopt the maximum likelihood method (as discussed in
Section 14). All the computations were done using the subroutine NLMixed of the SAS software.

The first data set consists of fracture toughness from the silicon nitride. The data taken from
the web-site http://www.ceramics.nist.gov/srd/summary/ftmain.htm was already studied
by Nadarajah and Kotz (2007). The ECC-G model used in the first application is defined by
equation (3.10) with θ1 = (α, β, λ, c, p). Further, the extended Cordeiro and de Castro-exponential
(ECCE) density function is given by

f2(x;θ2) = α β λ (1− p) exp (−βx) [1− exp (−βx)]λ−1

{
1− [1− exp(−βx)]λ

}α−1

{
1− p [1− exp (−βx)]λ

}α+1 , x > 0,

where θ2 = (α, β, λ, p). These ECC-G models are compared with the Kumaraswamy Weibull
(KwW) and beta Weibull (BW) models with corresponding densities

f3(x;θ3) = α λ c βc xc−1 e−(βx)c
[
1− e−(βx)c

]λ−1
{

1−
[
1− e−(βx)c

]λ
}α−1

, x > 0

and

f4(x;θ4) =
c λc

B(a, b)
xc−1 exp [−b(λx)c]

[
1− e−(λx)c

]a−1
, x > 0,

where θ3 = (α, β, λ, c) and θ4 = (a, b, c, λ).
As a second application, we consider a real data set on the strengths of 1.5 cm glass fibres,

measured at the National Physical Laboratory, England, see Smith and Naylor (1987). We fit
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the ECCW and ECCE models to these data. These models are compared with the BW model
and beta Birnbaum-Saunders (BBS) model defined by

f5(x;θ5) =
κ(α, β)

B(a, b)
x−3/2(x + β) exp

[
−τ(x/β)/(2α2)

]
Φ(ν)2 [1−Φ(ν)]b−1 , x > 0,

where θ5 = (α, β, a, b), ν = α−1ρ(x/β), ρ(z) = z1/2 + z−1/2, κ(α, β) = exp(α−2)/(2α
√

2πβ), τ(z) =
z + z−1 and Φ(·) is the standard normal cumulative function.

Table 3.2: Estimates (a denotes standard errors) and K-S statistics.

Data set Distribution Estimates K-S

1 (n = 119) ECCW θ̂1 = (1.9217, 0.5422, 4.3091, 1.5526, 0.9589) 0.0537

(3.7100, 1.3219, 17.9943, 2.6544, 0.1602)a

ECCE θ̂2 = (3.0949, 1.2853, 16.8832, 0.9848) 0.0583

(2.2243, 0.2272, 10.6914, 0.0137)a

KwW θ̂3 = (7.0242, 0.1450, 0.8329, 5.8042) 0.0763

(2.4542, 0.1655, 0.5797, 3.4765)a

BW θ̂4 = (5.6663, 0.1634, 0.8054, 3.4077) 0.0697

(0.5568, 0.3708, 0.0067, 3.5823)a

2 (n = 51) ECCW θ̂1 = (0.9367, 0.8276, 0.6341, 3.6621, 0.9420) 0.2339

(0.7763, 0.2411, 0.7032, 2.2503, 0.1053)a

ECCE θ̂2 = (3.6519, 4.5125, 11.1218, 0.9978) 0.2390

(2.7515, 0.7429, 22.1433, 0.0049)a

BW θ̂4 = (7.0127, 0.9199, 0.4493, 0.0496) 0.2508

(0.1867, 0.0484, 0.8872, 0.1522)a

BBS θ̂5 = (0.3638, 7857.5658, 1.0505, 30.4783) 0.2432

(0.1517, 2558.5670, 0.2506, 18.1233)a

The MLEs of the parameters, their standards errors, and Kolmogorov-Smirnov (K-S) statis-
tics are given in Table 3.2. From the values of K-S statistics, we conclude that the ECCW model
provides a better fit to the first data set, since it yields the lowest value.

We can also perform formal goodness-of-fit tests in order to verify which distribution fits
better to these data. We apply the Cramér-von Mises (W∗) and Anderson-Darling (A∗) tests.
The W∗ and A∗ test statistics are described in details in Chen and Balakrishnan (1995). In
general, the smaller the values of W∗ and A∗, the better the fit to the data. Table 3.3 gives
the values of the W∗ and A∗ statistics for the first and second data sets. According to these
statistics, the ECCW model fits the first data set better than the others competing models.

The figures in Table 3.2 for the second data set indicate that the ECCW model is a very
competitive model to the other fitted models to these data, although it does not give the small-
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est AIC. However, the smallest values of the W∗ and A∗ statistics in Table 3.3 indicate that the
ECCW model provides a more adequate fit to these data than the other distributions. Overall,
these results illustrate the potentiality of the ECCW model for lifetime data and the importance
of its additional parameters.

Table 3.3: Goodness-of-fit tests statistics.

Data set Model
Statistics

W∗ A∗

1 ECCW 0.0469 0.3116

ECCE 0.0577 0.5629

KwW 0.0784 0.6064

BW 0.1967 1.3748

2 ECCW 0.1824 1.1636

ECCE 0.2350 1.3730

BW 0.2390 1.3750

BBS 0.3651 1.9727
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Figure 3.9: Estimated (a) pdf and (b) cdf for the ECCW, ECCE, KwW and BW models for the
first data set.
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Figure 3.10: Estimated (a) pdf and (b) cdf for the ECCW, ECCE, BBS and BW models for the
second data set.

3.8 Concluding remarks

We define a new family of distributions, called the extended Cordeiro and de Castro (ECC-G)
family of distributions, which generalizes several well known distributions in the statistical
literature such as the normal, Weibull and beta distributions by adding three shape param-
eters. We provide a mathematical treatment of the new family including expansions for the
density function, moments, generating function and incomplete moments. The ECC-G den-
sity function can be expressed as a mixture of exponentiated density functions. This property
is important to obtain several other results. We derive a power series for the quantile function
of this family. Our formulas related with the ECC-G model are manageable, and with the use
of modern computer resources with analytic and numerical capabilities, they may turn into
adequate tools comprising the arsenal of applied statisticians. Some special models are stud-
ied in some detail. The estimation of the model parameters is approached by the method of
maximum likelihood. The observed information matrix is derived. Finally, we fit the ECC-G
models to two real data sets to demonstrate the potentiality of the proposed family.
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Appendix A

Observed information matrix

The elements of the r× r observed information matrix Jn(Θ) are

Upp = (α + 1)
n

∑
i=1

G(xi; ξ)2λ

[1− p G(xi; ξ)λ]
2 −

n
(1− p)2 , Upα =

n

∑
i=1

G(xi; ξ)λ

1− p G(xi; ξ)λ
,

Upλ = (α + 1)
n

∑
i=1

G(xi; ξ)λ log G(xi; ξ)

[1− p G(xi; ξ)λ]
2 , Upξ = λ(α + 1)

n

∑
i=1

G(xi; ξ)λ−1 G(ξ)(x; ξ)

[1− p G(xi; ξ)λ]
2 ,

Uαα = − n
α2 , Uαλ = p

n

∑
i=1

G(xi; ξ)λ log G(xi; ξ)
1− p G(xi; ξ)λ

− p
n

∑
i=1

G(xi; ξ)λ log G(xi; ξ)
1− G(xi; ξ)λ

,

Uαξ = λ p
n

∑
i=1

G(xi; ξ)λ−1 G(ξ)(x; ξ)
1− p G(xi; ξ)λ

− λ
n

∑
i=1

G(xi; ξ)λ−1 G(ξ)(x; ξ)
1− G(xi; ξ)λ

,

Uλλ = − n
λ2 − λ(α− 1)

n

∑
i=1

G(xi; ξ)λ−1 G(ξ)(x; ξ)

[1− G(xi; ξ)λ]
2 log G(xi; ξ)

+ λ p (α + 1)
n

∑
i=1

G(xi; ξ)λ−1 G(ξ)(x; ξ)

[1− p G(xi; ξ)λ]
2 log G(xi; ξ),

Uλξ =
n

∑
i=1

G(ξ)(x; ξ)
G(xi; ξ)

− (α− 1)
n

∑
i=1

G(xi; ξ)λ−1 G(ξ)(x; ξ)
[
1− G(xi; ξ)λ + log G(xi; ξ)λ

]
[1− G(xi; ξ)λ]

2

+ p (α + 1)
n

∑
i=1

G(xi; ξ)λ−1 G(ξ)(x; ξ)
[
1− G(xi; ξ)λ + log G(xi; ξ)λ

]
[1− p G(xi; ξ)λ]

2

and

Uξξ = (λ− 1)
n

∑
i=1

G(xi; ξ) G(2ξ)(x; ξ)
G(ξ)(xi; ξ)2

+
n

∑
i=1

g(xi; ξ) g(2ξ)(x; ξ)
g(ξ)(xi; ξ)2

− nλ

+ λ (α− 1)
n

∑
i=1

G(xi; ξ)λ−2 G(ξ)(x; ξ)2

[1− G(xi; ξ)λ]
2 −

n

∑
i=1

G(xi; ξ)λ−2 G(ξ)(x; ξ)2

1− G(xi; ξ)λ

(
G(xi; ξ)

G(ξ)(x; ξ)

)(ξ)

− λ p (α + 1)
n

∑
i=1

G(xi; ξ)λ−2 G(ξ)(x; ξ)2

[1− p G(xi; ξ)λ]
2 −

n

∑
i=1

G(xi; ξ)λ−2 G(ξ)(x; ξ)2

1− p G(xi; ξ)λ

(
G(xi; ξ)

G(ξ)(x; ξ)

)(ξ)

,

where h(2ξ)(·) denotes the second derivative of the function h with respect to ξ.
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CHAPTER 4

A likelihood ratio test to discriminate between the exponential-Poisson and
gamma distributions

Artigo aceito para publicação no periódico Journal of Statistical Computation and Simulation.

Resumo

A distribuição exponencial-Poisson (EP), com parâmetros de escala e de forma β > 0 e λ ∈ R,
respectivamente, é uma distribuição de tempo de vida obtida através da composição dos mo-
delos exponencial e Poisson truncado (em zero). A distribuição EP tem sido uma boa alter-
nativa para a distribuição gama para a modelagem de tempo de vida, confiabilidade e in-
tervalos de tempo entre sucessivos desastres naturais. Ambas as distribuições EP e gama a-
presentam algumas similaridades e propriedades em comum. Por exemplo, suas densidades
podem ser estritamente decrescentes ou unimodais e suas funções de risco podem ser de-
crescentes, crescentes ou constantes, dependendo dos valores de seus parâmetros de forma.
Por outro lado, a distribuição EP apresenta diversas aplicações interessantes baseadas em re-
presentações estocásticas envolvendo o máximo e o mínimo de variáveis aleatórias iid (com
tamanho de amostra aleatório), que a tornam de importância científica distinguível da dis-
tribuição gama. Dadas as similaridades e importância científica diferentes, uma questão de
interesse é como discriminá-las. Com isto em mente, neste capítulo, propomos um teste da
razão de verossimilhanças baseado na estatística de Cox para discriminar as distribuições EP
e gama. A distribuição assintótica do logaritmo normalizado da razão das verossimilhanças
maximizadas sob as duas hipóteses – os dados vêm de uma distribuição EP|gama – são obti-
dos. Além disso, determinamos o tamanho mínimo de amostra necessário para discriminar
os dois modelos quando a probabilidade de seleção correta e um dado nível de tolerância são
previamente estabelecidos. Apresentamos um estudo de simulação para avaliar a precisão das
probabilidades assintóticas de seleção correta. O trabalho é motivado por duas aplicações para
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conjuntos de dados reais.

Palavras-chave: Distribuição assintótica; Distribuição de tempo de vida; Estatística de Cox;
Probabilidade de seleção correta.

Abstract

The exponential-Poisson (EP) distribution, with scale and shape parameters β > 0 and λ ∈ R,
respectively, is a lifetime distribution which is obtained by compounding exponential and zero
truncated Poisson models. The EP distribution has been a good alternative to the gamma dis-
tribution for modeling lifetime, reliability and time intervals of successive natural disasters.
Both EP and gamma distributions present some similarities and properties in common, for
example, their densities may be strictly decreasing or unimodal, and their hazard functions
may be decreasing, increasing or constant depending on their shape parameters. On the other
hand, the EP distribution has several interesting applications based on stochastic represen-
tations involving maximum and minimum of iid exponential variables (with random sam-
ple size) which make it of distinguishable scientific importance from the gamma distribution.
Given the similarities and different scientific relevance between these models, one question
of interest is how to discriminate them. With this in mind, in this paper we propose a like-
lihood ratio test based on Cox’s statistic to discriminate the exponential-Poisson and gamma
distributions. The asymptotic distributions of the normalized logarithm of the ratio of the
maximized likelihoods under two null hypotheses – data come from exponential-Poisson or
gamma distributions – are provided. We also determinate the minimum sample size required
to discriminate the EP and gamma distributions when the probability of correct selection and
a given tolerance level based on some distance are previously stated. A simulation study to
evaluate the accuracy of the asymptotic probabilities of correct selection is also presented. The
paper is motivated by two applications to real data sets.

Keywords: Asymptotic distribution, Cox’s statistic, Lifetime distribution, Probability of cor-
rect selection.

