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Resumo

Este trabalho estd dividido em quatro capitulos independentes. No primeiro, introduzi-
mos um método geral para obter distribui¢des de probabilidade mais flexiveis. Esse método
consiste em compor duas classes de distribuicdes: as classes Weibull estendida e de séries de
poténcias. O procedimento de composi¢do segue a mesma ideia implementada por Adamidis e
Loukas (1998) e, mais recentemente, por Morais e Barreto-Souza (2011). Algumas propriedades
matemadticas da nova classe sdo estudadas, incluindo momentos e fun¢do geradora. O método
de méxima verossimilhanga é utilizado para obter estimativas dos pardmetros. A utilidade
da nova classe é exemplicada através de dois exemplos com conjuntos de dados reais. No
segundo capitulo, introduzimos e estudamos as propriedades matemaéticas de um novo gera-
dor de distribui¢des de probabilidade continuas, que adiciona trés parametros extras. A nova
densidade pode ser expressa como combinagdo linear de densidades exponencializadas da
distribuigdo de origem. Obtemos expressdes explicitas para os momentos ordinarios e incom-
pletos, fungdes quantilica e geradora, distribuigdo assintética de valores extremos, entropias
de Shannon e Rényi e estatisticas de ordem, que valem para qualquer distribuicdo de origem.
O método de maxima verossimilhanga é utilizado para obter estimativas dos parametros. A
potencialidade da nova classe é exemplicada através de dois exemplos com conjuntos de da-
dos reais. No terceiro, propomos um teste da razdo de verossimilhangas baseado na estatistica
de Cox (1961) para discriminar as distribui¢des exponencial-Poisson e gama. Para isso, con-
sideramos as duas hip6teses nulas: os dados seguem distribui¢do exponencial-Poisson/gama.
A distribuicdo do logaritmo da razdo de verossimilhangas sob a hipétese nula é obtida para os
dois casos. Além disso, determinamos o tamanho minimo de amostra para discriminar as duas
distribui¢des quando a probabilidade de selegdo correta é previamente estabelecida. Estudos
de simulagéo e aplicacdo a dois conjuntos de dados reais exemplificam o comportamento e a
utilidade da metodologia proposta, respectivamente. Por fim, propomos um estimador mod-
ificado para o parametro de precisdo para uma extensa classe de modelos de regressdo. Por
exemplo, os resultados propostos valem para os modelos lineares generalizados (McCullagh e
Nelder, 1989), modelos de quase-verossimilhanga (Wedderburn, 1974), entre outros. Sabemos
que estimador de Pearson para o pardmetro de dispersdo funciona bem para ambos os mod-
elos de regressdo citados, mas sua versdo para o pardmetro de precisdo € significativamente
viesada para pequenos e médios tamanhos de amostra. Propomos, entdo, um método sim-
ples para a redugdo do viés do parametro de precisdo. Estudos de simulagado sdo usados para
comparar o desempenho do estimador proposto com outros estimadores.

Palavras-chave: Classe Kumaraswamy generalizada; Distribui¢cdo Weibull estendida; Distribui-
¢do exponencial-Poisson; Distribui¢do gama; Parametro de dispersdo; Parametro de precisdo;
Séries de poténcia.



Abstract

This work is divided in four independent papers. In the first one, we introduce a general
method for obtaining more flexible new distributions by compounding the extended Weibull
and power series distributions. The compounding procedure follows the same set-up carried
out by Adamidis and Loukas (1998) and, more recently, by Morais and Barreto-Souza (2011).
Some mathematical properties of the new class are studied including moments and generating
function. The method of maximum likelihood is used for estimating the model parameters.
We illustrate the usefulness of the new distributions by means of two applications to real data
sets. In the second chapter, we introduce and study general mathematical properties of a new
generator of continuous distributions with three extra parameters. The new density function
can be expressed as a linear combination of exponentiated densities based on the same baseline
distribution. Explicit expressions for the ordinary and incomplete moments, quantile and gen-
erating functions, asymptotic distribution of the extreme values, Shannon and Rényi entropies
and order statistics, which hold for any baseline model, are determined. We discuss the esti-
mation of the model parameters by maximum likelihood and illustrate the potentiality of the
family by means of two applications to real data. In the third chapter, we propose a likelihood
ratio test based on Cox’s statistic Cox (1961) to discriminate between the exponential-Poisson
and gamma distributions. We consider two null hypothesis: the data come from exponential-
Poisson/gamma distribution. The asymptotic distribution of the logarithm of the ratio of the
maximized likelihoods under the null hypothesis is provided for both cases. We also determine
the minimum sample size required for discriminating the two distributions when the proba-
bility of correct selection is previously stated. A simulation study and applications to real data
sets are presented in order to show the behavior and usefulness of the proposed methodol-
ogy. Finally, we propose a modified estimator for an extensive class of regression models. For
instance, our results hold for generalized linear models (see McCullagh and Nelder, 1989),
quasi-likelihood models (see Wedderburn, 1974), among others. The Pearson-based disper-
sion estimator is known to work well for both generalized linear models and quasi-likelihood
models, but the precision parameter version of this estimator is significatively biased in small
and medium sample sizes. We thus propose a simple bias-reduction method to reduce the
bias of this precision parameter estimator. Monte Carlo simulation is used to compare the
performance of the proposed estimator against others.

Keywords: Dispersion parameter; Exponential-Poisson distribution; Extended Weibull distri-
bution; Gamma distribution; Generalized Kumaraswamy class; Power series distribution; Pre-
cision parameter.
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CHAPTER 1

Introduction

This thesis is divided in three parts, composed by four independent papers. Two of them
introduce new families of distributions; the other two deal with a method to discriminate
the exponential-Poisson and gamma distributions, and a modified moment estimator for a
general class of regression models, respectively. So, we decide that, for this thesis, each of the
papers fills a distinct chapter. Therefore, each chapter can be read independently to each other,
since each is self-contained. Additionally, we emphasize that each chapter contains a thorough
introduction to the presented matter, so this general introduction only shows, quite briefly, the
context of each chapter.

In Chapters 1 and 2, we are interested in the study of probability distributions defined on
the positive real line. Roughly speaking, any probability distribution defined on the positive
real line can be considered as a lifetime distribution. Obviously, not all such distributions are
meaningful for describing an ageing (lifetime) phenomenon. The analysis of lifetime data is
an important topic in statistical literature, since its applications range from industrial applica-
tions to biological studies. Typically, "lifetime" refers to the time until a specified event, not
necessarily the end of a life, such as the life span of a device before it fails, the survival time
of a patient with serious disease from the date of diagnosis or major treatment, the time un-
til retirement, the time until marriage/divorce/remarriage amongst others. Because different
shapes of lifetime distributions are required for fitting various types of lifetime data, nume-
rous lifetime models were proposed and tested. In fact, Chapters 1 and 2 refer to methods of
construction of lifetime distributions that allow to expand the range of shapes of the hazard
rate function.

More specifically, Chapter 1 introduces a class of univariate distributions obtained by com-
pounding the extended Weibull and power series distributions. The compounding proce-
dure follows the same one carried out by Adamidis and Loukas (1998) or, more generally,
by Chahkandi and Ganjali (2009) and Morais and Barreto-Souza (2011). The hazard function

12



of the proposed class can be decreasing, increasing, bathtub and upside down bathtub. This
extension can be derived as follows. Given N, let X, ..., Xy be independent and identically
distributed (iid) continuous random variables following the extended Weibull distribution.
Let X(;) = min {Xz},lil If we assume that the X;’s are independent of N, which follows a
power series distribution (truncated at zero), then X(;) has the extended Weibull power series
distribution. To attach a general interpretation to this extension, we may think of a situation
where failure, which follows the extended Weibull distribution, occurs due to the presence of
an unknown number, say N (which follows the power series distributions), of initial defects of
the same kind (a number of semiconductors from a defective lot, for example). The X;’s repre-
sent their lifetimes and each defect can be detected only after causing failure, in which case it
is repaired perfectly. Then, the distributional assumptions given earlier lead to the extended
Weibull power series distribution for modeling the time to the first failure.

Chapter 2 presents a new family of probability distributions, which is based on the alterna-
tive gamma-generator defined by Ristic and Balakrishnan (2011) and extends the generalized
Kumaraswamy class (Cordeiro and de Castro, 2011) of distributions, the proportional and re-
versed hazard rate models, Marshal-Olkin family of distributions and other sub-families. This
class provides greater flexibility of its tails and can be widely applied in many areas of en-
gineering and biology. The hazard function of the new family can be decreasing, increasing,
bathtub and upside down bathtub. For given parameters values, a physical interpretation of
the new distribution can be given as follows. Consider a system formed by & independent
components and that each component is made up of A independent subcomponents. Suppose
that the system fails if any of the « components fails and that each component fails if all of
the A subcomponents fail. Let Xji, ..., X;) denote the lifetimes of the subcomponents within
the jth component, j = 1,...,a, having a common cdf G. Let Xj denote de lifetime of the jth
component, for j = 1,...,a, and let X denote the lifetime of the entire system. Thus, the family
of distributions models precisely the time to failure of the entire system.