4.1 Introduction

Recently, Kus (2007) introduced and studied the two-parameter exponential-Poisson (EP)
distribution, which is obtained by compounding the exponential and zero truncated Poisson
distributions, where the compounding procedure follows the same one carried out by Marshall
and Olkin (1997). More specifically, if {Xi}∞

i=1 is a sequence of independent and identically dis-
tributed (iid) exponential random variables (with mean 1/θ) independent of a discrete random
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variable N following a zero truncated Poisson distribution with the probability mass function

P(N = n) = {exp(λ)− 1}−1 λn

n!
, n = 1, 2, . . . ,

where λ > 0, then

X = min(X1, . . . , XN) (4.1)

has exponential-Poisson distribution and its probability density function (pdf) is

fEP(x; θ, λ) =
θλ

eλ − 1
exp{−θx + λe−θx}, x > 0, (4.2)

with corresponding hazard rate function

τEP(x; θ, λ) =
θλ
(
1− eλ

)
exp(−λ− θx + λe−θx)

(1− e−λ) (1− exp(λe−θx))
, x > 0.

Barreto-Souza and Simas (2013) introduced and studied the exp-G distribution, which has its
pdf given by

p(x) =
γ

1− e−γ
g(x) exp{−γG(x)}, γ 6= 0, x ∈ R, (4.3)

and p(x) = g(x) when γ approaches 0, where G(·) is the cumulative distribution function (cdf)
of a continuous random variable and g(·) is the derivative of G(·). The EP distribution may be
obtained through the exp-G class by taking G(x) = 1− exp(−θx), for x > 0, in (4.3). So, the
EP distribution can be generalized by extending the parameter space with respect to λ, that
is, by taking λ ∈ R. The exp-G model may be seen as a particular proper distribution in the
cure rate models by Yakovlev and Tsodikov (1996) and Cooner et al. (2007). Therefore it has
an interesting representation based on maximum and minimum of iid random variables with
random sample size following the zero-truncated Poisson distribution. In particular, if λ < 0,
N is a discrete random variable with zero truncated Poisson distribution with parameter −λ

and the sequence {Xi}∞
i=1 is defined as before, we have that

X = max(X1, . . . , XN) (4.4)

has pdf given in (4.2). From now on we consider the EP distribution with density (4.2) and λ ∈
R. The EP distribution is also a particular case of the exponential power series (Chahkandi and
Ganjali, 2009), Weibull power series (Morais and Barreto-Souza, 2011), generalized exponential-
Poisson (Barreto-Souza and Cribari, 2009) and exponentiated exponential-Poisson (Ristic and
Nadarajah, 2012) distributions.

Karlis (2009) introduced a nested EM algorithm to find the maximum likelihood estimates
of the parameters of the EP distribution. Mutairi et al. (2011) proposed the EP model for
estimating reliability in a series system with random sample size. Kus (2007) showed the use-
fulness of the EP distribution for modeling the time of successive failures for air conditioning
system of Boeing 720 jet airplanes, the period between successive coal-mining disasters and the
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time intervals of successive earthquakes. Furthermore, the EP distribution provides a better
fit than well-known lifetime models, including gamma distribution, based on Kolmogorov-
Smirnov test.

The EP and gamma distributions are both generalizations of the exponential distribution
but in different ways. Both models are used quite effectively when data are coming from a right
tailed distribution. Further, these models present some similarities and properties in common.
For example, their densities may be strictly decreasing or unimodal and their hazard functions
may be decreasing, increasing or constant depending on their shape parameters.

On the other hand, the EP distribution has several interesting applications based on the
stochastic representations (4.1) and (4.4) which make it of distinguishable scientific importance
from the gamma distribution. Below we list some of these interesting applications.

• Time to the first failure (Adamidis and Loukas (1998) and Kus (2007)). Suppose the failure
of a device occurs due to the presence of an unknown number N of initial defects of
same kind, which can be identifiable only after causing failure and are repaired perfectly.
Denote by Xi the time to the failure of the device due to the ith defect, for i ≥ 1. Under the
assumptions that the Xi’s are iid exponential variables independent of N, which follows
a truncated-zero Poisson distribution, we obtain that the EP distribution is appropriate
for modeling the time to the first failure.

• Reliability. From stochastic representations (4.1) and (4.4), we have that the EP model can
emerges in series system with identical components (for λ > 0) and parallel system with
identical components (for λ < 0), which appears in many industrial applications and
biological organisms.

• Time to relapse of cancer under the first-activation scheme (Chen et al., 1999). Suppose that
an individual in the population is susceptible to a certain type of cancer. Let N be the
number of carcinogenic cells for that individual left active after the initial treatment and
denote by Xi the time spent for the ith carcinogenic cell to produce a detectable cancer
mass, for i ≥ 1. Under the assumptions that {Xi}i≥1 is a sequence of iid exponential
variables independent of N, which follows a Poisson distribution (truncated at zero), we
have that the time to relapse of cancer of a susceptible individual, given by the random
variable min{X1, . . . , XN}, follows the EP distribution.

• Last-activation scheme (Cooner et al., 2007). As discussed by Cooner et al. (2007), the first-
activation scheme may be questioned by certain diseases. Let N be the number of latent
factors that must all be actived by failure and Xi be the time of resistance to a disease
manifestation due to the ith latent factor. In the last-activation scheme it is assumed that
failure occurs after all N factors have been actived. So, if the Xi’s are iid exponential
variables independent of N, and N follows a zero-truncated Poisson distribution, the EP
distribution is able for modeling the time to the failure under last-activation scheme.

Given the similarities between these models and the fact that EP model has important cha-
racteristics which make it of perceptible scientific importance, one question of interest is how
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to discriminate them.
With this mind, our aim in this paper is to propose a likelihood ratio test based on Cox’s

statistic to discriminate the EP and gamma distributions. The pdf associated to the gamma
distribution we consider here is

fGA(x; β, α) =
βα

Γ(α)
xα−1 exp(−βx), x > 0, (4.5)

where β > 0 and α > 0. Note that for certain ranges of the parameters, shapes of the EP
and GA density functions are quite similar. See, for example, in Figure 4.1(a) the densities of
EP(0.75,−5.2) and GA(1, 3) and in Figure 4.1(b) the densities of EP(1, 2) and GA(1.42, 0.82),
where they are almost indistinguishable from a practical point of view.
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Figure 4.1: The density functions of (a) EP(0.75,−5.2) and GA(1, 3) and (b) EP(1, 2) and
GA(1.42, 0.82).

For lifetime and reliability studies the tail of the assumed distribution plays an important
role, therefore to choose the more adequate model is crucial. The idea of discriminating two
separate distributions was originally proposed in pioneering works of Cox (1961) and Cox
(1962). The interest in discriminating two distributions is an old and well known problem in
the statistical literature. A special attention is given in discrimination between lifetime dis-
tributions due to increasing applications of such distributions. For example, see the works
of Dumonceaux and Antle (1973), Dumonceaux et al. (1973), Quesenberry and Kent (1982)
and Balasooriya and Abeysinghe (1994). Dumonceaux and Antle (1973) proposed a procedure
to discriminate the log-normal and Weibull distributions, and the discrimination between the
log-normal and gamma distributions was studied by Wiens (1999). The discrimination be-
tween the gamma and Weibull distributions was studied by Bain and Engelhardt (1980) and
Fearn and Nebenzahl (1991). Some papers proposed discrimination tests involving the gene-
ralized exponential distribution and other well known lifetime distributions; for instance, see
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Gupta and Kundu (2003), Gupta and Kundu (2004) and Kundu et al. (2005). Selection be-
tween the Weibull and log-normal distributions under Type-II censoring was considered by
Dey and Kundu (2012). References about discrimination of separate families of hypotheses are
widespread and we recommend the reader to see references contained in the above papers.

General regularity conditions and a rigorous proof of the asymptotic normality of the Cox’s
statistic for testing separate families of hypotheses was firstly given by White (1982a) and
White (1982b). We here obtain the asymptotic distribution of the normalized logarithm of
the ratio of the maximized likelihoods based on these papers. We will use these asymptotic
results to compute the probability of correct selection.

The present chapter is organized in the following way. In Section 4.2, we define the likeli-
hood ratio test to discriminate the exponential-Poisson and gamma models and obtain asymp-
totic distributions of the normalized logarithms of the ratio of the maximized likelihoods un-
der the two null hypotheses: data come from exponential-Poisson or gamma distributions.
The minimum sample size required to discriminate the EP and gamma distributions when the
probability of correct selection and a tolerance level (based on the Kolmogorov-Smirnov or
Hellinger distances) are previously handled is provided in Section 4.3. Further, we obtain an
expression for the Hellinger distance between the EP and gamma distributions. A simulation
study about the accuracy of the asymptotic probability of correct selection is presented in Sec-
tion 4.4. Two applications to real data sets are presented in Section 4.5. Proof of the results
stated in the chapter are presented in Section 4.6. Concluding remarks and future research are
addressed in Section 4.7.

4.2 Test statistic and asymptotic distributions

Let {Xi}n
i=1 be a sequence of iid random variables with observed values x1, . . . , xn, where

the data come from EP(θ, λ) distribution or GA(β, α) distribution with densities given by (4.2)
and (4.5), respectively. We are interested in discriminating the EP and GA models and ob-
tain the asymptotic distributions of the normalized test statistic under the hypotheses HEP :
{Xi}n

i=1 ∼ EP(θ, λ) and HGA : {Xi}n
i=1 ∼ GA(β, α).

The log-likelihood function associated to the EP distribution is given by

`
(n)
EP (θ, λ) = n log θ + n log

(
λ

eλ − 1

)
− θnx̄n + λ

n

∑
i=1

exp(−θxi),

where x̄n = ∑n
i=1 xi/n. The maximum likelihood estimates (MLEs) θ̂n and λ̂n of θ and λ,

respectively, are obtained by solving the nonlinear system of equations

λ̂n =
n(1/θ̂n − x̄n)

∑n
i=1 xi exp(−θ̂nxi)

and n
(

1
λ̂n
− 1

1− e−λ̂n

)
+

n

∑
i=1

exp(−θ̂nxi) = 0. (4.6)

On the other hand, the log-likelihood corresponding to the gamma distribution is

`
(n)
GA(β, α) = n{α log β− log Γ(α)} − nβx̄n + (α− 1)

n

∑
i=1

log xi.
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The MLEs β̂n and α̂n of β and α, respectively, are given as solution of the nonlinear system of
equations

β̂ =
α̂n

x̄n
and n log β̂n − nΨ(α̂n) +

n

∑
i=1

log xi = 0, (4.7)

where Ψ(z) = d log Γ(z)/dz = Γ′(z)/Γ(z). The logarithm of the ratio of the maximized likeli-
hoods is given by

Tn = log

(
∏n

i=1 fEP(xi; θ̂n, λ̂n)

∏n
i=1 fGA(xi; α̂n, β̂n)

)
= `

(n)
EP (θ̂n, λ̂n)− `

(n)
GA(β̂n, α̂n),

where (θ̂n, λ̂n) and (β̂n, α̂n) are given in (4.6) and (4.7), respectively. More explicitly, the statistic
Tn can be expressed as

Tn = n

{
log

(
Γ(α̂n)

β̂α̂n
n

)
+ log

(
θ̂n λ̂n

eλ̂n − 1

)
+ (β̂n − θ̂n)x̄n

}
+

n

∑
i=1

{
λ̂n exp(−θ̂nxi)− (α̂n − 1) log xi

}
.

With this, the following decision rule could be used: choose the exponential-Poisson distri-
bution if Tn > 0, otherwise choose the gamma distribution as the preferred model. Since that
both models have the same number of parameters, this rule decision is equivalent to Akaike
criteria (Akaike, 1974).

In this chapter we adopt the following rule: we choose the model that maximizes the prob-
ability of correct selection. The probability of correct selection is presented in Section 4.3. This
procedure is illustrated in Section 4.5, where two applications to real data sets are presented.

We now obtain the asymptotic distributions of Tn under the hypotheses HEP and HGA.
From now on, a.s. denotes almost sure convergence.

4.2.1 H0 : EP distribution × H1 : Gamma distribution

Suppose that X1, . . . , Xn are iid random variables from EP(θ, λ) distribution. For our pur-
poses in this Section, we now introduce some notations. Let h(·) and g(·) be two real men-
surable functions and U be a random variable following EP(θ, λ) distribution. We denote by
EEP(h(U)) and VarEP(h(U)) the mean and variance of h(U). Further, we denote the covariance
between h(U) and g(U) by

CovEP(h(U), g(U)) = EEP(h(U)g(U))− EEP(h(U))EEP(g(U)),

with U defined as before.

Lemma 5. Under the hypothesis HEP, as n→ ∞ we have

(i) α̂n → α̃ a.s., β̂n → β̃ a.s., where

EEP

[
log fGA(X; α̃, β̃)

]
= max

α,β
EEP [log fGA(X; α, β)] .
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(ii) θ̂n → θ a.s., λ̂n → λ a.s., and θ and λ satisfy

EEP [log fEP(X; θ, λ)] = max
θ̄,λ̄

EEP
[
log fEP(X; θ̄, λ̄)

]
.

Remark: We call attention of the reader that α̃ and β̃ are functions of θ and λ, which is not
explicit in order to simplify the notation.

We now discuss how to obtain β̃ and α̃. For this, let Fp,q(b, d, z) be the known Barnes
extended hypergeometric function

Fp,q(b, d, z) =
∞

∑
k=0

zk ∏
p
i=1 Γ(bi + k)Γ(bi)

−1

k! ∏
q
i=1 Γ(di + k)Γ(di)−1

, z ∈ R,

where b = [b1, . . . , bp] and d = [d1, . . . , dq]. Further, for z ∈ R and i ∈ {0, 1}, define

Φ(z; i) =
∞

∑
k=2

zk(k− 1)i log k
k!

.

Hence, we have that ωEP(β, α) ≡ EEP [log fGA(X; β, α)] equals

ωEP(β, α) = log
(

βα

Γ(α)

)
− βλ

θ(eλ − 1)
F2,2([1, 1], [2, 2], λ) + (α− 1)

(
Ψ(1)− log θ − Φ(λ; 0)

eλ − 1

)
.

With this, we have that β̃ and α̃ are the solutions of the nonlinear system of equations
(∂ωEP/∂β, ∂ωEP/∂α)> = 0. These equations are given by

β̃ = θ exp
{

Ψ(α̃)−Ψ(1) +
Φ(λ; 0)
eλ − 1

}
and α̃ =

β̃λ

θ(eλ − 1)
F2,2([1, 1], [2, 2], λ). (4.8)

Now, in order to state a theorem which gives us the asymptotic distribution of the nor-
malized test statistic under HEP, we compute the mean and variance of the random variable
log fEP(X; θ, λ)− log fGA(X; β̃, α̃) (with X ∼ EP(θ, λ)), which we will be denoted by AMEP and
AVEP, respectively.

We observe that β̃/θ is a function of α̃ and λ. We also have that α̃ only depends on λ.
Hence, it can be showed that AMEP and AVEP only depend on λ and are given by

AMEP(λ) = α̃ log β̃− log Γ(α̃)− log θ − log
(

λ

eλ − 1

)
+ 1− λ

1− e−λ
+

λ
β̃/θ − 1
eλ − 1

F2,2([1, 1], [2, 2], λ) + (α̃− 1)
(

Ψ(1)− log θ − Φ(λ; 0)
eλ − 1

)
(4.9)

and

AVEP(λ) = (β̃− θ)2VarEP(X) + (α̃− 1)2VarEP(log X) + λ2VarEP(e−θX)−
2(α̃− 1)(β̃− θ)CovEP(X, log X)− 2λ(α̃− 1)CovEP(log X, e−θX) +

2λ(β̃− θ)CovEP(X, e−θX), (4.10)
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with

VarEP(X) =
λ

θ2(eλ − 1)

{
2F3,3([1, 1, 1], [2, 2, 2], λ)− λ

eλ − 1
F2

2,2([1, 1], [2, 2], λ)

}
,

VarEP(log X) = Ψ′(1) +
1

eλ − 1

∞

∑
k=1

λk

k!
{Ψ(1)− log(θk)}2 −

1
(eλ − 1)2

{
(eλ − 1)(Ψ(1)− log θ)−Φ(λ; 0)

}2
,

VarEP(e−θX) =
1− eλ(λ2 − eλ + 2)

λ2(eλ − 1)2 ,

CovEP(X, log X) =
1

θ(eλ − 1)

{ ∞

∑
k=1

λk

k!k
(Ψ(2)− log(θk))−

λ

eλ − 1
F2,2([1, 1], [2, 2], λ)

[
(eλ − 1)(Ψ(1)− log θ)−Φ(λ; 0)

] }
,

CovEP(X, e−θX) =
λe−λ

4θ(1− e−λ)
F2,2([2, 2], [3, 3], λ)−

(
λ

1− e−λ
− 1
)

F2,2([1, 1], [2, 2], λ)

θ(eλ − 1)
,

and

CovEP(log X, e−θX) =

(
1

1− e−λ
− 1

λ

)
Φ(λ; 0)
eλ − 1

− Φ(λ; 1)
λ(eλ − 1)

.

In Table 4.1, we list values of AMEP(λ), AVEP(λ), α̃ and β̃ for θ = 1 and some values of the
parameter λ. Note that as λ → 0, AMEP(λ) and AVEP(λ) approach 0 and β̃ and α̃ approach
1, what was expected since EP(1, λ) distribution approaches the exponential (with mean 1)
distribution when λ→ 0.

λ AMEP(λ) AVEP(λ) β̃ α̃

−2.0 0.008514 0.019892 0.9600 1.4648

−1.0 0.002798 0.005860 0.9432 1.1887

−0.5 0.000760 0.001544 0.9612 1.0843

0.5 0.000804 0.001609 1.0625 0.9338

1.0 0.003134 0.006366 1.1518 0.8834

2.0 0.010723 0.023666 1.4246 0.8214

Table 4.1: Values of AMEP(λ), AVEP(λ), β̃ and α̃ for θ = 1 and some values of λ.

We now are ready to state one of our main results about asymptotic distribution of the
statistic Tn. For this, define T̃EP

n = `
(n)
EP (θ, λ)− `

(n)
GA(β̃, α̃).
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Theorem 6. Under H0 : {Xi}n
i=1 ∼ EP(θ, λ),

n−1/2{Tn − EEP(Tn)} ∼ n−1/2{T̃EP
n − nAMEP(λ)}

d−→ N(0, AVEP(λ)),

as n→ ∞, where AMEP(λ) and AVEP(λ) are given by (4.9) and (4.10), respectively, and “∼” denotes
asymptotically equivalent.

Remark: From classical Central Limit Theorem for iid random variables with finite second
moment, it follows that n−1/2{T̃EP

n − nAMEP(λ)}
d−→ N(0, AVEP(λ)) as n→ ∞.

4.2.2 H0 : Gamma distribution × H1 : EP distribution

Suppose now X1, . . . , Xn are iid random variables from GA(β, α) distribution. Let h(·) and
g(·) be two real mensurable functions and U be a random variable with GA(β, α) distribu-
tion. Similarly as before, we introduce the following notation. We will denote EGA(h(U)) and
VarGA(h(U)) as the mean and variance of h(U). Further, the covariance between the random
variables h(U) and g(U) is denoted by

CovGA(h(U), g(U)) = EGA(h(U)g(U))− EGA(h(U))EGA(g(U)).

Lemma 7. Under the hypothesis HGA, when n→ ∞ we have

(i) θ̂n → θ̃ a.s., λ̂n → λ̃ a.s., where

EGA

[
log fEP(X; θ̃, λ̃)

]
= max

θ,λ
EGA [log fEP(X; θ, λ)] .

(ii) β̂n → β a.s., α̂n → α a.s., and β and α satisfy

EGA [log fGA(X; β, α)] = max
β̄,ᾱ

EGA
[
log fGA(X; β̄, ᾱ)

]
.

Remark: As before, we call attention of the reader that θ̃ and λ̃ are functions of β and α, which
is not explicit for simplicity.

We now discuss how to obtain θ̃ and λ̃. For this, we first need to compute the expectation
ωGA(θ, λ) ≡ EGA [log fEP(X; λ, θ)] which, after some algebra, results

ωGA(θ, λ) = log θ + log
(

λ

1− e−λ

)
− θ

α

β
− λ

[
1−

(
β

β + θ

)α]
.

Hence, we find θ̃ and λ̃ as solutions of the nonlinear system of equations

(∂ωGA/∂θ, ∂ωGA/∂λ)> = 0,

which leads to

λ̃ =
(β + θ̃)α+1

αβα

(
1
θ̃
− α

β

)
and

1
λ̃
− 1

1− e−λ̃
+

(
β

β + θ̃

)α

= 0. (4.11)
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We now compute the mean and variance of the random variable

log fEP(X; θ̃, λ̃)− log fGA(X; β, α)

(with X ∼ GA(β, α)), which we will denote by AMGA and AVGA. These results will be impor-
tant to state our theorem about asymptotic distribution of the normalized test statistic under
HGA. It may be checked that β/θ̃ and λ̃ depend only on α. With this, it is easy to see that AMGA

and AVGA depend only on α. Further, after some algebra, these quantities can be expressed by

AMGA(α) = log θ̃ + log Γ(α) + log

(
λ̃

1− e−λ̃

)
− λ̃

[
1−

(
β

β + θ̃

)α]
−

α

(
θ̃

β
+ log β− 1

)
− (α− 1) (Ψ(α)− log β) (4.12)

and

AVGA(α) = (θ̃ − β)2VarGA(X) + λ̃VarGA(e−θ̃X) + (α− 1)2VarGA(log X)−
2λ̃(θ̃ − β)CovGA(X, e−θ̃X) + 2(α− 1)(θ̃ − β)CovGA(X, log X)−
2λ̃(α− 1)CovGA(log X, e−θ̃X), (4.13)

where

VarGA(X) =
α

β2 , VarGA(e−θ̃X) =

(
β

β + 2θ̃

)α

−
(

β

β + θ̃

)2α

, VarGA(log X) = Ψ′(α),

CovGA(X, e−θ̃X) = − αθ̃βα−1

(β + θ̃)α+1
, CovGA(X, log X) =

1
β

,

and

CovGA(log X, e−θ̃X) =

(
β

β + θ̃

)α

log

(
β

β + θ̃

)
.

In Table 4.2, we present values of AMGA(α), AVGA(α), λ̃ and θ̃ for β = 1 and some values
of the parameter α. We observe that AMGA(α) and AVGA(α) approach 0 as α → 1. Further,
for α < 1 we obtain λ̃ > 0 and for α > 1 we have λ̃ < 0, which makes sense since α < 1 and
λ > 0 corresponds to decreasing gamma and EP densities (respectively) and α > 1 and λ < 0
corresponds to increasing gamma and EP densities (respectively).

We now introduce the quantity T̃GA
n = `

(n)
EP (θ̃, λ̃) − `

(n)
GA(β, α) in order to state one of our

main results.

Theorem 8. Under H0 : {Xi}n
i=1 ∼ GA(β, α),

n−1/2{Tn − EGA(Tn)} ∼ n−1/2{T̃GA
n − nAMGA(α)}

d−→ N(0, AVGA(α)),

as n → ∞, where AMGA(α) and AVGA(α) are given by (4.12) and (4.13), respectively, and “∼”
denotes asymptotically equivalent.

Remark: From classical Central Limit Theorem for iid random variables with finite second
moment, we have that n−1/2{T̃GA

n − nAMGA(λ)}
d−→ N(0, AVGA(λ)) as n→ ∞.
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α AMGA(α) AVGA(α) λ̃ θ̃

0.5 −0.136915 0.466563 2.6008 1.0663

0.6 −0.059737 0.176354 2.2015 0.9484

0.7 −0.023332 0.060862 1.6656 0.9228

1.2 −0.002271 0.004070 −0.8259 1.0128

1.5 −0.006794 0.010915 −1.8080 0.9873

2.0 −0.009330 0.013492 −3.1021 0.9059

Table 4.2: Values of AMGA(α), AVGA(α), λ̃ and θ̃ for β = 1 and some values of α.

4.3 Distances and minimum sample size

We now propose a method to determine the minimum sample size required in order to
discriminate exponential-Poisson and gamma distributions for a specified probability of cor-
rect selection (PCS) and a given tolerance level, which is defined in terms of some distance to
measure the closeness between the EP and gamma distributions.

There are several ways to measure how close are two probability distributions. The most
common measures are the Kolmogorov-Smirnov (KS) distance and the Hellinger (H) distance
and we will use both in this paper.

Let f and g (with same support Ω) be two absolutely continuous density functions with dis-
tribution functions F(x) and G(x), respectively. The Kolmogorov-Smirnov distance between F
and G is given by

KS(F, G) = sup
x∈Ω
|F(x)− G(x)|.

The Hellinger distance between f and g is defined by

H( f , g) =
1
2

∫
Ω
(
√

f (x)−
√

g(x))2dx = 1−
∫

Ω

√
f (x)g(x)dx.

In the following proposition we give an explicit expression for the Hellinger distance be-
tween EP and gamma distributions.

Proposition 9. The Hellinger distance between the EP and gamma distributions is given by

H( fEP, fGA) = 1−
(

θλβα

eλ − 1

)1/2 Γ((α + 1)/2)
Γ(α)1/2

∞

∑
k=0

(λ/2)k

k![θ(k + 1/2) + β/2](α+1)/2
.

Proof. By expanding the term exp{(λ/2)e−θx} of
√

fEP(x) fGA(x) in Taylor series and using
Dominate Convergence Theorem, the result follows.

If the distance between two probability distributions is small, it is expected that the min-
imum sample size required to discriminate them be large. Otherwise, a small or moderate
sample size are sufficient to discriminate the models.
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We assume that the user will specify before hand the PCS and the tolerance level in terms of
the distance function between the EP and gamma distributions. When a tolerance level is spec-
ified (in term of some distance), this means that two distribution functions are not considered
to be significantly different if their distance is less than the tolerance level. PCS and toler-
ance level play a similar role that the power and Type-I error in the corresponding hypothesis
testing problem.

Based on PCS and tolerance level we can to determinate the minimum sample size required
to discriminate the EP and gamma distributions. Here, the tolerance level is defined for the
Kolmogorov-Smirnov and Hellinger distances. We observed in Section 4.2 that the normalized
logarithm of the ratio of the maximized likelihoods is asymptotically normally distributed.
Now, this and Hellinger (or Kolmogorov-Smirnov) distance will be used to determine the re-
quired sample size n such that the probability of correct selection achieves a certain protection
level p for a given tolerance level D. We explain the procedure under the null hypothesis HEP

(the PCS under this hypothesis will be denoted by PCSEP). The procedure under HGA (the
PCS under this hypothesis will be denoted by PCSGA) follows in a similar way and therefore
is omitted.