Chapter 3 deals with the discrimination of two popular lifetime models: the exponential-
Poisson and the gamma families. These models have many similarities and in a practical si-
tuation, an issue of interest is the selection of the most adequate model (between exponential-
Poisson and gamma distributions) to fit a certain continuous lifetime dataset. Therefore, we
propose a selection criterion between exponential-Poisson and gamma distributions. To do
this, we obtain the asymptotic distribution of the likelihood ratio statistic proposed by Cox
(1961, 1962) and with this, we propose a modified test statistic.

Finally, in Chapter 4, we study and reduce the bias of the Pearson-based precision pa-
rameter estimation for a large class of regression models. We are considering a large class of
regression models, namely, the class of regression models in which the response variables are
2

modelled through the mean, say y, and which the variance has the form o2V (), where 02 is

a dispersion parameter, V(i) is a function of the mean, and ¢ = o2

is called the precision
parameter. This class of regression models covers many important regression models, such
as the generalized linear models (see McCullagh and Nelder, 1989), the exponential family

nonlinear models (see Cordeiro and Paula, 1989), the quasi-likelihood models (see Wedder-

13



burn, 1974), the extended quasi-likelihood models (see Nelder and Pregibon, 1987), the beta
regression models (see Ferrari and Cribari-Neto, 2004), the symmetrical models with mean

i € (0,00) (see Lange et al., 1989), the dispersion models which are modelled through the
mean (see Jorgensen, 1987), among others.

14
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CHAPTER 2

The compound class of extended Weibull power series distributions

Artigo publicado no periédico Computational Statistics and Data Analysis, 58, p. 352-367, 2013.
Resumo

Introduzimos um método geral para obter novas distribui¢des de probabilidade mais flexiveis
através da composicdo das distribui¢cdes Weibull estendida e de séries de poténcias. O pro-
cesso de composi¢do é o mesmo estabelecido por Marshall e Olkin (1997) e define 68 novos
submodelos. A nova classe estende algumas distribui¢des compostas bem conhecidas como
Weibull séries de poténcias (Morais e Barreto-Souza, 2011) e exponencial séries de poténcias
(Chahkandi e Ganjali, 2009). Algumas propriedades matemadticas da nova classe sdo estu-
dadas, incluindo momentos e funcdo geradora. Obtemos a densidade das estatisticas de or-
dem e seus momentos. O método de méxima verossimilhanga é usado para a estimacdo dos
pardmetros. Distribui¢des especiais sdo investigadas. Ilustramos a utilidade da nova classe de
distribui¢des através de duas aplica¢des a conjuntos de dados reais.

Palavras-chave: Distribuicdo de séries de poténcias; Distribuigdo Weibull estendida; Distribuicao
Weibull estendida séries de poténcias; Estatisticas de ordem.

Abstract

We introduce a general method for obtaining more flexible new distributions by compound-
ing the extended Weibull and power series distributions. The compounding procedure follows
the same set-up carried out by Marshall e Olkin (1997) and defines 68 new sub-models. The
new class of generated distributions includes some well-known compound distributions, such
as the Weibull power series (Morais and Barreto-Souza, 2011) and exponential power series
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(Chahkandi and Ganjali, 2009) distributions. Some mathematical properties of the new class
are studied including moments and generating function. We provide the density function of
the order statistics and their moments. The method of maximum likelihood is used for estimat-
ing the model parameters. Special distributions are investigated. We illustrate the usefulness
of the new distributions by means of two applications to real data sets.

Keywords: Extended Weibull distribution; Extended Weibull power series distribution; Order

statistic; Power series distribution.

2.1 Introduction

The modeling and analysis of lifetimes is an important issue of statistical work in a wide
variety of scientific and technological fields. Several distributions have been proposed in the
literature to model lifetime data by compounding some useful lifetime distributions. Adamidis
and Loukas (1998) introduced a two-parameter exponential geometric (EG) distribution by
compounding the exponential and geometric distributions. In a similar manner, the exponen-
tial Poisson (EP) and exponential logarithmic (EL) distributions were introduced and studied
by Kus (2007) and Tahmasbi and Rezaei (2008), respectively. Recently, Chahkandi and Gan-
jali (2009) proposed the exponential power series (EPS) family of distributions, which contains
as special cases these distributions. Barreto-Souza et al. (2010) and Lu and Shi (2011) intro-
duced the Weibull geometric (WG) and Weibull Poisson (WP) distributions which naturally
extend the EG and EP distributions, respectively. In a recent paper, Morais and Barreto-Souza
(2011) defined the Weibull power series (WPS) class of distributions which includes as sub-
models the EPS distributions. The WPS distributions can have increasing, decreasing and
upside down bathtub failure rate functions. The generalized exponential power series (GEPS)
distributions were proposed by Mahmoudi and Jafari (2012) following the same approach de-
veloped by Morais and Barreto-Souza (2011). Another recent compounded distribution can be
found in Cancho et al. (2011, 2012) who introduced the Poisson exponential (PE) and geometric
Birnbaum-Saunders (GBS) distributions, and Barreto-Souza and Bakouch (2012) who defined
the Poisson Lindley (PL) distribution. Further, Louzada et al. (2011) and Cordeiro et al. (2012)
proposed the complementary exponential geometric (CEG) and the exponential COM Poisson
(ECOMP) distributions, respectively.

The Weibull distribution was one of the earliest and most popular model for failure times.
In recent years, many authors have proposed generalizations of the Weibull model based on
extended types of failure of a system. In the context of modeling random strength of brittle
materials and failure times, Gurvich et al (1997) proposed an extended Weibull (EW) family of
distributions. Nadarajah and Kotz (2005) and Pham and Lai (2007) presented much more than
twenty useful distributions in their family. The EW cumulative distribution function (cdf) is
given by

G(x;a,8) =1—e*HWE x>0, a>0, 2.1)

where H(x; £) is a non-negative monotonically increasing function which depends on a para-
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meter vector £. The corresponding probability density function (pdf) becomes
e(x; 0, &) =ah(x; £) e vHXE) v~ 0, a>0, (2.2)

where h(x; £) is the first derivative of H(x; £). Many well-known models are special cases of
equation (2.1) such as:

(i) H(x; &) = x gives the exponential distribution;

(i) H(x; &) = x? yields the Rayleigh distribution (Burr type-X distribution);
(ifi) H(x; €) = log(x/k) leads to the Pareto distribution;

(iv) H(x; €) = B~ lexp(Bx) — 1] gives the Gompertz distribution.

We emphasize that several other distributions could be re-written in form (2.1) (see some
examples in Nadarajah and Kotz, 2005; and Pham and Lai, 2007). In this chapter, we define
the extended Weibull power series (EWPS) class of univariate distributions obtained by com-
pounding the extended Weibull and power series distributions. The compounding procedure
follows the key idea of Adamidis and Loukas (1998) or, more generally, by Chahkandi and
Ganjali (2009) and Morais and Barreto-Souza (2011). The new class of distributions includes
as special models the WPS distributions, which in turn extends the EPS distributions and de-
fines 68 (17 x 4) new sub-models as special cases. The hazard function of the proposed class
can be decreasing, increasing, bathtub and upside down bathtub. We are motivated to intro-
duce the EWPS distributions because of the wide usage of (2.1) and the fact that the current
generalization provides means of its continuous extension to still more complex situations.

This chapter is organized as follows. In Section 2.2, we define the EWPS class of distribu-
tions and demonstrate that there are many existing models which can be deduced as special
cases of the proposed unified model. In Section 2.3, we provide general properties of the
EWPS class including the density, survival and hazard rate functions, some useful expansions,
quantiles, ordinary and incomplete moments, generating function, order statistics and their
moments, reliability and average lifetime. Estimation of the parameters by maximum likeli-
hood is investigated in Section 2.4. In Section 2.5, we present suitable constraints leading to
the maximum entropy characterization of the new class. Three special models of the proposed
class are studied in Section 2.6. Applications to two real data sets are presented in Section 2.7.
Some concluding remarks are addressed in Section 2.8.

2.2 The new class

Let N be a discrete random variable having a power series distribution (truncated at zero)
with probability mass function

a, 0"
pn—P(N—n)_@,n_l,Z,..., (2.3)

where a, depends only on n, C(6) = Y71 a, 6" and 6 > 0 is such that C(0) is finite. Table
2.1 summarizes some power series distributions (truncated at zero) defined according to (2.3)
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such as the Poisson, logarithmic, geometric and binomial distributions. The proposed class of
distributions can be derived as follows. Given N, let X3, . .., Xy be independent and identically
distributed (iid) random variables following (2.1). Let X(;) = min {X;}Y,. The conditional
cumulative distribution of X4 IN = n is given by

G Non(x) = 1 — e eH0%),
ie, X |IN = n has the general class of distributions (2.1) with parameters na and &€ based on
the same H(x; &) function. Hence, we obtain

a, 0"

P(X(l) <x,N= 1’1) = C(Q)

[1 - e_”“H(x;E)] L x>0, n>1

The EWPS class of distributions is defined by the marginal cdf of X y:

C(p e aH(xg))

F(x;0,0,6) =1— W,

x> 0. (2.4)
We provide at least four motivations for the EWPS class of distributions, which can be
applied in some interesting situations as follows:

1. Time to the first failure. Suppose that the failure of a device occurs due to the presence
of an unknown number N of initial defects of same kind, which can be identifiable only
after causing failure and are repaired perfectly. Define by X; the time to the failure of
the device due to the ith defect, for i > 1. If we assume that the X;’s are iid EW ran-
dom variables independent of N, which follows a power series distribution (truncated at
zero), then the time to the first failure is appropriately modeled by the EWPS distribution.