From Theorem 6, under HEP, we have that PCSEP(λ) = P(Tn > 0) may be approximate by

PCSEP(λ) ≈ Φ

(
−
√

nAMEP(λ)√
AVEP(λ)

)
,

where Φ(·) is the distribution function of the standard normal distribution and AMEP(λ) and
AVEP(λ) are given in (4.9) and (4.10), respectively. Now to determine the sample size needed
to achieve at least a protection level p, we equate

Φ

(
−
√

nAMEP(λ)√
AVEP(λ)

)
= p

and by solving for n we obtain

n =

[
z2

pAVEP(λ)

AM2
EP(λ)

]
, (4.14)

where zp is the 100p percentile point of a standard normal distribution and [a] denotes the
smallest integer b such that b > a, for a ∈ R. In analogous way, under the null hypothesis HGA

and using Theorem 6 we need

n =

[
z2

pAVGA(α)

AM2
GA(α)

]
, (4.15)

to choose the gamma distribution with PCS equal to p. Values of (4.14) for some values of λ,
setting θ = 1 and p = 0.7, are given in Table 4.3. In the same way, Table 4.4 lists values of (4.15)
for some values of α, setting β = 1 and p = 0.7. In these Tables values of KS and H distances
are also presented.
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λ→ −2 −1 −0.5 0.5 1 2

n 75 206 734 683 178 57

KS 0.0265 0.0161 0.0086 0.0090 0.0176 0.0317

H 0.0020 0.0007 0.0002 0.0002 0.0008 0.0026

Table 4.3: Values of n and theKS andH distances between EP(1, λ) and GA(β̃, α̃) distributions
for θ = 1 and some values of λ.

α→ 0.5 0.6 0.7 1.2 1.5 2.0

n 7 14 30 217 65 43

KS 0.0433 0.0305 0.0204 0.0079 0.0145 0.0177

H 0.0255 0.0121 0.0051 0.0006 0.0019 0.0027

Table 4.4: Values of n and theKS andH distances between GA(1, α) and EP(θ̃, λ̃) distributions
for β = 1 and some values of α.

We observe that under HEP, the distances are close to 0 when λ approaches 0. Under HGA,
when α is close to 1 the distances approach 0. This was expected since in this cases the distri-
bution under null hypothesis approximate the exponential distribution, which is a particular
case of both distributions considered in this chapter.

On the other hand, when λ moves away from 0 (under HEP), the distances increase. The
same is observed under HGA when α moves away from 1. In Figures 4.2 and 4.3 plots of the
distances as function of λ and α, respectively, are displayed. From these Figures, the discussion
above may be clearly seen.

We now briefly discuss how to use the PCS and the tolerance level in a practical situa-
tion. Suppose one is interested in discriminating EP and gamma models, where the null hy-
pothesis is HEP. Further, suppose that the tolerance level is based on Hellinger distance and
fixed at 0.0002. Therefore, from Table 4.3 one needs to take the sample size at least equal to
n > max{683, 734} = 734 to discriminate EP from gamma distribution. For a more accurate
result, under the hypothesis HEP (HGA), a greater range of λ (and α) is necessary, as it was
made in Figures 4.2 and 4.3.

4.4 Simulation

In this Section we perform some numerical experiments to observe how our asymptotic
results derived in Section 4.3 work for different sample sizes. We here are interested in com-
paring the asymptotic probabilities of correct selection (PCS) under the hypothesis HEP and
HGA with respect to the simulated probabilities based on Monte Carlo simulations.

Let us now to describe how the simulated results are obtained. First of all, suppose that
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Figure 4.2: Kolmogorov-Smirnov (picture to the left) and Hellinger (picture to the right) dis-
tances between EP(1, λ) and GA(β̃, α̃) distributions as function of λ.
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Figure 4.3: Kolmogorov-Smirnov (picture to the left) and Hellinger (picture to the right) dis-
tances between GA(1, α) and EP(θ̃, λ̃) distributions as function of α.
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the null hypothesis is that data comes from EP(θ, λ) distribution, and the sample size equals
n. The procedure in what follows holds in a similar way for the null hypothesis that the data
comes from the GA(β, α) distribution and therefore is omitted. Let N be the number of replicas
of the Monte Carlo simulation and I = (I1, . . . , IN)

> be a vector with length N. The steps, for
each replica j, are the following:

1. Generate a random sample from the EP(θ, λ) distribution with size n. This can be done
by using the stochastic representations (1) or (4) (depending of the value of λ) or by using
the inversion method;

2. Find the MLEs of (θ,λ) and (β,α), that are based on the EP and gamma distributions,
respectively;

3. Compute the statistic Tn = `
(n)
EP (θ̂n, λ̂n)− `

(n)
GA(β̂n, α̂n);

4. If Tn > 0, take Ij = 1, otherwise Ij = 0.

After running the above Monte Carlo simulation, the simulated probability of correct se-
lection (PCS) is given by ∑N

j=1 Ij/N.
We compute the PCS based on simulations and we also compute it based on the asymp-

totic results derived in Section 3. Since the distribution of Tn does not depend of the scale
parameters, we varied the shape parameter and set the scale parameter to be one in all cases.

First we consider that the null hypothesis is HEP and compute the probabilities of cor-
rect selection for λ = −1.2,−0.8,−0.4, 0.4, 0.8, 1.2 and n = 60, 80, 100, 200, 300, 400, 500. These
results are given in the Table 4.5. We see a good agreement between the asymptotic and em-
pirical probabilities, mainly for moderate and large values of n. Further, when λ approaches
to zero, the probabilities of correct selection approaches 0.5. This was expected since when λ

goes to 0 both exponential-Poisson and gamma distributions converges to the same law, in this
case, the exponential distribution. Another expected result is that when n increases the PCSs
approaches 1.

In the Table 4.6 we present the asymptotic and simulated probabilities of correct selection
under the null hypothesis HGA for α = 0.75, 0.8, 0.9, 1.2, 1.5, 1.75 and n = 60, 80, 100, 200, 300, 400,
500. We also observe a good agreement between the PCSs in this case. When α is close to 1,
the probabilities are close to 0.5 and as n increases the probabilities goes to 1, as expected and
discussed in the previous case.
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Asymptotic probability under HEP

λ ↓ n→ 60 80 100 200 300 400 500

−1.2 0.6291 0.6483 0.6648 0.7264 0.7695 0.8027 0.8293

−0.8 0.5919 0.6058 0.6179 0.6644 0.6984 0.7258 0.7489

−0.4 0.5481 0.5555 0.5620 0.5873 0.6065 0.6225 0.6364

0.4 0.5495 0.5571 0.5638 0.5898 0.6096 0.6260 0.6403

0.8 0.5972 0.6119 0.6247 0.6735 0.7090 0.7375 0.7614

1.2 0.6403 0.6609 0.6787 0.7441 0.7892 0.8233 0.8502

Empirical probability under HEP

λ ↓ n→ 60 80 100 200 300 400 500

−1.2 0.5791 0.6137 0.6370 0.7177 0.7670 0.8030 0.8260

−0.8 0.5316 0.5502 0.5785 0.6395 0.6886 0.7180 0.7488

−0.4 0.5056 0.5192 0.5227 0.5410 0.5745 0.5931 0.6139

0.4 0.4989 0.5117 0.5296 0.5523 0.5746 0.5869 0.6169

0.8 0.5476 0.5606 0.5776 0.6407 0.6984 0.7351 0.7614

1.2 0.5897 0.6175 0.6417 0.7369 0.7889 0.8399 0.8641

Table 4.5: The PCS based on the Monte Carlo simulation and based on the asymptotic result
under HEP for some values of λ and for n = 60, 80, 100, 200, 300, 400, 500.

87



Asymptotic probability under HGA

α ↓ n→ 60 80 100 200 300 400 500

0.75 0.7174 0.7467 0.7711 0.8531 0.9008 0.9312 0.9515

0.8 0.6677 0.6917 0.7122 0.7856 0.8339 0.8685 0.8946

0.9 0.5764 0.5881 0.5983 0.6376 0.6668 0.6907 0.7112

1.2 0.6086 0.6249 0.6390 0.6927 0.7314 0.7616 0.7869

1.5 0.6928 0.7197 0.7423 0.8211 0.8700 0.9033 0.9271

1.75 0.7227 0.7525 0.7771 0.8596 0.9068 0.9364 0.9560

Empirical probability under HGA

α ↓ n→ 60 80 100 200 300 400 500

0.75 0.7392 0.7756 0.8087 0.8951 0.9381 0.9582 0.9723

0.8 0.6635 0.7006 0.7186 0.8157 0.8683 0.9003 0.9230

0.9 0.5587 0.5577 0.5694 0.6175 0.6504 0.6871 0.7120

1.2 0.6044 0.6054 0.6292 0.6958 0.7360 0.7640 0.7835

1.5 0.7150 0.7399 0.7530 0.8274 0.8670 0.8982 0.9170

1.75 0.7543 0.7765 0.7982 0.8645 0.8993 0.9308 0.9508

Table 4.6: The PCS based on the Monte Carlo simulation and based on the asymptotic result
under HGA for some values of α and for n = 60, 80, 100, 100, 200, 300, 400, 500.
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4.5 Empirical illustrations

In this Section we applied our results in two real data set. In the first set, the data are 213
observations of times between failures of the air-conditioning equipment in 13 Boeing 720 jet
airplanes reported from Proshan (1963). This data set has been used by Kus (2007). There we
have that, based on the Kolmogorov-Smirnov test, the EP distribution presents a better fit than
the gamma distribution.

The MLEs of the parameters of the EP and gamma distributions are (θ̂, λ̂) = (0.0075, 1.3130)
and (β̂, α̂) = (0.0099, 0.9215), respectively. Figure 4.4 shows the histogram and the plots of the
fitted densities of the EP and gamma distributions for the first data set. Empirical and fitted
survival functions are also presented in this Figure.
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Figure 4.4: Histogram and plots of the fitted densities (picture to the left) of the EP and gamma
distributions for the first data set. Empirical and fitted survival functions are presented in the
picture to the right.

The logarithm of the likelihood ratio statistic equals 2.4975, so indicating that the EP distri-
bution is more adequate than the gamma distribution to model the considered data set. Under
the hypothesis that the data come from an EP distribution, we obtain the estimated quantities
β̃ = 0.0092, α̃ = 0.8589, AMEP(λ̂) = 0.0052 and AVEP(λ̂) = 0.0108, hence, it follows that
PCSEP(λ̂) = 0.7682. Under the hypothesis that the data come from a gamma distribution, we
have θ̃ = 0.0097, λ̃ = 0.3929, AMGA(α̂) = −0.0008 and AVGA(α̂) = 0.0016. With this, we
obtain PCSGA(α̂) = 0.6097. We have that the probability of correct selection is at least equal to
min{0.7682, 0.6097} = 0.6097. Since the PCS is maxima under the hypothesis HEP, we choose
the EP distribution.

For our second application we use a real data set taken from the work of Bryson and
Siddiqui(1969). These data are survival times of 43 patients suffering from chronic granulo-
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cytic leukemia. The MLEs of the parameters of the EP and gamma distributions are given by
(θ̂, λ̂) = (0.0016,−1.7324) and (β̂, α̂) = (0.0014, 1.3074), respectively. Figure 4.4 shows the his-
togram and the plots of the fitted densities of the EP and gamma distributions for the second
data set. Empirical and fitted survival function are also displayed.

x

D
en

si
ty

0 500 1000 1500 2000 2500 3000

0e
+

00
2e

−
04

4e
−

04
6e

−
04

8e
−

04

EP
GA

0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

S
ur

vi
va

l f
un

ct
io

n

Empirical
EP
GA

Figure 4.5: Histogram and plots of the fitted densities (picture to the left) of the EP and gamma
distributions for the second data set. Empirical and fitted survival functions are presented in
the picture to the right.

The test statistic equals 0.7421, which indicates that the EP distribution should be chosen.
Under the hypothesis that the data come from an EP distribution, we obtain the estimated
quantities β̃ = 0.0015, α̃ = 1.3817, AMEP(λ̂) = 0.0070 and AVEP(λ̂) = 0.0157, hence, we have
that PCSEP(λ̂) = 0.6422. Under the hypothesis HGA, we have that θ̃ = 0.0014, λ̃ = −1.2045,
AMGA(α̂) = −0.0041 and AVGA(α̂) = 0.0070. With this, we obtain that PCSGA(α̂) = 0.6255.
Here the PCS is at least equal to min{0.6422, 0.6255} = 0.6255. Since the PCS is maxima under
the hypothesis HEP, we choose the exponential-Poisson distribution.

4.6 Proof of the results

Proof of the Lemma 5

We now prove the part (i) of the Lemma 5. Since part (ii) follows in a similar way, we
omitted its proof. We first check that (β̃, α̃) is the unique solution of the nonlinear system of
equations (4.8) and is the global maximum point of the function ωEP(β, α).

From equations (4.8), we have that

Ψ(α̃)− log α̃ = log EEP(X)− EEP(log X). (4.16)
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Since the values of the expectations EEP(X) and EEP(log X) are not important to prove the
Lemma, we do not explicit them. We now show that the function w(x) = Ψ(x)− log x maps
[0, ∞) in (−∞, 0) and it is continuous and strictly increasing. By using the relation Ψ(x) +
1/x = Ψ(x + 1), we find that limx→0+ w(x) = limx→0+{Ψ(x + 1) − 1/x − log x} = Ψ(1) −
limx→0+ x−1(1+ x log x) = −∞. From Abramowitz and Stegun (1965) we have Ψ(x) = log x +
O(x−1) for x → ∞. Hence, it follows that limx→∞ w(x) = 0.

In order to study the behaviour of the function w(·), we take its derivative, that is w′(x) =
Ψ′(x)− 1/x, where Ψ′(x) = dΨ(x)/dx. By using the integral representation

Ψ′(x) =
∫ ∞

0
te−xt/(1− e−t)dt

and 1/x =
∫ ∞

0 e−xtdt, we obtain w′(x) =
∫ ∞

0 (t + e−t − 1)e−xt/(1− e−t)dt. It may easily check
that t + e−t − 1 ≥ 0 for all t ≥ 0, which implies w′(x) > 0 for all x > 0. So, we obtain
that the function w(·) is strictly increasing. Further, it is easy to see that w(·) is continuous.
Since EEP(X) < log EEP(X) (by using Jensen’s inequality for concave functions and using the
fact EEP(X) 6= log EEP(X)), we have that the solution α̃ in (4.16) exists and is unique. With
this, we obtain from (4.8) that β̃ exists and is also unique. It remains to show that (β̃, α̃) is
the global maximum point of the function ωEP(β, α). We have that ∂ω2

EP/∂β2 = −α/β2 < 0,
∂ω2

EP/∂β2 = −Ψ′(α) < 0 and

det
∣∣∣∣ ∂ω2

EP(β, α)

∂(β, α)/∂(β, α)>

∣∣∣∣ = α

β2 {Ψ
′(α)− 1/α}.

As discussed before, we have that Ψ′(α)− 1/α > 0 for all α > 0 and hence the above determi-
nant is positive. Therefore, (β̃, α̃) is the global maximum point of ωEP(·, ·).

In order to show a.s. convergence stated in the Lemma, we need to verify that the three
first regularity conditions given by White (1982a) holds. Assumptions 2.1 and 2.2 are clearly
satisfied and Assumption 2.3 (a) may be easily checked. The result above on existence and
uniqueness of the global maximum point of ωEP(·, ·) proves that the Assumption 2.3 (b) is
satisfied. Therefore, from Theorem 2.2 of White (1982b) we obtain that β̂n

a.s.→ β̃ and α̂n
a.s.→ α̃ as

n→ ∞. �

Proof of the Theorem 6

It may be checked that Assumptions 2.4, 2.5 and 2.6 from White (1982a) holds with the EP
and gamma distributions being the null and the alternative hypotheses, respectively.

Under HEP, we have that n−1/2{Tn − EEP(Tn)} equals

n−1/2
{
`
(n)
EP (θ̂n, λ̂n)− `

(n)
GA(β̂n, α̂n)−

∫ ∞

0
(`

(n)
EP (θ̂n, λ̂n)− `

(n)
GA(β̂n, α̂n)) f̃EP(x̃; θ, λ)dx̃

}
, (4.17)

where x̃ = (x1, . . . , xn) and f̃EP(x̃; θ, λ) = ∏n
i=1 fEP(xi; θ, λ). In order to prove our Theorem

we follow the ideas of the Theorem 1 of White (1982a). Then, following that proof and by
using Lemma 5 we have that there exist sequences (θ∗n, λ∗n) and (β∗n, α∗n) which are tail equiv-
alent to (θ̂n, λ̂n) and (β̂n, α̂n), respectively, and they assume their values in a compact convex
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neighborhood of (θ, λ) and (β̃, α̃), respectively. Since Assumption 2.4 from White (1982a) is sat-
isfied, there exist measurable functions (θ̄n, ᾱn) and (β̄n, ᾱn) which lies on the segments joining
(θ∗n, λ∗n) to (θ, λ) and (β∗n, α∗n) to (β̃, α̃), respectively, such that the following first-order Taylor’s
expansion of the first term of (4.17) around (θ, λ) and (β̃, α̃) holds:

`
(n)
EP (θ̂n, λ̂n)− `

(n)
GA(β̂n, α̂n) = `

(n)
EP (θ, λ)− `

(n)
GA(β̃, α̃) +

∂`
(n)
EP (θ̄n, λ̄n)

∂θ̄n
(θ∗n − θ) +

∂`
(n)
EP (θ̄n, λ̄n)

∂λ̄n
(λ∗n − λ)−

∂`
(n)
GA(β̄n, ᾱn)

∂β̄n
(β∗n − β̃)−

∂`
(n)
GA(θ̄n, ᾱn)

∂ᾱn
(α∗n − α̃). (4.18)

On the other hand, the Mean Value Theorem of the calculus gives us the existence of (θ̈n, λ̈n)

and (β̈n, α̈n) (belonging on the segments joining (θ∗n, λ∗n) to (θ, λ) and (β∗n, α∗n) to (β̃, α̃), respec-
tively) such that the integral in (4.17) admits the following Taylor’s expansion around (θ, λ)

and (β̃, α̃):∫ ∞

0
(`

(n)
EP (θ̂, λ̂)− `

(n)
GA(β̂, α̂)) f̃EP(x̃; θ, λ)dx̃ =

∫ ∞

0
(`

(n)
EP (θ, λ)− `GA(β̃, α̃)) f̃EP(x̃; θ, λ)dx̃ +

(θ∗n − θ)
∂

∂θ̈n

∫ ∞

0
`
(n)
EP (θ̈n, λ̈n) f̃EP(x̃; θ, λ)dx̃ +

(λ∗n − λ)
∂

∂λ̈n

∫ ∞

0
`
(n)
EP (θ̈n, λ̈n) f̃EP(x̃; θ, λ)dx̃−

(β∗n − β̃)
∂

∂β̈n

∫ ∞

0
`
(n)
GA(β̈n, α̈n) f̃EP(x̃; θ, λ)dx̃−

(α∗n − α̃)
∂

∂α̈n

∫ ∞

0
`
(n)
GA(β̈n, α̈n) f̃EP(x̃; θ, λ)dx̃. (4.19)

It can be showed that arguing with the Dominate Convergence Theorem the differential and
integral signs may be permuted in (4.19). By using (4.18) and (4.19) in (4.17), we obtain

Tn − EEP(Tn)√
n

= n−1/2
{
`
(n)
EP (θ, λ)− `

(n)
GA(β̃, α̃)− n

∫ ∞

0
(`

(n)
EP (θ, λ)− `

(n)
GA(β̃, α̃)) fEP(x; θ, λ)dx

}
+

√
n(θ∗n − θ)

{
n−1 ∂`

(n)
EP (θ̄n, λ̄n)

∂θ̄n
−
∫ ∞

0

∂ log fEP(x; θ̈n, λ̈n)

∂θ̈n
fEP(x; θ, λ)dx

}
+

√
n(λ∗n − λ)

{
n−1 ∂`

(n)
EP (θ̄n, λ̄n)

∂λ̄n
−
∫ ∞

0

∂ log fEP(x; θ̈n, λ̈n)

∂λ̈n
fEP(x; θ, λ)dx

}
−

√
n(β∗n − β̃)

{
n−1 ∂`

(n)
GA(β̄n, ᾱn)

∂β̄n
−
∫ ∞

0

∂ log fGA(x; β̈n, α̈n)

∂β̈n
fGA(x; β, α)dx

}
−

√
n(α∗n − α̃)

{
n−1 ∂`

(n)
GA(β̄n, ᾱn)

∂ᾱn
−
∫ ∞

0

∂ log fGA(x; β̈n, α̈n)

∂α̈n
fGA(x; β, α)dx

}
. (4.20)

Lemma 5 gives us that (θ̄n, λ̄n)
a.s.→ (θ, λ), (β̄n, ᾱn)

a.s.→ (β̃, α̃), (θ̈n, λ̈n)
a.s.→ (θ, λ) and (β̈n, α̈n)

a.s.→
(β̃, α̃) as n→ ∞. Hence, we obtain that∫ ∞

0

∂ log fEP(x; θ̈n, λ̈n)

∂θ̈n
fEP(x; θ, λ)dx a.s.−→

∫ ∞

0

∂ log fEP(x; θ, λ)

∂θ
fEP(x; θ, λ)dx = 0,

∫ ∞

0

∂ log fEP(x; θ̈n, λ̈n)

∂λ̈n
fEP(x; θ, λ)dx a.s.−→

∫ ∞

0

∂ log fEP(x; θ, λ)

∂λ
fEP(x; θ, λ)dx = 0,
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∫ ∞

0

∂ log fGA(x; β̈n, α̈n)

∂β̈n
fGA(x; β, α)dx a.s.−→

∫ ∞

0

∂ log fGA(x; β, α)

∂β
fGA(x; β, α)dx = 0

and ∫ ∞

0

∂ log fGA(x; β̈n, α̈n)

∂α̈n
fGA(x; β, α)dx a.s.−→

∫ ∞

0

∂ log fGA(x; β, α)

∂α
fGA(x; β, α)dx = 0

Furthermore, from Lemma 3.1 of White (1981) it follows that

n−1 ∂`
(n)
EP (θ̄n, λ̄n)

∂θ̄n

a.s.−→
∫ ∞

0

∂ log fEP(x; θ, λ)

∂θ
fEP(x; θ, λ)dx = 0,

n−1 ∂`
(n)
EP (θ̄n, λ̄n)

∂λ̄n

a.s.−→
∫ ∞

0

∂ log fEP(x; θ, λ)

∂λ
fEP(x; θ, λ)dx = 0,

n−1 ∂`
(n)
GA(β̄n, ᾱn)

∂β̄n

a.s.−→
∫ ∞

0

∂ log fGA(x; β̃, α̃)

∂β̃
fGA(x; β̃, α̃)dx = 0,

and

n−1 ∂`
(n)
GA(β̄n, ᾱn)

∂ᾱn

a.s.−→
∫ ∞

0

∂ log fGA(x; β̃, α̃)

∂α̃
fGA(x; β̃, α̃)dx = 0.

Since Assumptions 2.1-2.6 of White (1982a) are satisfied, it follows from Theorem 3.3 of White
(1982b) that

√
n{(θ∗n, λ∗n) − (θ, λ)} and

√
n{(β∗n, α∗n) − (β̃, α̃)} are asymptotically normal dis-

tributed.
The results discussed above may be applied in (4.20) and they ensure that n−1/2{Tn −

EEP(Tn)} is asymptotically equivalent to n−1/2{T̃EP
n − nAMEP(λ)}. �

Proof of the Lemma 7

We here prove the part (i) of the Lemma 7. Proof of the part (ii) follows in a similar way and
therefore is omitted. From second equation of (4.11), we see that the study of the continuous
function h(x) = −x−1 + (1 − e−x)−1, for x ∈ R, will be of interest. One may check that
limx→−∞ h(x) = 0 and limx→∞ h(x) = 1. Further, the derivative of h(·) is given by

h′(x) = e−x ex + e−x − x2 − 2
x2(1− e−x)2 =

4e−x

x2(1− e−x)2

{
sinh2(x/2)− x2/4

}
.

It is easy to see that sinh2(x/2) ≥ x2/4 for all x ∈ R. Further, at x = 0 we have h′(0) ≡
limx→0 h′(x) = 0. Therefore h(·) is a strictly increasing function that maps (−∞, ∞) in (0, 1).

On the other hand, from the first equation of (4.11), we see that it is important to study the
behaviour of the continuous function z(x) = (1/x − α/β)(β + x)α+1/(αβα), for x > 0. It is
easy to show that limx→0 z(x) = ∞ and limx→∞ z(x) = −∞. Further, we have that

z′(x) =
(β + x)α

αβα

{
−(α + 1)

α

β
− 1

x

(
β

x
− α

)}
.
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If β/x ≥ α, we easily see that z′(x) ≤ 0. Suppose 1/x < α/β, hence it follows that x−1(α−
β/x) − (α + 1)α/β < −β/x2 − α/β < 0. With the results above, we obtain that z(·) maps
(0, ∞) in (−∞, ∞) and is strictly decreasing.

From second equation of (4.11), we have θ = β{h(λ(θ))−1/α − 1}, which is a continuous
and strictly decreasing function (since h(·) is continuous and strictly increasing). Therefore we
obtain that z(β{h(λ)−1/α− 1}) is a continuous and strictly decreasing function (with respect to
λ). Then we conclude that λ̃ exists and is unique and consequently θ̃ also exists and is unique.

It now remains to show that (θ̃, λ̃) is a global maximum point of the function ωGA(θ, λ).
One may check that

∂2ωGA

∂λ̃2
=

−4e−λ̃

λ̃2(1− e−λ̃)2

{
sinh2(λ̃/2)− λ̃2/4

}
≤ 0,

∂2ωGA

∂θ̃∂λ̃
= −αβα(β + θ̃)−(α+1) ≤ 0

and

∂2ωGA

∂θ̃2
= − h(λ̃)2/α

β2(1− h(λ̃)1/α)2

{
1− α(α + 1)λ̃h(λ̃)(1− h(λ̃)1/α)

}
≤ 0.