2. Reliability. From the stochastic representations X = min {Xi}fil or X = max {Xi}fil,
we note that the EWPS model arises in series (for the minimum of EW distributions) or
parallel systems (for the maximum of the EW distributions) with identical components,
which appear in many industrial applications and biological organisms.

3. Time to relapse of cancer under the first-activation scheme. Here N is the number of car-
cinogenic cells for an individual left active after the initial treatment and X; is the time
spent for the ith carcinogenic cell to produce a detectable cancer mass, for i > 1. As-
suming that {X;},.; is a sequence of iid EW random variables independent of N, which
follows a power series distribution (truncated at zero), we have that the time to relapse
of cancer of a susceptible individual can be modeled by the EWPS class of distributions.

4. Last-activation scheme. As discussed by Cooner et al. (2007), the first activation scheme
may be questioned by certain diseases. Let N be the number of latent factors that must all
be active by failure and X; be the time of resistance to a disease manifestation due to the
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ith latent factor. In the last-activation scheme (for the maximum of the EW distributions),
it is assumed that failure occurs after all N factors have been active. So, if the X;’s are iid
EW random variables independent of N, where N follows a zero-truncated power series
distribution, the EWPS class can be able for modeling the time to the failure under the
last-activation scheme.

Table 2.1: Useful quantities for some power series distributions.

Distribution an C(6) C'(9) c’(6) Cc(e)! )

Poisson n!-1 e —1 ef ef log(6 + 1) 6 € (0,00)

Logarithmic n! —log(1—6) (1-0)7! (1-0)72 1—ef 6e(0,1)

Geometric 1 6(1—0)"" (1-6)72 2(1-0)73 0(0+1)71 6€(0,1)
. . m m__ m—1 m(m_l) _ 1\1/m _

Binomial () o+1)" -1 m(0+1) (CENED 6—-1) 1 6€(0,1)

Hereafter, the random variable X following (2.4) with parameters 6 and « and vector of
parameters £ is denoted by X ~ EWPS(6,«, £). Equation (2.4) extends several distributions
which have been studied in the literature. The EG distribution (Adamidis and Loukas, 1998) is
obtained by taking H(x; £) = x and C(0) = (1 — ) ! with 6 € (0,1). Further, for H(x; £) =
x, we obtain the EP (Kus, 2007) and EL (Tahmasbi and Rezaei, 2008) distributions by taking
C) = e’ —1,0 > 0,and C(8) = —log(1—0),0 € (0,1), respectively. In the same way,
for H(x; &) = x7, we obtain the WG (Barreto-Souza et al., 2009) and WP (Lu and Shi, 2011)
distributions. The EPS distributions come from (2.4) by combining H(x; £) = x with any C(6)
listed in Table 2.1 (see Chahkandi and Ganjali, 2009). Finally, we obtain the WPS distributions
from (2.4) by compounding H(x; £) = x? with any C(6) in Table 2.1 (see Morais and Barreto-
Souza, 2011). Table 2.2 displays some useful quantities and corresponding parameter vectors
for special distributions.

2.3 General properties

2.3.1 Density, survival and hazard functions
The density function associated to (2.4) is given by

C'(6 e—aH(X;é))

f(x;0,a,6) = 0ah(x;€) e *HEE) o

x> 0. (2.5)

Proposition 1. The EW class of distributions with parameters ca and & is a limiting special case of the
EWPS class of distributions when 6 — 0%, where c = min{n € N : a,, > 0}.
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Proof. This proof uses a similar argument given by Morais and Barreto-Souza (2011). Define
¢ =min{n € N : 4, > 0}. For x > 0, we have

a, <9 e*“H(X;ﬁ)) !

[ee]

lim F(x) =1— lim ==

90+ 60+ i
— — Z 0, 0"
n=c
efcaH(x;g) + a;l Z a, anceme(x;g)
=1-— lim n=ctl
—0t -1 © n—c
1+a.' ) a0
n=c+1
-1 efcsz(x;g)

O]

We now provide an interesting expansion for (2.5). We have C'(8) = Y5 na, 0" 1. By
using this result in (2.5), we obtain

f(x:0,0,8) =) pug(x; na,€), (2.6)
n=1
where g(x; na, £) is given by (2.2). Based on equation (2.6), we obtain
F(x;0,a,6)=1— Z Pn e MeH(xE),
n=1

Hence, the EWPS density function is an infinite mixture of EW densities. So, some mathe-
matical quantities (such as ordinary and incomplete moments, generating function and mean
deviations) of the EWPS distributions can be obtained by knowing those quantities for the
baseline density function g(x; na, £). The EWPS survival function becomes

C(fe H(x8))
ce) 7

and the corresponding hazard rate function reduces to

S(x;0,a,&) = (2.7)

—aH(x;€) C/(9 efsz(x;g) )

T(x;0,0,€) = O h(x; €) e C(geHEO)"

2.3.2 Quantiles, moments and order statistics

The EWPS distribution is simulated from (2.4) as follows: if U ~ (0, 1), the solution of the
nonlinear equation

X — g1 {_ilog [C‘l(C(G()Q(l - U))} }

has the EWPS(0, a, £) distribution, where H~!(-) and C~!(-) are the inverse functions of H(-)
and C(-), respectively. To simulate data from this nonlinear equation, we can use the matrix
programming language 0x through SolveNLE subroutine (see Doornik, 2007).
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Many of the important characteristics and features of a distribution are obtained through
the moment generating function (mgf) and moments. The rth raw moment of X can be deter-
mined from (2.6) and the monotone convergence theorem. So, for r € IN, we obtain

X" = 2 pn B(Z'
n=1

Hereafter, Z denotes a random variable with density function g(z; na, ).
The incomplete moments (Ix) and mgf (M) of X can be determined from (2.6) using the

monotone convergence theorem:

() = [ fdx = Y puLz)

n=1

and
= n;l pn E (etz) .

Order statistics are among the most fundamental tools in non-parametric statistics and
inference. They enter in problems of estimation and hypothesis tests in a variety of ways. Then,
we now discuss some properties of the order statistics for the proposed class of distributions.
The pdf fi.,(x) of the ith order statistic from a random sample Xj, ..., X,, having density
function (2.5) is given by

i—1 m—i
m! _ C(fe*Hx9) C(fe2H(x:8))
im(X) = x;0,u,& , x> 0.
i) = Gy /908 co) )
(2.8)
By using the binomial expansion, we can write (2.8) as
i) = e o L () st g
m (l—l) ( >’ ]_0 ] rYr iy 7
where S(x;6,a, &) is given by (2.7). The corresponding cumulative function becomes
k m ) )
=) ) (-1 <k) (’”) S(x; 6,0, &)K.
j=0k=i i) \k
An alternative form for (2.8) can be obtained from (2.6) as
m! > m+j—1
fi:m(x) = (1_1)|( 2 2 ]pi’l x n“lé)s(x;ellxlé) J 7 (29)

where w; = (—1)/ (l;l) So, the sth raw moment of X;,,, comes immediately from the above
equation
i-1

S _ m! - . s . m+j—i
E(Xin) = (i—l)!(m—i)!ngijz(:)w] po B |7 5(2;0,0,€)"771]. (2.10)
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2.3.3 Average lifetime

The average lifetime is given by

tm = i P /e_”"‘H(’“E) dx.
0

n=1

In fields such as actuarial sciences, survival studies and reliability theory, the concept of
mean residual life has been of much interest; see a survey by Guess and Proschan (1985).
Given that there was no failure prior to xo, the residual life is the period from time x( until the
time of failure. The mean residual lifetime can be expressed as

(o]

m(xo;0,0,6) = [Pr(X > xo)]_l/yf(xo-l—y;e,oc,é)dy
0

= S0 Y pu [ yglxo -+ yin, )dy.
n=1 0

The latter integral can be computed from the baseline EW distribution. Further, we have
that m(xp;0,a,&) — E(X) as xo — 0. Some results of this section can be obtained numer-
ically in any symbolic software such as MAPLE (Garvan, 2002), MATLAB (Sigmon and Davis,
2002), MATHEMATICA (Wolfram, 2003), 0x (Doornik, 2007) and R (R Development Core Team,
2009). The 0x (for academic purposes) and R are freely distributed and available at http:
//www.doornik.com and http://www.r-project.org, respectively. The infinity limit in these
sums can be substituted by a large positive integer such as 20 or 30 for most practical purposes.

2.4 Maximum likelihood estimation

Here, we determine the maximum likelihood estimates (MLEs) of the parameters of the
EWPS class of distributions from complete samples only. Let xq,...,x, be observed values
from the EWPS distribution with parameters 6, « and €. Let ® = (6,a,£) " be the p x 1 param-
eter vector. The total log-likelihood function for @ is given by

n

by = 0,(®) =nlog(0) +log(x) —log(C(0))] —a ) H(x; &) + i;log[h(xi; )]

i=1

+ Y log[C'(pe i)y, (2.11)
i=1

The log-likelihood function can be maximized either directly by using the SAS (PROC NLMIXED)
or the Ox program (sub-routine MaxBFGS) (see Doornik, 2007) or by solving the nonlinear like-
lihood equations obtained by differentiating (2.11). The components of the score function
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aén o n i n i aH(xs€) CN(Q efucH(x,-;ﬁ))
5}‘&‘2;“%9‘9§H“f“9 Cloe )
e 0 g COT)
0 0 C/(0 e aH(xi;€))
ol alogh x;; €) 0H (x;; &) CaH(ee) C" (0 e eH (X))
— — —~ 97711 9 o (x,,E)
oy ; o0& oci; o0&k e C'(feaH(xi;€))
For interval estimation on the model parameters, we require the observed information ma-
trix
Joo o Jou | Jge
-
(@ =~ | o e T e
Joe  Jee | Jee

whose elements are listed in Appendix A. Let © be the MLE of ®. Under standard regular
conditions (Cox and Hinkley, 1974) that are fulfilled for the proposed model whenever the
parameters are in the interior of the parameter space, we can approximate the distribution of
V1(© — ©) by the multivariate normal N, (0,K(®)~1), where K(©) = limy_,0 +],(®) is the
unit information matrix and p is the number of parameters of the compounded distribution.

Often with lifetime data and reliability studies, one encounters censoring. A very sim-
ple random censoring mechanism very often realistic is one in which each individual i is as-
sumed to have a lifetime X; and a censoring time C;, where X; and C; are independent random
variables. Suppose that the data consist of n independent observations x; = min(X;, C;) and
0; = I(X; < C;) is such that §; = 1 if X; is a time to event and ¢; = 0 if it is right censored for
i=1,...,n. The censored likelihood L(®) for the model parameters is

H Fxi;0,a,8))% [S(x;;0,a,€))t°

where f(x;60,a,€) and S(x; 6, , &) are given in (2.5) and (2.7), respectively.

2.5 Maximum entropy identification

The concept of Shannon entropy is the central role of information theory sometimes re-
ferred as measure of uncertainty. The entropy of a random variable is defined in terms of its
probability distribution and can be shown to be a good measure of randomness or uncertainty.
Shannon (1948) introduced the probabilistic definition of entropy which is closely connected
with the definition of entropy in statistical mechanics. Let X be a random variable of a contin-
uous distribution with density f. The Shannon entropy of X is defined by

Hsi(f) = = [ Fx:0,8,€)log [ (x:6,0,€)) dx. (2.12)
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Jaynes (1957) introduced one of the most powerful techniques employed in the field of
probability and statistics called the “maximum entropy method”. This method is closely related
to the Shannon entropy and considers a class of density functions

F={f(x00a¢):E/(Ti(X)=a;,i=0,...,m},

where Ti(X), ..., T(X) are absolutely integrable functions with respect to f, and Tp(X) =
ap = 1. In the continuous case, the maximum entropy principle suggests deriving the un-
known density function of the random variable X by the model that maximizes the Shannon
entropy in (2.12), subject to the information constraints defined in the class IF. Shore and John-
son (1980) treated the maximum entropy method axiomatically. This method has been suc-
cessfully applied in a wide variety of fields and has also been used for the characterization
of several standard probability distributions; see, for example, Kapur (1989), Soofi (2000) and
Zografos and Balakrishnan (2009).

The maximum entropy distribution is the density of the class IF, denoted by fME, deter-
mined as the solution of the optimization problem

fME(x; 0,a, &) = argmaxHsg,.
feF

Jaynes (1957, p. 623) states that the maximum entropy distribution fMF obtained by the
constrained maximization problem described above, “is the only unbiased assignment we can
make; to use any other would amount to arbitrary assumption of information which by hypothesis we do
not have”. It is the distribution which should not incorporate additional exterior information
other than which is specified by the constraints. We now derive suitable constraints in order
to provide a maximum entropy characterization for the class (2.4). For this purpose, the next
result plays an important role.

Proposition 2. Let X be a random variable with pdf given by (2.5). Then,

C1. E{log[C'(pe—H¥€))]} — C?G) E{C'(0eH30) log[C!(§e+HY:0)] | ;

C2. B {loglh(X; €)1} = g E{C'(0e 09 logl(¥; €)] }

C3. E[H(X; £)] — C(GG> E[Coe 1059 H(y; ¢)],

where Y follows the EW distribution with density function (2.2).

Proof. The constraints C1, C2 and C3 are easily demonstrated and then the proofs are omitted.
O

The next proposition reveals that the EWPS distribution has maximum entropy in the class
of all probability distributions specified by the constraints stated in the previous proposition.
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Proposition 3. The pdf f of a random variable X, given by (2.5), is the unique solution of the optimiza-
tion problem
f(x;0,a,€&) = argmaxHgy,
T

under the constraints C1, C2 and C3 presented in the Proposition 2.

Proof. Let T be a pdf representing the distribution of X that satisfies the constraints C1, C2 and
C3. The Kullback-Leibler divergence between T and f is

T(x;0, oc,g)] .

D(t,f) = /IRT(x;G,[XIS) log [f(x,@,oc,ﬁ)

Following Cover and Thomas (1991), we obtain

0<D(t,f) = /]RT(x;G,tx,ﬁ)log[T(x;G,zx,ﬁ)]dx—/]R“L'(x;e,a,s)log[f(x;@,zx,g)]dx
= —]I-ISh(T;G,oc,f)—/]Rr(x;e,zx,S)log[f(x;B,zx,S)]dx.

From the definition of f and based on the constraints C1, C2 and C3, we have

/]Rr(x) log [f(x)]dx = log(6a)+ C?@) E {C’(Q e &) Jog [H(Y; E)]} —log [C(6)]

- c?mE (0™ ) H(Y; ¢)]

c?e) E {1og [C’(O e*“H”'f))} C'(6 e*"‘H(Y;@)}
_ /]Rf(x;(),(x,ﬁ) log [£(x;6,a,&)]dx = —Hg,(f),

where Y is defined as before. So, we obtain Hg;,(7) < Hgy(f) with equality if and only if
T(x;0,0,€) = f(x;0,a,€) for all x, except for a null measure set, thus proving the uniqueness.
O

The intermediate steps in the above proof in fact provide the following explicit expression
for the Shannon entropy of X

Hsy(f) = — log(fa) - c?e) E{C/(6e ) log [(Y; £)]} +log [C(0)]
0

Fag B 0e 0 O] - g E{C0e 09 og [0 ] .

For some EWPS distributions, the above results can only be obtained numerically.

2.6 Special models

In this section, we study three special models of the EWPS class of distributions. We pro-
vide plots of the density and hazard rate functions for selected parameter values to illustrate
the flexibility of these distributions. We offer some explicit expressions for the moments and
moments of the order statistics.
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2.6.1 Modified Weibull geometric distribution

The modified Weibull geometric (MWG) distribution is defined by the cdf (2.4) with H(x; &) =

x7 exp(Ax) and C(6) = 6(1 — 0) ! leading to
(1—0)exp (—ax7e)
1—0exp (—axrer) ’

F(x;0,a,v,A) =1— x>0,

where 6 € (0,1). The associated pdf and hazard rate function are

exp (Ax — ax7elv)

f:8,a,7,4) = a(l=0)(7 + Ax) " [1 — Bexp (—ax7eM)]’

and

exp (Ax)

;91 7 IA’ = )\ 771 7
T(x;0,0,97,A) = a(y+Ax) x T~ fexp (—arie™s)

respectively. The MWG distribution includes the WG distribution (Barreto-Souza et al., 2010)
when A = 0. Further, for A = 0 and v = 1, we obtain the EG distribution (Adamidis and
Loukas, 1998). Figures 2.1 and 2.2 display the density and hazard functions of the MWG dis-
tribution for selected parameter values.

5
1
5
1
Density
1.0 1.5 2.0
1 1

0.5
1

(@) x=2,y=15and A =05 (b) =2, =08and A = 0.01 () a=01,y=6and A =05

Figure 2.1: Plots of the MWG density function for 6 = 0.01 (solid line), & = 0.2 (dashed line),
6 = 0.5 (dotted line) and 8 = 0.9 (dotdash line).

The rth raw moment of the random variable X having the MWG distribution is determined

in closed-form from (2.6) as

E(X") =Y pupr(n), (2.13)
n=1

where p,(n) = f0°° x" g(x; na, 7y, A)dx denotes the rth raw moment of the MW distribution with
parameters na,y and A. Here, p,, corresponds to the geometric probability function. Carrasco
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et al. (2008) obtained an infinite representation for the rth raw moment of the MW distribution
with these parameters given by

= Ai, i T(s/r+1
yr(n): 2 (S Y )

a7 ) (2.14)

where

iy = @] X oo X a4, and s, =141 +...+1,

Hence, the ordinary moments of X can be obtained directly from equations (2.13) and
(2.14).

and

3
1
Hazard
Hazard
2.0 25 3.0
1 1

15

1.0
1

X X X

(@) a=2,y=15and A =05 (b) a =2,y =08 and A = 0.01 (c)a=01,y=6and A =05

Figure 2.2: Plots of the MWG hazard rate function for 6 = 0.01 (solid line), § = 0.2 (dashed
line), 6 = 0.5 (dotted line) and 6 = 0.9 (dotdash line).