With this, we have easily that the matrix ∂2ωGA/∂θ̃∂λ̃ is negative definite and hence our claim
follows.

To show a.s. convergence stated in the Lemma, we show that the three first regularity
conditions given by White (1982a) holds. Assumptions 2.1, 2.2 and 2.3 (a) are easily verified
and are left to the reader. The results on existence and uniqueness of the global maximum
point of ωGA(·, ·) proves that the Assumption 2.3 (b) is satisfied. Therefore, from Theorem 2.2
of White (1982b) it follows that θ̂n

a.s.→ θ̃ and λ̂n
a.s.→ λ̃ as n→ ∞. �

Proof of the Theorem 8

By using Lemma 7, this proof may be obtained similarly as proof of the Theorem 6 and
therefore it is omitted. �

4.7 Concluding remarks

We proposed a likelihood ratio test to discriminate exponential-Poisson (EP) and gamma
distributions based on Cox’s statistic. We showed that our test statistic properly normalized
is asymptotically normally distributed for both null hypotheses (data come from an EP or
gamma distribution). With this, we discussed how to determine the minimum sample size
to discriminate the EP and gamma distributions based on the probability of correct selection
and a tolerance level (based on Kolmogorov-Smirnov or Hellinger distances). Future research
would be, for example, to discriminate EP and Weibull distribuions. These distributions have
several properties in common and have been compared in practical situations. To consider
discrimination between these models under some type of censoring would also be of interest,
as made by Dey and Kundu (2012), where the discrimination between Weibull and log-normal
distributions is considered under Type-II censoring.
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CHAPTER 5

Modified moment estimator for the precision parameter in a class of regression
models

Artigo atualmente submetido para publicação.

Resumo

Neste capítulo, consideramos a estimação do parâmetro de precisão para uma extensa classe
de modelos de regressão. Por exemplo, nossos resultados valem para os modelos lineares
generalizados (McCullagh e Nelder, 1989), modelos de quase-verossimilhança (Wedderburn,
1974), entre outros. Sabemos que o estimador do parâmetro de dispersão baseado na estatís-
tica de Pearson (também conhecido como estimador de momentos do parâmetro de dispersão)
funciona bem para os modelos lineares generalizados e de quase-verossimilhança, mas a ver-
são para o parâmetro de precisão deste estimador é significativamente viesado para pequenas
e médias amostras. Propomos, então, um método simples para a redução do viés deste esti-
mador para o parâmetro de precisão. O uso prático da redução do viés é ilustrado através de
estudos de simulação, onde simulações de Monte Carlo são usados para comparar a perfor-
mance desses estimadores.

Palavras-chave: Estimador de momentos; Modelos de regressão; Parâmetro de precisão; Parâmetro
de dispersão.

Abstract

In this chapter, we consider precision parameter estimation for an extensive class of regres-
sion models. For instance, our results hold for generalized linear models (see McCullagh and
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Nelder, 1989), quasi-likelihood models (see Wedderburn, 1974), among others. The Pearson-
based dispersion estimator (which is also known as the moment estimator of the dispersion
parameter) is known to work well for both generalized linear models and quasi-likelihood
models, but the precision parameter version of this estimator is significatively biased in small
and medium sample sizes. We thus propose a simple bias-reduction method to reduce the bias
of this precision parameter estimator. The practical use of such bias reduction is illustrated in
a simulation study, where Monte Carlo simulation is used to compare the finite sample perfor-
mances of all these estimators.

Keywords: Regression models; Precision parameter; Dispersion parameter; Moment estimator.

5.1 Introduction

The aim of this chapter is to study and reduce the bias of the Pearson-based precision pa-
rameter estimation for a large class of regression models. We are considering a large class of
regression models, namely, the class of regression models in which the response variables are
modelled through the mean, say µ, and which the variance has the form φ−1V(µ), where where
V(µ) is a function of the mean, φ−1 = σ2 is called the precision parameter and σ2 is the dis-
persion parameter. To be more specific, consider the independent random variables Y1, . . . , Yn,
n being the sample size, where for each i, E(Yi) = µi and Var(Yi) = σ2V(µi). Further, we
consider a systematic component which is parametrized as g(µi) = ηi = h(x; βi), where g(·) is
a known one-to-one link function, xi = (xi1 , . . . , xiq)

> is a vector of known and fixed values of
q explanatory variables for the ith unit of observation, β = (β1, . . . , βp)>, with p < n, is a set of
unknown parameters to be estimated and h(·; ·) is a continuously differentiable function such
that the n× p derivative matrix X̃ = ∂ηi/∂β has rank p for all β.

This class of regression models covers many important regression models, such as the ge-
neralized linear models (see McCullagh and Nelder, 1989), the exponential family nonlinear
models (see Cordeiro and Paula, 1989), the quasi-likelihood models (see Wedderburn, 1974),
the extended quasi-likelihood models (see Nelder and Pregibon, 1987), the beta regression
models (see Ferrari and Cribari-Neto, 2004), the symmetrical models with mean µ ∈ (0, ∞)

(see Lange et al., 1989), the dispersion models which are modelled through the mean (see
Jørgensen, 1987), among others.

It is known in the literature that the Pearson-based dispersion parameter estimator, say σ̃2

works well for both generalized linear models and the quasi-likelihood models. Nevertheless,
the precision parameter version of this estimator, say φ̃ = σ̃−2, has some drawbacks, for in-
stance, by Jensen inequality, E(φ̃) ≥ 1/E(σ̃2), and thus, in general, the precision parameter
is positively biased. Several models use the precision parameter, for instance, Cordeiro and
McCullagh (1991) parametrized the generalized linear models in terms of the precision pa-
rameter and computed the O(n−1) bias of its maximum likelihood estimator, Jørgensen (1997)
parametrizes the dispersion model in terms of a precision parameter, Ferrari and Cribari-Neto
(2004) defined a class of regression models with beta distributed response variables in which
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the parameterization uses a precision parameter, among others.
The usage of the precision parameter becomes particularly useful when the dispersion pa-

rameter is small. This phenomenon is very common in practice, so that Jørgensen (1987) stu-
died the asympotic properties of the dispersion models when the dispersion, σ2, converges to
zero, or equivalently, when the precision parameter, φ, tends to infinity.

It is known that the Pearson-based dispersion parameter estimator is consistent, which
implies that it is asymptotically unbiased. Since the reciprocal function is continous, we have
also that the precision parameter estimator is also consistent and thus asymptotically unbiased.
This, however, does not imply that the finite sample behavior should be similar, that is, even
though the Pearson-based dispersion parameter estimator has a very small bias, even in small
samples, the precision parameter version is, generally, very biased. This can be easily seen, as
remarked above, by Jensen inequality.

The chief goal of this paper is to obtain a simple modified estimator of the precision param-
eter, preserving all the good large sample asymptotic properties, and having less bias for small
samples when compared to the original estimators. We begin by proposing a bias-reduction
method which preserves the asymptotic properties of this estimator and, generally, reduce the
bias. An alternative approach is given by considering, also, two bootstrap bias adjustment
schemes.

The rest of this chapter unfolds as follows. In Section 5.2, we consider the Pearson-based
dispersion and precision parameter estimators, we give a simple bias-adjusted estimator for
the precision parameter and consider the bootstrap bias-correction schemes. In Section 5.3, we
present simulation results that show that the proposed estimators have better performance in
small samples, in terms of bias, than the original versions. Finally, the chapter is concluded in
Section 5.4 with some final remarks.

5.2 Estimation and bias-reduction

The maximum likelihood estimator of σ2 has, for some regression models, some undesir-
able properties, for instance, the generalized linear models (see McCullagh and Nelder, 1989)
whose maximum likelihood estimator of σ2 depends on the deviance function. For these mod-
els the Pearson-based dispersion parameter estimator

φ̃−1 = σ̃2 =
1

n− p

n

∑
i=1

(yi − µ̂i)
2

V(µ̂i)
, (5.1)

is prefered instead of the usual maximum likelihood estimate, where µ̂i is the maximum like-
lihood of µi. In fact, this follows a long tradition for linear normal models for which the esti-
mator in equation (5.1) is always used and is unbiased. In fact, σ̃2 is the default estimator of σ2

in generalized linear model functions in the statistical programs S-Plus and R.
Therefore, the standard procedure for estimating φ = σ−2 is considering φ̃ = σ̃−2. We now

suggest an heuristic approach of bias-adjusting this estimator. To begin with, we would like to
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remark that, in general and under suitable regularity conditions, the Pearson statistic

X2(µ(β̂), σ2) =
n

∑
i=1

(yi − µ̂i)
2

σ2V(µ̂i)
,

which is in fact equal to the score statistic for goodness of fit for a generalized nonlinear model
(see Smyth, 2003), is approximately distributed as χ2

n−p. This explains why in expression (5.1)
the quantity n − p is used as denominator instead of n. We will now use an analogous ar-
gument to provide a bias-reduced version of φ̃. Accordingly, we have that X2(µ(β̂), σ2) is
approximately χ2

n−k which is in fact the Gamma distribution with parameters (n− p)/2 and 2,
i.e., is approximately Γ((n− p)/2, 2). Therefore, X2(µ(β̂), σ2)−2 is approximately distributed
as Γ−1((n − p)/2, 1/2), i.e., an inverse Gamma distribution with parameters (n − p)/2 and
1/2. This implies that its mean is approximately 1/(n− p− 2), which leads us to the follow-
ing modified estimator for φ:

φ̆ = (n− p− 2)

(
n

∑
i=1

(yi − µ̂i)
2

V(µ̂i)

)−1

. (5.2)

Following the approximation argument, this implies that this estimator is less biased than the
original estimator φ̃, and further, it is obvious that it also has a less variance, which, heuristi-
cally, implies that this estimator has better mean-squared error performance. In the following
Section we compare these estimators by simulation for a number of different models.

For comparison purposes, we consider now a well-known approach to bias-reducing es-
timate of φ. It is based upon the numerical estimation of φ through the parametric bootstrap
resampling scheme introduced by Efron (1979). Consider a random sample

˜
y = (y1, . . . , yn)>

be a random sample of size n, where each element is a random draw from the random variable
Y which has the distribution function F = F(φ). Here, φ is the parameter that indexes the
distribution, and is viewed as a functional of F, i.e., φ = t(F). Finally, let φ̃ be an estimator of φ

based on
˜
y; we write φ̃ = s(

˜
y). The application of the bootstrap method consists in obtaining,

from the original sample
˜
y, a large number of pseudo-samples

˜
y∗ = (y∗1 , . . . , y∗n)>, and then

extracting information from these samples to improve inference. The bootstrap samples are
obtained from F(φ̃), which we shall denote as Fφ̃, through sampling with replacement.

Let BF(φ̃, φ) be the bias of the estimator φ̃ = s(
˜
y), that is,

BF(φ̃, φ) = EF[φ̃− φ] = EF[s(
˜
y)]− t(F),

where the subscript F indicates that expectation is taken with respect to F . The bootstrap
estimators of the bias are obtained by replacing the true distribution F, which generated the
original sample, with Fφ̃ in the above expression. Therefore, the estimates of the bias are given
by

BFφ̃
(φ̃, φ) = EFφ̃

[s(
˜
y)]− t(Fφ̃).

If B bootstrap samples (
˜
y∗1,

˜
y∗2, . . . ,

˜
y∗B) are generated independently from the original

sample
˜
y, and the respective bootstrap replications (φ̃∗1, φ̃∗2, . . . , φ̃∗B) are calculated, where
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φ̃∗b = s(
˜
y∗b), b = 1, . . . , B, then it is possible to approximate the bootstrap expectations

EFφ̃
[s(

˜
y)] by the mean φ̃∗(·) = 1

B ∑B
i=1 φ̃∗b. Therefore, the bootstrap bias estimates based on

B replications of φ̃ are

B̃F(φ̃, φ) = φ̃∗(·) − s(
˜
y).

By using the bootstrap bias estimate presented above, we arrive at the following bias-
corrected, to order O(n−1), estimators:

φboot = s(
˜
y)− B̃F(φ̃, φ) = 2φ̃− φ̃∗(·).

The corrected estimate φboot were called constant-bias-correcting (CBC) estimates by Mac-
Kinnon and Smith (1998).

5.3 Numerical results

In this section, we perform some numerical experiments to observe how the result derived
in Section 5.2 works for different sample sizes. We here are interested in comparing, via Monte
Carlo simulation, the finite-sample performance of the modified precision parameter compar-
ing to the true Pearson-based and the parametric bootstrap method.

The systematic component used in the numerical exercise is

g(µi) = β0 + β1xi1 + β2xi2, i = 1, . . . , n,

where the log link function was used for the lognormal, gamma and inverse gamma models.
For the inverse Gaussian model, we set the reciprocal link function. The true values were
taken as β0 = 2, β1 = 3 and β2 = 0.5. The explanatory variables x1 and x2 were generated
from an exponential distribution with mean equal to 1/3 and an uniform distribution on (0, 2)
of size n, respectively. It can be done by using the inversion method. We emphasize that the
values of X were held constant throughout the simulations. We defined the sample sizes as
n = 10, 20, 40, 60 and 100. The total number of Monte Carlo replications was set at 5000 for
each sample size. All simulations were performed using the R programming language (see, for
instance, R Core Team, 2012).