The density of the ith order statistic Xj.,, in a random sample of size m from the MWG
distribution is given by (fori =1,...,m)

) +j—i
B m! > il (1—6) exp (—ax7e™)|" .
fim(x) = (i—1)!(m—i)! ];gw] P [ 1—0exp (—axrely) g(xina,y,4),

where g(x; na, v, 1) denotes the MW density function with parameters na, v and A. From (2.10),
we obtain

i—1

s _ m! . ) s

(1—0)exp (—aX7eX) e
1— fexp (—aXrerX)

30



Density

2.6.2 Pareto Poisson distribution
The Pareto Poisson (PP) distribution is defined by taking H(x; &) = log(x/k), for x > k,
and C(#) = e’ — 1in (2.4) leading to

exp [0 (k/x)"] —1
el —1 ’

F(x;0,a,k) =1— x> k.

The corresponding pdf and hazard rate function are

0akexp [0 (k/x)"]
(ef — 1) xer1

f(x;0,a,k) =
and
Oakexp [0 (k/x)"]
xet1 {exp [0 (k/x)"] — 1}

respectively. We obtain the Pareto distribution as a sub-model when 6 — 0. The rth moment

T(x;0,a,k) =

of the random variable X having the PP distribution becomes

k& o
B(XT) = (e —1) n;l (n—1)! (na—r)’ =T (2.15)

In particular, setting » = 1 in (2.15), the mean of X reduces to

91’[

ak &
V_ee—lg(n—l)!(na—l)' na > 1.

o | e ]
© —
re}
a7 @ ]
S}
e ]
o ©
2 o7 2
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o ] 5 g
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Figure 2.3: Plots of the PP density function for 6 = 0.01 (solid line), & = 0.2 (dashed line),
6 = 0.5 (dotted line) and 8 = 0.9 (dotdash line).

From equation (2.10), the sth moment of the ith order statistic (fori = 1,...,m) is given by

o (SR0 610~ 1)”””] ,

ef —1

s _ m! o i— .
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Figure 2.4: Plots of the PP hazard rate function for 6 = 0.01 (solid line), 6 = 0.2 (dashed line),
6 = 0.5 (dotted line) and 8 = 0.9 (dotdash line).

where p, denotes the Poisson probability function. In addition, after some algebra, the Shan-
non entropy for the PP distribution reduces to

e —1 0
Hei(f) = log { —5- P (11— apz + p3),

where

- :exp {9 <§)zx} log <}1<)} _ 2(691_ - {Chi(ZG) — log(Z{f) +Shi(260) — 9 @ 1) logk} ,
- :exp {9 (;{()a} log. (i{()} _ Chi(20) — 1;)5((599)_—:)Shi(29) -y

and

Hs =E :GeXp {9 (;)a} (;ﬂ = 45‘92]12“1) {1-@o+1)e},

e Chi(z) = v +logz + /OZ COSh(z)_ldt

is the hyperbolic cosine integral,

Z Q1 —
Shi(z) = / S“‘h(:)ldt
0

is the hyperbolic sine integral and y ~ 0.577216 is the Euler-Mascheroni constant.
2.6.3 Chen logarithmic distribution

The Chen logarithmic (CL) distribution is defined by the cdf (2.4) with H(x; &) = exp(xf) —
1land C(6) = —log(1 — 0) leading to

_ log {1 —0exp [—a(exp(xF) —1)]}
Flx)=1- log(1—0) ’

x>0,
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where 6 € (0,1). The associated pdf and hazard rate function are

0aBxPlexp {xP —a[exp(xF) — 1]}

flx) = log(1—0) {fexp [—a(exp(xf) —1)] —1}
and
OapxPlexp [xf — a(exp(xF) —1)]
T(x) = ,
{0exp [—a(exp(xf) —1)] —1}log {1 —Oexp [—a(exp(xF) —1)]}
respectively.
o %‘ (=} % o
OIO 0‘5 1I0 ll5 OIO 0‘.5 lIO 1I5 OIO 0I5 lIO 1I5
@a=b=1 (b) a=b=15 (c)a=25and b=3

Figure 2.5: Plots of the CL density function for § = 0.01 (solid line), 8 = 0.2 (dashed line),
6 = 0.5 (dotted line) and 8 = 0.9 (dotdash line).

Proposition 1 implies that the Chen distribution is a limiting special case when 6 — 0.
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Figure 2.6: Plots of the CL hazard rate function for 6 = 0.01 (solid line), 8 = 0.2 (dashed line),
6 = 0.5 (dotted line) and 8 = 0.9 (dotdash line).

The density of the ith order statistic X;.,, in a random sample of size m from the CL distri-
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bution is given by (fori =1,...,m)

m!

o i1 by e
fin ) = Gy =yt g & Pres(inast) {log [1 ~0exp(e —ae)] ",

where g(x; na,b) denotes the Chen density function with parameters na and b and p,, denotes
the logarithmic probability function and

- (7 el

In a similar manner, the sth raw moment of X;.,, is obtained directly from

i—

E(X;,,) = = 1)72;}1 — i 2 wipn E {ZS exp [ntx(m +ji—-1)(1 - exp(Zb))} } ,

n=1j=

[e]

where Z ~ Chen(na, b).

2.7 Applications

In this section, we compare the results of the fitted special models of the EWPS class by
means of two real data sets for illustrative purposes. In order to estimate the parameters of
these special models, we adopt the maximum likelihood method (as discussed in Section 4)
and all the computations were done using the subroutine NLMixed of the SAS software. A
good alternative is to use the software R for which Nadarajah et al. (2012) introduced the
package Compounding for dealing with continuous distributions obtained by compounding
continuous distributions with discrete distributions. They demonstrated its use by computing
values of the cumulative and density functions, quantile and hazard rate functions, generating
random samples from a population with compounding distribution, and computing mean and
variance of a random variable with a compounding distribution.

First, we consider a data set from Fonseca and Franga (2007), who studied the soil fertility
influence and the characterization of the biologic fixation of Ny for the Dimorphandra wilsonii
rizz growth. For 128 plants, they made measures of the phosphorus concentration in the leaves.
The data are listed in Table 2.3. We fit the Gompertz Poisson (GP), Chen Poisson (CP) and
CL models to these data. We also fit the three-parameter sub-model WG (Barreto-Souza et al.,
2010).

Tables 2.4 and 2.5 display some descriptive statistics and the MLEs (with corresponding
standard errors in parentheses), the maximized log-likelihood and the Kolmogorov-Smirnov
statistic for the fitted models. Since the values of the Akaike information criterion (AIC),
Bayesian information criterion (BIC) and consistent Akaike information criterion (CAIC) are
smaller for the CL distribution compared with those values of the other models, this new dis-
tribution seems to be a very competitive model for these data.

Plots of the pdf and cdf of the fitted WG, GP, CP and CL models to these data are displayed
in Figure 2.7. They indicate that the CL distribution is better than the other distributions in
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022 017 011 010 015 006 0.05 007 012 009 023 025 023
024 020 0.08 011 012 010 0.06 020 017 020 011 0.16 0.09
0.10 012 012 010 009 017 019 021 018 026 019 017 0.18
020 024 019 021 022 017 0.08 008 0.06 009 022 023 022
019 027 016 028 011 010 020 012 015 008 012 0.09 0.14
0.07 0.09 005 006 011 016 020 025 016 013 011 011 011
008 022 011 013 012 015 0.12 011 011 015 010 015 017
0.14 012 018 014 018 013 012 014 0.09 010 013 0.09 0.11
0.11 014 0.07 007 019 017 018 016 019 015 007 0.09 017
010 0.08 015 021 016 008 010 0.06 0.08 012 0.13

Table 2.3: Phosphorus concentration in leaves data.

Min. Q1 Q Mean Qs Max. Var.
0.0500 0.1000 0.1300 0.1408 0.1800 0.2800 0.0030

Table 2.4: Descriptive statistics.

Model 6 @ 7 AIC BIC  CAIC K-S —20(0)

WG 09995 24471  4.2041 —3785 —370.0 —3783  0.0873 —3845
(0.0017)  (8.7059)  (0.3022)
0 @ B

GP 29478 03169  19.7047 —368.7 —3602 —3685 01201 —3747
(1.2627)  (0.1473)  (1.6135)
) @ b

CP 154386  14.7817  2.9212 —383.7 —3752 —3835 01159 —389.7
(22.8318) (28.1576)  (0.2634)

CL 0.9999 52232 7.5882 —3958 —387.2 —3956  0.0678 —401.8

(0.0001)  (0.0000)  (0.2039)

Table 2.5: MLEs of the parameters with corresponding SE’s (given in parentheses) and max-
imized log-likelihoods of the WG, GP, CP and CL models for the first data set. The statistics
AIC, BIC and CAIC are also displayed.
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Figure 2.7: Estimated (a) pdf and (b) cdf for the CL, CP, WG and GP models to the percentage

of Phosphorus concentration in leaves data.

terms of model fitting. Based on these plots, we conclude that the CL distribution provides a
better fit to these data than the WG, GP and CP models.

As a second application, we consider the data consisting of the failure times of 20 mechan-
ical components given in Murthy et al. (2004) and listed in Table 2.6. Obviously, due to the
genesis of the EW family, the failure times are ideally modeled by this distribution. Thus, the
use of the EWPS class for fitting these data is justified.

0.067 0.068 0.076 0.081 0.084 0.085 0.085 0.086 0.089 0.098
0.098 0.114 0.114 0.115 0.121 0.125 0.131 0.149 0.160 0.485

Table 2.6: The failure times of 20 mechanical components.

Tables 2.7 display some descriptive statistics. The MLEs of the parameters (standard errors
between parentheses), the Kolmogorov-Smirnov statistic, —2¢(®) and the values of the AIC,
BIC and CAIC statistics are listed in Table 2.8. The values of these statistics indicate that the

WG model yields a better fit to these data than the GP and CP models.

Min. Q1 o)) Mean Q3 Max. Var.
0.0670 0.0848 0.0980 0.1216 0.1220 0.4850 0.0080

Table 2.7: Descriptive statistics.

Plots of the estimated pdf and cdf of the fitted WG, GP and CP models to these data are
displayed in Figure 2.8. They indicate that the WG distribution is better then the other distribu-
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Model 0 Q o AIC  BIC CAIC K-S  —2/(0)

WG 09999 81443  5.0876 —664 —634 —649 0.1810 —724
(0.0001)  (0.0137)  (0.8002)
0 a B

GP 54566 09909  6.5683 —419 —389 —404 03312 —479
(2.4140)  (0.5504)  (2.2144)
) a b

CP 6.2426 253554  2.3796 547 —51.7 —532 02214  —60.7

(2.2755)  (15.8907)  (0.3380)

Table 2.8: MLEs of the parameters with corresponding SE’s (given in parentheses) and max-
imized log-likelihoods of the WG, GP and CP models for the second data set. The statistics
AIC, BIC and CAIC are also displayed.

tions in terms of model fitting. From these figures, we conclude that this distribution provides
a better fit to these data than the GP and CP models.
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Figure 2.8: Estimated (a) pdf and (b) cdf for the WG, GP and CP models to the failure times.

2.8 Concluding remarks

We define a new class of lifetime distributions called the extended Weibull power series
(EWPS) class, which generalizes the Weibull power series class of distributions (Morais and
Barreto-Souza, 2011). Further, the new class extends the exponential power series distribu-
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tions (Chahkandi and Ganjali, 2009). We provide a mathematical treatment of the new class
including expansions for the density function, moments, generating function, incomplete mo-
ments and reliability. Further, explicit expressions for the order statistics and Shannon entropy
are derived. The EWPS density function can be expressed as a mixture of extended Weibull
(EW) density functions. This mixture representation is important to derive several properties
of the new class. Maximum likelihood inference is implemented straightforwardly for esti-
mating the model parameters. We obtain the observed information matrix. Maximum entropy
identification was discussed and some special models are explored. We fit some EWPS distri-
butions to two real data sets to show the usefulness of the proposed class. In conclusion: we
define a general approach for generating new lifetime distributions, at least 68 distributions,
some of them known and the great majority new ones. Further, we motivate the use of the
new class in four different ways. We think these two facts combined may attract more com-
plex applications in the literature of lifetime distributions. Finally, the formulae derived are
manageable by using modern computer resources with analytic and numerical capabilities.

Appendix A

The elements of the p x p information matrix J,(©) are

Joo = —:—2 —n [C(;/((:)) (gé?) +0 Z <22’) x;; &)e 2H(i0)

—0 i Zi’l:H(xi; £)e20H(xi¢)

Jaa = 10 Z 22i HZ xl’£> aH(x; &) + 02 Z (231 221) HZ(x“ ér) —2aH(x;; &)

042 gl = Z1;
! Z; 2 —2aH(x;; ) 22i 112 —aH(x;;¢)
Jeo = 91:21 (le 21 H(x;6)e 121 21 n e
" oH xl, ) & Z9i BH(xi; (f_f) —aH(x; &)
P - =" 2re WS 1 — wH(x;;
Jugy, = 1221 ok = z1i dCk [ (i )
2
3 2o 0H(x;; ¢) —2aH(x;;
o[ ()] ) g
1; [Zu Z1i 0&k (i ¢)
2
Lol (22T zai | OH(x €) owm(vie) v 22i OH(X5 &) _am(ne)
= 9[){ e _ | —e 124 — — " e ir
Joei l; [(Zu‘) Zli] 0&i z; z1i - Ok
e = azaZH Xi; &) & 1 9H(x; &) 0H(x;; &) n 2 1 9*H(x; &)
2 2)i 3i aH(xi; E) aH(xi; é) —2aH(x;;€)
(f) Z [<211> Zli] aCy 9 ¢
— ab i @Meﬂﬂi (xi:€) 1 420 Z 23i OH (x;; §) OH (xi;§) e~ H(xi€)

= z1i 0§98 121 9& 9§
where z;; = C'(fe~H(xi:8)) 7, = C"(fe=*H(:8)) and z3; = C""(fe *H(i:8)) fori=1,...,n.
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CHAPTER 3

A New Wider Family of Continuous Models: The Extended Cordeiro and de
Castro Family

Artigo atualmente submetido para publicagao.
Resumo

Introduzimos e estudamos propriedades matemaéticas gerais de um novo gerador de distri-
buigdes continuas com trés pardmetros extras chamado familia Cordeiro e Castro estendida
de distribui¢des. Investigamos as assintotas e formas das fun¢des de densidade e de risco. A
nova funcdo densidade pode ser expressa como uma combinagdo linear das densidades de
origem exponencializadas. Obtemos uma série de poténcias para a fungdo quantilica. Ex-
pressdes explicitas para os momentos ordindrios e incompletos, fun¢des quantilica e geradora,
a distribuicdo assintética dos valores extremos, entropias de Shannon e Rényi e estatisticas de
ordem, que valem para qualquer modelo de origem, sdo determinados. Discutimos a estima-
tiva dos parametros do modelo por maxima verossimilhanga e ilustramos a potencialidade da
nova familia por meio de duas aplicac¢des a dados reais.

Palavras-chave: Entropia de Rényi; Estatistica de ordem; Familia generalizada; Func¢do quan-
tilica; distribuicdo exponencial geométrica generalizada; Méxima verossimilhanca ; Momen-
tos.

Abstract

We introduce and study general mathematical properties of a new generator of continuous
distributions with three extra parameters called the extended Cordeiro and de Castro family. We
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investigate the asymptotes and shapes of the density and hazard rate functions. The new den-
sity function can be expressed as a linear combination of exponentiated densities based on the
same baseline distribution. We derive a power series for the quantile function of this family.
Explicit expressions for the ordinary and incomplete moments, quantile and generating func-
tions, asymptotic distribution of the extreme values, Shannon and Rényi entropies and order
statistics, which hold for any baseline model, are determined. We discuss the estimation of
the model parameters by maximum likelihood and illustrate the potentiality of the family by

means of two applications to real data.

Keywords: Generalized exponential geometric distribution; Generated family; Maximum like-
lihood; Moment; Order statistic; Quantile function; Rényi entropy.

3.1 Introduction

In the past few years, several ways of generating new distributions from classic ones were
developed and discussed. Jones (2004) studied a family of distributions that arises naturally
from the distribution of the order statistics. The beta-generated family proposed by Eugene et
al. (2002) was disscussed in Zografos and Balakrishnan (2009), who introduced the gamma-
generated family of distributions. Based on a baseline continuous distribution G(x) with sur-
vival function G(x) and probability density function (pdf) ¢(x), Zografos and Balakrishnan
(2009) defined the cumulative distribution function (cdf) and the pdf of the gamma-generator
(for x € R) by

F(x) = r(la) /0 Bl 5 gy 3.1)
and
flx) = Hl(;) {~log [G(x:6)]}" ™ g(x:8), (32)

respectively, where I'(-) is the gamma function. Ristic and Balakrishnan (2011) proposed an
alternative gamma-generator defined by the cdf and pdf (for x € R) given by

B 1 ~log[G(x€)] ,
F(x)_1—r<5)/0 #-le~tdt, 5> 0 (3.3)
and
1 _
f(x) = 5y (- los G} g(xi6), (3.4)
respectively.

Based on this paper, by replacing the gamma distribution by the more flexible three pa-
rameter generalized exponential-geometric (GEG) distribution (Silva et al., 2010), we propose
a new wider family of distributions given by

—log[G(x;g)] _ —At _ a—Atja—1 1— . A
0 [1—pe et 1-pG(x€)*
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where G(x;&) is the baseline cdf depending on a parameter vector £ and « > 0, A > 0 and
p € (0,1) are three additional parameters. For each baseline G, the extended Cordeiro and de
Castro-G (“ECC-G” for short) family of distributions is defined by the cdf (3.5). Equation (3.5)
is a wider family of continuous distributions. It includes the generalized Kumaraswamy class
(Cordeiro and de Castro, 2011) of distributions, the proportional and reversed hazard rate
models, Marshal-Olkin family of distributions and other sub-families. Some special models
are given in Table 3.1.