In each of the 5000 replications, we fitted the model and computed the modified precision
parameter (φ̆), its Pearson-based (φ̃) and parametric bootstrap (φboot) versions. The number of
bootstrap replications was set to 600. In order to compare the results, we computed, for each
estimator, the mean and mean squared error (MSE) of estimates for all sample sizes. Tables
5.1–5.4 present the simulation results for φ = 20, 60, 100, 200 and 1000.

Tables 5.1–5.4 present simulation results for the lognormal, inverse Gaussian, gamma and
inverse gamma models. Initially, we note that, for all considered models and values of φ,
the MSEs of the modified estimators are smaller than those of the original Pearson-based es-
timator, for all given sample sizes. By this fact, we conclude that the precision parameter is
better estimated by the modified estimators than by the Pearson-based estimators. On the
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other hand, although, for some cases, the bootstrap estimates provide better results for large
sample sizes, the modified estimator presents great superiority for small and moderate sample
sizes. This phenomenon is observed in all models. Moreover, the bootstrap MSEs are very
close to the MSE of the modified estimator, and the computation of the parametric bootstrap
biases is computer intensive, whereas the modified estimator is not. Therefore, the proposed
modification is effective.

Another step is to verify the impact of the proposed modified estimator on the model pa-
rameters. For that, we now turn to the evaluation of confidence intervals with nominal cover-
ages 1− α = 0.90 and 0.99 for each parameter considering the three estimatives (φ̂, φ̆ and φboot).
All confidence intervals were defined such that the probability that the true parameter value
belongs to the interval is 1− α, the probability that the true parameter value is smaller than
the lower limit of the interval is α/2 and the probability that the true value of the parameter is
greater than the upper limit of the interval is α/2, for 0 < α < 1/2. Tables 5.5 - 5.8 contain the
confidence intervals constructed from 5000 replications, for sample sizes n = 10, 20, 40, 60, 80
and 100. An important advantage that the modified estimator has over the others, is that
the confidence intervals induced by the modified estimator has smaller lengths in comparison
with the confidence intervals.

Table 5.1: Empirical means and mean squared errors (in parentheses) for the lognormal model.

φ Scheme n = 10 n = 20 n = 40 n = 60 n = 100

20 φ̃ 28.8564 (574.06) 23.2527 (95.3690) 21.4939 (33.2830) 21.0774 (20.2240) 20.7005 (11.2170)

φ̆ 20.6117 (253.24) 20.5171 (66.2800) 20.3321 (27.8950) 20.3378 (17.8630) 20.2737 (10.3630)

φboot 16.2350 (200.57) 19.5138 (64.4910) 19.8911 (27.6500) 20.0425 (17.7020) 20.1013 (10.3170)

60 φ̃ 86.1223 (6766) 68.3346 (787.30) 63.7242 (247.88) 62.7463 (166.89) 61.7247 (90.4200)

φ̆ 61.5160 (3106) 60.2952 (558.95) 60.2796 (221.81) 60.5446 (148.66) 60.4521 (84.0810)

φboot 50.6719 (2333) 58.5641 (544.39) 59.7283 (220.63) 60.1997 (148.16) 60.2588 (84.2180)

100 φ̃ 139.74 (13406) 114.38 (2269) 105.35 (709.71) 103.46 (422.50) 101.85 (234.68)

φ̆ 99.8178 (6034) 100.93 (1607) 99.6568 (609.54) 99.8342 (382.22) 99.7521 (221.87)

φboot 82.7706 (4675) 98.4285 (1556) 98.9649 (607.17) 99.4564 (382.81) 99.5337 (222.56)

200 φ̃ 285.57 (64944) 227.82 (9149) 211.73 (2876) 207.39 (1673) 204.55 (928.64)

φ̆ 203.98 (29414) 201.02 (6521) 200.28 (2451) 200.11 (1506) 200.33 (870.98)

φboot 170.27 (22368) 196.81 (6317) 199.28 (2444) 199.53 (1504) 200.08 (873.08)

1000 φ̃ 1407 (1435631) 1127 (208646) 1061 (70940) 1033 (41116) 1020 (23215)

φ̆ 1005 (647896) 995.24 (149720) 1004 (60089) 997.04 (37258) 999.33 (21870)

φboot 842.03 (492631) 976.68 (145371) 1000 (59860) 995.58 (37325) 998.75 (21888)
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Table 5.2: Empirical means and mean squared errors (in parentheses) for the inverse Gaussian model.

φ Scheme n = 10 n = 20 n = 40 n = 60 n = 100

20 φ̃ 29.8287 (665.39) 22.7279 (81.3944) 20.8347 (29.7146) 20.5684 (14.2895) 20.3233 (8.2507)

φ̆ 21.3062 (291.90) 20.0540 (57.5788) 19.7085 (26.0505) 19.8467 (13.0270) 19.9043 (7.8228)

φboot 17.5704 (263.94) 19.4785 (58.4670) 19.5625 (26.7176) 19.7587 (13.3772) 19.8648 (8.0879)

60 φ̃ 83.5283 (4171) 68.0762 (820.63) 63.9492 (245.94) 62.6698 (157.65) 60.8253 (84.3160)

φ̆ 59.6631 (1846) 60.0672 (588.12) 60.4925 (206.36) 60.4709 (140.36) 59.5712 (80.4051)

φboot 49.7992 (1799) 58.9642 (596.27) 60.1954 (209.41) 60.2092 (142.44) 59.4888 (81.6685)

100 φ̃ 130.45 (8709) 115.90 (2381) 104.79 (669.57) 103.59 (410.85) 102.82 (208.11)

φ̆ 93.1804 (4017) 102.27 (1662) 99.1280 (579.35) 99.9547 (370.53) 100.70 (192.48)

φboot 79.6873 (4398) 100.34 (1739) 98.1418 (583.88) 99.6447 (381.20) 100.57 (198.67)

200 φ̃ 286.82 (68230) 225.04 (8870) 212.79 (2701) 207.97 (1668) 203.19 (878.27)

φ̆ 204.87 (30989) 198.56 (6420) 201.29 (2272) 200.67 (1494) 199.00 (833.65)

φboot 173.69 (30585) 194.94 (6606) 201.38 (2296) 200.56 (1507) 198.89 (842.49)

1000 φ̃ 1430 (1350082) 1148 (223342) 1069 (80918) 1034 (39495) 1018 (19531)

φ̆ 1021 (594621) 1013 (156910) 1011 (68197) 998.41 (35653) 997.17 (18426)

φboot 848.73 (496510) 991.62 (153001) 1010 (70552) 995.24 (36007) 995.57 (18703)

Table 5.3: Empirical means and mean squared errors (in parentheses) for the gamma model.

φ Scheme n = 10 n = 20 n = 40 n = 60 n = 100

20 φ̃ 27.8171 (468.71) 22.7339 (85.0776) 21.2704 (30.2228) 20.7840 (17.6732) 20.4582 (9.5883)

φ̆ 19.8694 (207.98) 20.0594 (60.4212) 20.1206 (25.6142) 20.0547 (15.8854) 20.0364 (8.9969)

φboot 16.6226 (162.86) 19.5557 (59.1499) 19.9629 (25.4913) 19.9596 (15.8518) 19.9843 (8.9971)

60 φ̃ 85.9499 (6099) 68.4750 (808.96) 63.4458 (268.77) 62.0315 (152.95) 61.1101 (79.3470)

φ̆ 61.3928 (2770) 60.4191 (574.07) 60.0162 (229.87) 59.8550 (138.59) 59.8501 (74.9491)

φboot 51.5405 (2069) 59.2205 (555.83) 59.7254 (228.69) 59.6980 (138.80) 59.7881 (74.9527)

100 φ̃ 138.69 (12213) 113.19 (2001) 105.98 (727.74) 104.06 (434.99) 102.14 (228.01)

φ̆ 99.0652 (5468) 99.8750 (1422) 100.25 (619.23) 100.41 (389.79) 100.04 (214.29)

φboot 83.1933 (4264) 97.9658 (1381) 99.8159 (617.34) 100.18 (387.92) 99.9528 (214.25)

200 φ̃ 281.06 (56322) 227.75 (8839) 211.55 (2772) 207.04 (1705) 204.55 (941.40)

φ̆ 200.76 (25384) 200.96 (6283) 200.11 (2361) 199.77 (1542) 200.33 (883.25)

φboot 168.60 (18874) 197.28 (6103) 199.40 (2358) 199.39 (1540) 200.21 (883.65)

1000 φ̃ 1406 (1825164) 1128 (211485) 1052 (68277) 1035 (41367) 1018 (23268)

φ̆ 1004 (846977) 995.39 (151895) 995.93 (58614) 999.24 (37338) 997.92 (21979)

φboot 842.81 (625975) 977.08 (147072) 992.54 (58439) 997.99 (37328) 997.45 (22061)
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Table 5.4: Empirical means and mean squared errors (in parentheses) for the inverse gamma model.

φ Scheme n = 10 n = 20 n = 40 n = 60 n = 100

20 φ̃ 30.4941 (684.36) 24.0735 (121.44) 22.0650 (42.9141) 21.2897 (24.0600) 20.8374 (13.6660)

φ̆ 21.7815 (296.15) 21.2414 (83.1656) 20.8723 (35.3454) 20.5427 (21.1470) 20.4078 (12.6019)

φboot 15.9675 (231.00) 19.4838 (79.6613) 20.0314 (34.5121) 19.9745 (20.9068) 20.0533 (12.4849)

60 φ̃ 86.0169 (5051) 69.3353 (841.40) 64.1442 (287.87) 62.7063 (172.44) 61.7765 (94.5649)

φ̆ 61.4407 (2233) 61.1782 (588.60) 60.6770 (242.68) 60.5061 (153.98) 60.5027 (87.9312)

φboot 49.2257 (1698) 58.7376 (568.69) 59.7042 (241.02) 59.8940 (153.48) 60.1533 (87.8196)

100 φ̃ 142.39 (15507) 114.32 (2251) 106.53 (777.96) 104.05 (447.63) 102.00 (238.87)

φ̆ 101.71 (6998) 100.87 (1593) 100.77 (658.60) 100.40 (401.63) 99.8965 (225.30)

φboot 82.9138 (5259) 97.7712 (1546) 99.6890 (655.32) 99.7520 (400.71) 99.5288 (225.94)

200 φ̃ 279.77 (50629) 225.57 (8950) 212.62 (2969) 207.22 (1765) 204.75 (949.44)

φ̆ 199.84 (22584) 199.01 (6460) 201.13 (2516) 199.95 (1595) 200.53 (889.34)

φboot 165.81 (17299) 194.10 (6287) 199.72 (2504) 199.17 (1592) 200.15 (889.92)

1000 φ̃ 1391 (1211563) 1138 (221281) 1052 (72199) 1034 (42606) 1025 (23791)

φ̆ 993.90 (539996) 1004 (157416) 995.43 (62177) 998.25 (38560) 1004 (22222)

φboot 831.95 (419369) 985.07 (152770) 991.48 (61924) 996.42 (38510) 1003 (22232)

5.4 Concluding remarks

We reduce the bias of the Pearson-based precision parameter estimation for a large class of
regression models. Our results holds for generalized linear models (see McCullagh and Nelder,
1989), quasi-likelihood models (see Wedderburn, 1974), among others. We used simulation
to conclude the superiority of the modified moment estimator over the usual and bootstrap
methods, with regard to both bias reduction and mean square error. Further, an important
advantage that the modified estimator has over the others, is that the confidence intervals
induced by the modified estimator has smaller lengths in comparison with the confidence
intervals. For future research, we can apply the result obtained in Section 2 for a general class
of beta regression models.
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Table 5.5: Empirical confidence intervals for the parameters of the lognormal regression parameters.

Parameter Scheme
n = 10 n = 20 n = 40

90% 99% 90% 99% 90% 99%

β0 φ̃ [1.7084, 2.3047] [1.5453, 2.4702] [1.8090, 2.1928] [1.7013, 2.3006] [1.8628, 2.1330] [1.7978, 2.2140]

φ̆ [1.7264, 2.2739] [1.5009, 2.4842] [1.8391, 2.1570] [1.7066, 2.2816] [1.8885, 2.1046] [1.8097, 2.1954]

φboot [1.6838, 2.3165] [1.4256, 2.5596] [1.8344, 2.1617] [1.6982, 2.2900] [1.8872, 2.1059] [1.8075, 2.1976]

β1 φ̃ [2.7093, 3.2829] [2.5928, 3.4353] [2.8317, 3.1607] [2.7372, 3.2686] [2.8890, 3.1087] [2.8287, 3.1785]

φ̆ [2.7304, 3.2573] [2.5601, 3.4583] [2.8586, 3.1308] [2.7443, 3.2541] [2.9101, 3.0858] [2.8390, 3.1638]

φboot [2.7004, 3.2872] [2.5096, 3.5087] [2.8564, 3.1330] [2.7402, 3.2582] [2.9096, 3.0863] [2.8382, 3.1646]

β2 φ̃ [0.3681, 0.6276] [0.2973, 0.7082] [0.4103, 0.5851] [0.3673, 0.6373] [0.4390, 0.5587] [0.4046, 0.5920]

φ̆ [0.3785, 0.6172] [0.2838, 0.7217] [0.4253, 0.5701] [0.3726, 0.6319] [0.4509, 0.5468] [0.4113, 0.5852]

φboot [0.3650, 0.6306] [0.2590, 0.7465] [0.4242, 0.5712] [0.3705, 0.6340] [0.4506, 0.5470] [0.4108, 0.5857]

Parameter Scheme
n = 60 n = 80 n = 100

90% 99% 90% 99% 90% 99%

β0 φ̃ [1.8890, 2.1036] [1.8332, 2.1712] [1.9021, 2.0862] [1.8523, 2.1428] [1.9158, 2.0814] [1.8733, 2.1320]

φ̆ [1.9104, 2.0804] [1.8449, 2.1552] [1.9209, 2.0661] [1.8632, 2.1288] [1.9330, 2.0632] [1.8835, 2.1193]

φboot [1.9098, 2.0810] [1.8437, 2.1564] [1.9205, 2.0665] [1.8624, 2.1295] [1.9327, 2.0635] [1.8829, 2.1199]

β1 φ̃ [2.9109, 3.0837] [2.8678, 3.1378] [2.9223, 3.0716] [2.8826, 3.1165] [2.9335, 3.0656] [2.8991, 3.1056]

φ̆ [2.9282, 3.0651] [2.8772, 3.1254] [2.9375, 3.0553] [2.8915, 3.1052] [2.9471, 3.0511] [2.9072, 3.0956]

φboot [2.9280, 3.0653] [2.8768, 3.1257] [2.9374, 3.0555] [2.8913, 3.1054] [2.9470, 3.0512] [2.9070, 3.0957]

β2 φ̃ [0.4518, 0.5479] [0.4260, 0.5763] [0.4600, 0.5424] [0.4338, 0.5646] [0.4626, 0.5377] [0.4408, 0.5571]

φ̆ [0.4618, 0.5380] [0.4321, 0.5702] [0.4686, 0.5338] [0.4394, 0.5591] [0.4706, 0.5297] [0.4459, 0.5520]

φboot [0.4617, 0.5381] [0.4319, 0.5704] [0.4685, 0.5338] [0.4392, 0.5592] [0.4705, 0.5298] [0.4458, 0.5521]

106



Table 5.6: Empirical confidence intervals for the parameters of the inverse gaussian regression param-
eters.

Parameter Scheme
n = 10 n = 20 n = 40

90% 99% 90% 99% 90% 99%

β0 φ̃ [1.7311, 2.3268] [1.5626, 2.4954] [1.8137, 2.2069] [1.7025, 2.3181] [1.8684, 2.1354] [1.7962, 2.2086]

φ̆ [1.7545, 2.3034] [1.5307, 2.5272] [1.8474, 2.1732] [1.7146, 2.3060] [1.8950, 2.1088] [1.8110, 2.1939]

φboot [1.7274, 2.3305] [1.4816, 2.5763] [1.8456, 2.1750] [1.7114, 2.3092] [1.8947, 2.1091] [1.8104, 2.1944]

β1 φ̃ [2.4226, 3.5866] [2.0932, 3.9161] [2.6398, 3.3267] [2.4454, 3.5211] [2.7610, 3.2250] [2.6405, 3.3719]

φ̆ [2.4686, 3.5407] [2.0316, 3.9777] [2.6985, 3.2680] [2.4664, 3.5002] [2.8072, 3.1788] [2.6666, 3.3458]

φboot [2.4166, 3.5926] [1.9372, 4.0720] [2.6956, 3.2709] [2.4612, 3.5053] [2.8067, 3.1794] [2.6657, 3.3467]

β2 φ̃ [0.2649, 0.7532] [0.1267, 0.8914] [0.3453, 0.6571] [0.2570, 0.7454] [0.3931, 0.6122] [0.3334, 0.6724]

φ̆ [0.2842, 0.7339] [0.1008, 0.9172] [0.3719, 0.6304] [0.2666, 0.7358] [0.4150, 0.5904] [0.3456, 0.6603]

φboot [0.2626, 0.7554] [0.0618, 0.9563] [0.3706, 0.6318] [0.2642, 0.7382] [0.4147, 0.5906] [0.3452, 0.6606]

Parameter Scheme
n = 60 n = 80 n = 100

90% 99% 90% 99% 90% 99%

β0 φ̃ [1.8975, 2.1132] [1.8328, 2.1713] [1.9080, 2.0925] [1.8560, 2.1470] [1.9155, 2.0818] [1.8686, 2.1283]

φ̆ [1.9199, 2.0909] [1.8465, 2.1576] [1.9274, 2.0730] [1.8683, 2.1347] [1.9332, 2.0641] [1.8800, 2.1169]

φboot [1.9197, 2.0910] [1.8463, 2.1578] [1.9274, 2.0731] [1.8682, 2.1349] [1.9331, 2.0642] [1.8800, 2.1170]

β1 φ̃ [2.8084, 3.1846] [2.7121, 3.2913] [2.8407, 3.1594] [2.7415, 3.2462] [2.8578, 3.1449] [2.7824, 3.2293]

φ̆ [2.8473, 3.1456] [2.7355, 3.2679] [2.8742, 3.1259] [2.7630, 3.2246] [2.8884, 3.1143] [2.8019, 3.2098]

φboot [2.8471, 3.1458] [2.7351, 3.2683] [2.8741, 3.1260] [2.7628, 3.2248] [2.8883, 3.1144] [2.8018, 3.2099]

β2 φ̃ [0.4120, 0.5873] [0.3605, 0.6339] [0.4261, 0.5762] [0.3872, 0.6202] [0.4309, 0.5644] [0.3965, 0.6083]

φ̆ [0.4301, 0.5692] [0.3715, 0.6228] [0.4419, 0.5604] [0.3971, 0.6103] [0.4451, 0.5502] [0.4058, 0.5990]

φboot [0.4300, 0.5693] [0.3714, 0.6230] [0.4418, 0.5604] [0.3970, 0.6104] [0.4451, 0.5502] [0.4057, 0.5991]
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Table 5.7: Empirical confidence intervals for the parameters of the gamma regression parameters.

Parameter Scheme
n = 10 n = 20 n = 40

90% 99% 90% 99% 90% 99%

β0 φ̃ [1.8278, 2.1841] [1.7301, 2.2883] [1.8885, 2.1134] [1.8263, 2.1785] [1.9259, 2.0798] [1.8830, 2.1240]

φ̆ [1.8400, 2.1675] [1.7064, 2.3010] [1.9069, 2.0931] [1.8310, 2.1691] [1.9408, 2.0640] [1.8906, 2.1141]

φboot [1.8238, 2.1836] [1.6771, 2.3303] [1.9059, 2.0941] [1.8292, 2.1708] [1.9407, 2.0641] [1.8903, 2.1144]

β1 φ̃ [2.7300, 3.2868] [2.5749, 3.4474] [2.8323, 3.1695] [2.7390, 3.2672] [2.8868, 3.1107] [2.8248, 3.1754]

φ̆ [2.7505, 3.2626] [2.5417, 3.4713] [2.8597, 3.1391] [2.7458, 3.2530] [2.9082, 3.0875] [2.8351, 3.1607]

φboot [2.7256, 3.2875] [2.4966, 3.5165] [2.8581, 3.1408] [2.7428, 3.2560] [2.9080, 3.0877] [2.8347, 3.1610]

β2 φ̃ [0.3625, 0.6378] [0.2846, 0.7158] [0.4116, 0.5842] [0.3627, 0.6330] [0.4398, 0.5595] [0.4059, 0.5934]

φ̆ [0.3734, 0.6268] [0.2702, 0.7301] [0.4264, 0.5694] [0.3681, 0.6277] [0.4517, 0.5476] [0.4126, 0.5867]

φboot [0.3608, 0.6394] [0.2472, 0.7530] [0.4256, 0.5702] [0.3667, 0.6291] [0.4516, 0.5477] [0.4124, 0.5869]

Parameter Scheme
n = 60 n = 80 n = 100

90% 99% 90% 99% 90% 99%

β0 φ [1.9368, 2.0621] [1.9018, 2.0980] [1.9470, 2.0541] [1.9171, 2.0848] [1.9511, 2.0466] [1.9243, 2.0739]

φ̆ [1.9495, 2.0488] [1.9090, 2.0893] [1.9581, 2.0427] [1.9236, 2.0771] [1.9611, 2.0363] [1.9304, 2.0670]

φboot [1.9495, 2.0489] [1.9089, 2.0894] [1.9581, 2.0427] [1.9236, 2.0771] [1.9611, 2.0363] [1.9304, 2.0670]

β1 φ̃ [2.9159, 3.0893] [2.8678, 3.1393] [2.9231, 3.0737] [2.8811, 3.1171] [2.9327, 3.0649] [2.8959, 3.1030]

φ̆ [2.9333, 3.0707] [2.8773, 3.1267] [2.9385, 3.0573] [2.8900, 3.1058] [2.9465, 3.0504] [2.9041, 3.0928]

φboot [2.9333, 3.0707] [2.8772, 3.1268] [2.9384, 3.0574] [2.8900, 3.1058] [2.9464, 3.0504] [2.9041, 3.0928]

β2 φ̃ [0.4517, 0.5482] [0.4243, 0.5755] [0.4592, 0.5432] [0.4354, 0.5670] [0.4648, 0.5386] [0.4439, 0.5594]

φ̆ [0.4616, 0.5382] [0.4304, 0.5694] [0.4681, 0.5344] [0.4410, 0.5614] [0.4726, 0.5307] [0.4490, 0.5544]

φboot [0.4616, 0.5382] [0.4303, 0.5695] [0.4680, 0.5344] [0.4500, 0.5614] [0.4726, 0.5307] [0.4489, 0.5544]
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Table 5.8: Empirical confidence intervals for the parameters of the inverse gamma regression parame-
ters.

Parameter Scheme
n = 10 n = 20 n = 40

90% 99% 90% 99% 90% 99%

β0 φ̃ [1.8255, 2.1616] [1.7304, 2.2567] [1.8993, 2.1152] [1.8382, 2.1763] [1.9167, 2.0716] [1.8728, 2.1154]

φ̆ [1.8386, 2.1484] [1.7123, 2.2748] [1.9177, 2.0968] [1.8447, 2.1698] [1.9321, 2.0562] [1.8815, 2.1067]

φboot [1.8128, 2.1743] [1.6654, 2.3216] [1.9156, 2.0993] [1.8401, 2.1745] [1.9314, 2.0569] [1.8802, 2.1080]

β1 φ̃ [2.7371, 3.2658] [2.5613, 3.4463] [2.8221, 3.1593] [2.7267, 3.2547] [2.8867, 3.1027] [2.8255, 3.1639]

φ̆ [2.7578, 3.2452] [2.5310, 3.4766] [2.8509, 3.1305] [2.7369, 3.2445] [2.9082, 3.0812] [2.8376, 3.1518]

φboot [2.7129, 3.2901] [2.5502, 3.4500] [2.8461, 3.1353] [2.7283, 3.2531] [2.9074, 3.0820] [2.8363, 3.1531]

β2 φ̃ [0.3669, 0.6369] [0.2904, 0.7134] [0.4132, 0.5884] [0.3637, 0.6380] [0.4345, 0.5552] [0.4003, 0.5893]

φ̆ [0.3774, 0.6264] [0.2759, 0.7279] [0.4282, 0.5735] [0.3690, 0.6327] [0.4465, 0.5432] [0.4071, 0.5826]

φboot [0.3567, 0.6589] [0.3026, 0.7199] [0.4260, 0.5757] [0.3649, 0.6368] [0.4461, 0.5435] [0.4065, 0.5832]

Parameter Scheme
n = 60 n = 80 n = 100

90% 99% 90% 99% 90% 99%

β0 φ̃ [1.9340, 2.0636] [1.9050, 2.0986] [1.9456, 2.0549] [1.9147, 2.0859] [1.9561, 2.0514] [1.9291, 2.0784]

φ̆ [1.9527, 2.0508] [1.9128, 2.0908] [1.9572, 2.0434] [1.9220, 2.0786] [1.9662, 2.0413] [1.9356, 2.0719]

φboot [1.9523, 2.0512] [1.9120, 2.0915] [1.9569, 2.0437] [1.9215, 2.0790] [1.9660, 2.0415] [1.9352, 2.0722]

β1 φ̃ [2.9148, 3.0973] [2.8631, 3.1489] [2.9194, 3.0688] [2.8771, 3.1111] [2.9359, 3.0684] [2.8984, 3.1059]

φ̆ [2.9336, 3.0784] [2.8746, 3.1374] [2.9351, 3.0530] [2.8870, 3.1011] [2.9500, 3.0543] [2.9075, 3.0969]

φboot [2.9333, 3.0787] [2.8741, 3.1380] [2.9348, 3.0533] [2.8866, 3.1016] [2.9499, 3.0544] [2.9074, 3.0970]

β2 φ̃ [0.4542, 0.5495] [0.4273, 0.5764] [0.4557, 0.5401] [0.4318, 0.5640] [0.4585, 0.5330] [0.4374, 0.5541]

φ̆ [0.4641, 0.5396] [0.4333, 0.5704] [0.4646, 0.5312] [0.4374, 0.5584] [0.46640.5251] [0.4425, 0.5490]

φboot [0.4639, 0.5398] [0.4330, 0.5707] [0.4646, 0.5313] [0.4374, 0.5585] [0.4663, 0.5251] [0.4424, 0.5491]
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