Table 3.1: Some special models.

Aja|p Gx) Reduced distribution

-1 -0 - Generalized Kumaraswamy distribution (Cordeiro and de Castro, 2011)
1/1(0]- G(x)

-11]0]- Reversed hazard rate model (Gupta and Gupta, 2007)

1]-10]- Proportional hazard rate model (Gupta and Gupta, 2007)

-1 1p|- Marshall-Olkin family of distributions (Marshall-Olkin, 1997)

- | - | 0 | Generalized Rayleigh Kumaraswamy generalized Rayleigh distribution (Gomes et al., 2012)

- | - | 0 | Burr XII distribution Kumaraswamy Burr XII distribution (Paranaiba et al., 2012)

- | - | 0 | Modified Weibull distribution | Kumaraswamy modified Weibull distribution (Cordeiro et al., 2012)

- | - | 0 | Pareto distribution Kumaraswamy Pareto distribution (Bourguignon et al., 2012)

This chapter is organized as follows. In Section 2, we provide a physical interpretation of
the ECC-G family. Four special cases of this family are defined in Section 3. Some useful expan-
sions are derived in Section 4. In Section 5, we propose explicit expressions for the moments
and generating function using a power series expansion for the quantile function. Further, we
present general expressions for the Rényi and Shannon entropies and mean deviations are ad-
dressed. Estimation of the model parameters by maximum likelihood is performed in Section
6. Applications to two real data sets illustrate the performance of the new family in Section 7.
The chapter is concluded in Section 8.

3.2 The new family

The corresponding density function to (3.5) is given by

[1-G(x &) !

f(x;“//\/ P,€) =aA <1 - P) g(X;E) G(xff))\il [1 —p G(x,‘{))‘]‘ﬁ'l’ (3'6)

where g(x; £) is the baseline pdf. Equation (3.6) will be most tractable when the cdf G(x) and
the pdf g(x) have simple analytic expressions. Hereafter, a random variable X with density
function (3.6) is denoted by X ~ ECC-G(p, a, A, £). Further, we can omit sometimes the de-
pendence on the vector £ of the parameters and write simply G(x) = G(x; §).

When p > 0, we consider a system formed by & independent components following the
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Marsha-Olkin cdf (see Table 3.1) given by

_(1-p)Gx)*
BTG

Suppose the system fails if any of the « components fails and let X denote the lifetime of the
entire system. Then, the cdf of X is

H@:1—U—H@W:4—[1_G@V]a

1—pG(x)*

which is the proposed generator.

When p = 0, a physical interpretation of the ECC-G distribution can be given as follows.
Consider a system formed by a independent components and that each component is made
up of A independent subcomponents. Suppose that the system fails if any of the « components
fails and that each component fails if all of the A subcomponents fail. Let Xj;, ..., Xj) denote
the lifetimes of the subcomponents within the jth component, j = 1, ...,a, having a common
cdf G. Let X; denote de lifetime of the jth component, for j = 1,...,4, and let X denote the
lifetime of the entire system. Then, the cdf of X is

PX<x)=1-P(Xi1>x,..., X >x)=1-P(X; > x)"
=1-[1-PX1 <x)]"=1-[1-P(X11 <x,..., X12)]"
=1-[1-P(xn <0 =1-[1- 6"
Thus, the family of distributions (3.6) with p = 0is precisely the time to failure of the entire

system.
The hazard rate function (hrf) of X becomes

1-p G(X;ﬁ)A]
1-G(x; €)M |

The ECC-G family of distributions is easily simulated by inverting (3.5) as follows: if u has

h(x;a,A,p,€) = aA(1—p)g(x;€) G(x; ! [ (3.7)

a uniform U(0, 1) distribution, the solution of the nonlinear equation

1—(1—u)l/®
1—p(1—u)l/=

1/A
x;=G! { } , g€(0,1), (3.8)

has the density function (3.6).

3.3 Special ECC-G distributions

For p = 0, we obtain, as an important special case of (3.6), the Cordeiro and de Castro’s (CC)
(2011) class of density functions. This class provides greater flexibility of its tails and can be
widely applied in many areas of engineering and biology. Here, we present some special cases
of the ECC-G family since it extends several useful distributions in the literature. For all cases
listed below, p € (0,1), « > 0and A > 0.
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3.3.1 The ECC-normal (ECCN) distribution

The ECCN distribution is defined from (3.6) by taking G(x) and g(x) to be the cdf and pdf
of the normal N(u, ¢?) distribution. Its density function is given by

o= 200y (1=r) [ (+=1)) foeChyr 59

g v 1= pe(SH) e

where x € R, 4 € R is a location parameter, ¢ > 0 is a scale parameter, and ¢(-) and ®(-)
are the pdf and cdf of the standard normal distribution, respectively. A random variable with
density function (3.9) is denoted by X ~ ECCN(p, &, A, i, 0?). Fory = 0,0 = land p — 0,
we obtain the standard Kumaraswamy-normal (KwN) distribution. Furthermore, the KwN
distribution with A = 1 and a = 1 reduces to the normal distribution.

Plots of the ECCN density function for selected parameter values are displayed in Fig-
ure 3.1. Based on these plots, we note that the parameter ¢ has the same dispersion property
such as in the normal density.

1.0
I
0.25
I

— 0a=0.2,A=1.0 I,f"\‘\ — 0a=0.2, A=5.0
—————— 0a=0.5, A=2.0 /,/ ------ a=0.5, A=4.0
© a=0.7, A=3.0 9 / a=0.7, A=3.0
o 7 - 0a=1.0,A=4.0 S | - 0a=1.0,A=2.0

————— 0=2.0, A=5.0 Y - a=2.0,A=10

0.6
0.15
I

3 - 2
o 1 2 3 a4 5 6 4 2 o 2 4 & 8
X X
(@ p=05pu=20andc =05 (b) p=09,uy=—-20and o =20

Figure 3.1: Plots of the ECCN density function for some parameter values.

3.3.2 The ECC-Weibull (ECCW) distribution

Taking G(x) as the Weibull cumulative distribution with scale parameter p > 0 and shape
parameter ¢ > 0, say G(x) = 1 — e~ (F*)° it follows from equation (3.6) the ECCW density
function (for x > 0)

L [1 - (1 _ e—</5x)f)q !

[1-p(1—e )]

flx)=aA(1—p)cpxte B [1 - e’(ﬁ’ﬂ (3.10)

a+1"
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For p = 0and &« = A = 1, the ECCW distribution reduces to the classical Weibull distribu-
tion. A random variable with density function (3.10) is denoted by X ~ ECCW(p,a, A, B, ¢).
For ¢ = 1, the ECCW model reduces to the Kumaraswamy-exponential-geometric (KwEG)
distribution. The Kumaraswamy-Weibull (KwW) distribution follows as a special case when
p — 0.

The hrf corresponding to (3.10) is given by

¢ A
A1 |[1—p (1 — e~ (Bx) )
1— (1—e(Bo)*

h(x) =aA(1—p)cpxte B {1 - e_(ﬁ")c} (3.11)

Plots of the ECCW density and hrf for selected parameter values are displayed in Figure
3.2 and 3.3, respectively.
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Figure 3.2: Plots of the ECCW density function for some parameter values.

3.3.3 The ECC-gamma (ECCG) distribution

Consider the gamma distribution with shape parameter 2 > 0 and scale parameter b > 0,
where the pdf and cdf (for x > 0) are given by

g(x) = Flz:)xal e™ and G(x) = v (a, bx)
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Figure 3.3: Plots of the ECCW hrf for some parameter values.

where y(a, bx) is the incomplete gamma function. Inserting these expressions in (3.6) gives the

ECCG density function
x—1
1 (7(a,bx)>)‘
A1 1)

ll_p <7¥E:)x)>A]a+l.

The Kumaraswamy-gamma (KwG) distribution follows from this model when p — 0. Plots of
the ECCG density and its hrf for selected parameter values are displayed in Figures 3.4 and 3.5,
respectively.

) = S P e o)

3.3.4 The ECC-beta (ECCB) distribution

Consider the beta distribution with positive shape parameters a and b and pdf and cdf (for
0 < x <1)given by

1

o Li(a,b)
g(x) = B(a,b)

¥ 1(1—x)b1 an x) =
(1-0"" and Glx) =5,

where I;(a,b) = [; w" (1 —w)? 1dw is the incomplete beta function and B(a, b) = fol w1 (1 -
w)?ldw = T'(a)T(b)/T(a + b) is the beta function. Inserting these expressions in (3.6) yields
the ECCB density function (for 0 < x < 1)

aA(1l—
fl = B<(al,b)f |
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Figure 3.4: Plots of the ECCG density function for some parameter values.
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Figure 3.5: Plots of the ECCG hrf for some parameter values.
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The Kumaraswamy beta (KwB) distribution arises as a special case when p — 0. The beta
distribution corresponds to the limiting case: p — 0 and « = A = 1. Plots of the ECCB density

function for selected parameter values are displayed in Figure 3.6.
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Figure 3.6: Plots of the ECCB density function for some parameter values.

3.4 Useful expansions

We can demonstrate that the cdf (3.5) of X has the expansion

Fx) =1— Y wjxH (%), (3.12)
jk=0

o (1))

and H,(x) = G(x)* denotes the exponentiated-G (“exp-G” for short) cumulative distribution.
Some structural properties of the exp-G distributions are studied by Mudholkar et al. (1996),
Gupta and Kundu (2001) and Nadarajah and Kotz (2006), among others.

The density function of X can be expressed as an infinite linear combination of exp-G den-

where

sity functions

fGa,A,p,€) = Y wjxhyrken (%), (3.13)
k=0

Wik = M(_l)j+k <0¢ ; 1) (—ock— 1)

and hy (1) (6 €) = A+ k+1) g(x;6) G(x; &)MiHk+D=1 denotes the exp-G density function
with power parameter A(j + k + 1). Hereafter, a random variable having this density function

where
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is denoted by Yjx ~ exp-G(A(j + k 4 1)). Equation (3.13) reveals that the ECC-G density func-
tion is a linear combination of exp-G density functions. Thus, some mathematical properties
of the new model can be derived from those properties of the exp-G distribution. For exam-
ple, the ordinary and incomplete moments and moment generating function (mgf) of X can be
obtained from those quantities of the exp-G distribution.

The formulae derived throughout the paper can be easily handled in most symbolic com-
putation software plataforms such as Maple, Mathematica. These plataforms have currently
the ability to deal with analytic expressions of formidable size and complexity. Established ex-
plicit expressions to calculate statistical measures can be more efficient than computing them
directly by numerical integration. The infinity limit in these sums can be substituted by a large
positive integer such as 20 or 30 for most practical purposes.

3.5 General properties

3.5.1 Characterization

The shapes of the density and hazard rate functions can be described analytically. The
critical points of the ECC-G density function are the roots of the equation:

(3.14)

P DL Sl L= L0 M

-G T1=pG)
There may be more than one root to (3.14). Let A(x) = 9% log[f(x)]/dx%. We have

8" (x)8(x) — g'(x)?

g(x)?
’ a—1 p(a+1)
/\ 1|:1 G +1—pG(X)A}
— AN = Dg(x )ZG(x) [1_“(;(1);\ +1ri<;:§(1))A]
a—1 (‘X—’_l) :|
(1-G(x)*)2  (1—pG(x)*)?

If x = xp is a root of (3.14) then it corresponds to a local maximum if A(xp) > 0 for all x < x

Ax) = M_Dgwmx)gﬁf+

- (2|

and A(xg) < 0 for all x > xg. It corresponds to a local minimum if A(xp) < 0 for all x < xp and
A(xp) > 0 for all x > xo. It refers to a point of inflexion if either A(x) > 0 for all x # x in the
neighbourhood of xg or A(x) < 0 for all x # xp in the neighbourhood of x.

The critical point of /1(x) is obtained from the equation

G(x)/\—l G(x))‘_l

g/(x)+(/\_1)g(x) Y (X)W:Ag(x)m-

G(x)

(3.15)
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There may be more than one root to (3.15). Let 7(x) = d?log[h(x)]/dx?. We have
8" (x)g(x) — [8'(x)]? g'(x)G(x) — [g(x)]?
T CTeo
, G(x))‘_l G(x)/\—z G(x)zA—z
—pAg (x)m —pA(A—-1) g(x)zm - pz/\zg(x)zw
G()M! 2 G(x)*? 2 2 G(x)**-1
-GG e

If x = x¢ is a root of (3.15) then it refers to a local maximum if 7(xp) > 0 for all x < xp and

T(x) =

—Ag¢(x) —A(A—1)g(x) =0.

T(xp) < 0 for all x > xp. It corresponds to a local minimum if 7(xp) < 0 for all x < xg and
T(xp) > 0 for all x > xp. It gives an inflexion point if either 7(x) > 0 for all x # xp or T(x) < 0
for all x # xp.

3.5.2 Quantile power series

Power series methods are at the heart of many aspects of applied mathematics and statis-
tics. Quantile functions are in widespread use in probability distributions and general statistics
and often find representations in terms of power series. The quantile function for a distribution
has many uses in both the theory and statistical applications. It may be used to generate val-
ues of a random variable having F(x) as its distribution function. This fact serves as the basis
of a method for simulating a sample from an arbitrary distribution with the aid of a random
number generator.

We derive explicit expressions for the moments and generating function of the ECC family
of distributions using a power series for the quantile function x = Q(u) = F~(u) of X ob-
tained by expanding (3.8), which is easily computed using a linear recurrent equation for its
coefficients. If the G quantile function, say Qg (u), does not have a closed-form expression, it
can usually be expressed in terms of a power series

Qc(u) = i a;u', (3.16)
i=0

where the coefficients a;’s are suitably chosen real numbers which depend on the parameters of
the G distribution. For several important distributions, such as the normal, Student ¢, gamma
and beta distributions, Q¢ (#) does not have explicit expressions but it can be expanded as
in equation (3.16). As a simple example, for the normal N(0,1) distribution, a; = 0 for i =
0,2,4,...and a; = b(i—l)/z fori =1,3,5,..., where the quantities b(z‘—l)/z can be determinated
recursively from
b = 1 i (2r +1) (2k — 2r +1) b, by,
2(2k+3) = (r+1)(2r+1)

Wehavea; =1,a3=1/6,a5 = 7/120 and a; = 127/7560, . . ..

From now on, we use a result by Gradshteyn and Ryzhik (2000, Section 0.314) for a power

series raised to a positive integer n (for n > 1)
n
Qc(u)" = (Z a; ui> =Y cpint, (3.17)
i=0 i=0
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where the coefficients ¢, ; (for i = 1,2,...) are easily obtained from the recurrence equation
(with ¢, 0 = ag)

cni = (iag) ™ Z (n+1)—i]lamcnim- (3.18)

Clearly, the quantity c,; can be determined from c,, ..., c,;—1 and then from the quantities
ao, - ..,a;. The coefficient ¢, ; can be given explicitly in terms of the coefficients 4;’s, although
it is not necessary for programming numerically our expansions in any algebraic or numerical
software. For the normal N(0,1) distribution, the coefficients c, ; can be obtained from (3.17)
using the a;’s given above.

Next, we derive an expansion for the argument of Qg () in (3.8)

_ - (—weg
T p A

Using the generalized binomial expansion three times since u € (0,1), we can write

= e () )T

Then, the quantile function of X can be expressed from (3.8) as

Q(u) = Qq ()of & uf> , (3.19)
t=0

- Eerne () () (1)

For any baseline G distribution, we combine (3.16) and (3.19) to obtain

where

Q(u) = Qg <Z O ut> = Zai (Z O ut> ,
t=0 i=0 t=0
and then using (3.17) and (3.18), we have
— Z erul, (3.20)
t=0

wheree; = Y ;2 a;di, dig = 56 and (for t > 1)

t
diy = (t8)~ Z m(i+1) —t]Smdism-

Equation (3.20) is the main result of this section. It allows to obtain various mathematical
quantities for the ECC-G family as demonstrated in the next sections.
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3.5.3 Generating function

Here, we provide two general formulae for the mgf M(t) = E(e'X) of X. A first formula
for M(t) follows from (3.13) as

M(t) =Y wix Mjx(t), (3.21)
jk=0
where M;(t) is the mgf of Y;;. Hence, M(t) can be immediately determined from the genera-
ting function of the exp-G distribution. We now provide three applications of equation (3.21).
For example, the generating functions of the ECC-exponential (with parameter B) (for t <
1/B), ECCPa (with parameter v > 0 real non integer) and ECCSL (for t < 1) distributions
follow from equation (3.21) as

M) = Y AG+k+ 1) BAG+k+1),1— Bt i,
j k=0

(o] tm
M(t) =e Y MG+k+1)] B(AGHk+1),1—m ) wx—
j k=0 m:

and
M) =Y [AG+k+1D)]B(t+A(+k+1),1—t)wj,
j k=0
respectively.
We now provide a fourth application of (3.21) by taking again as the baseline the Weibull
distribution with scale parameter f and shape parameter c (see Section 3.2). The generating
function of the exp-Weibull distribution with power parameter A(j + k + 1) is given by

Mj(t) = };0 o) I(t), (3.22)

where

o) =BG+ 1) By (AU HEFDIEED =)

L(t) = /0 " exp{tx — (6, %) }dx.

Pascoa et al. (2011) derived two different formulae for I,(t) which hold for: (i) ¢ > 1 or (ii) for
c = p/q, where p > 1 and g > 1 are co-prime integers. The first representation for I,(t) is
given in terms of the Wright generalized hypergeometric function (Wright, 1935) defined by
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We can write
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The function I,(t) exists if 1 + 2;7:1 B; — Z;;l Aj > 0.
Using equations (3.21), (3.22) and (3.23), we obtain (assuming that A > 1)
(r)
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A second representation for I,(t) is based on the Meijer G-function defined by

m n
[T+ [T (1 —a—t)
Gl (x =
pA

ai, ..., ap 1 / j=1
by,..., bq 2mi JL
where i = /-1 is the complex unit and L denotes an integration path; see Section 9.3 in

x~tdt,

ﬁ T (a;+1) ﬁ T(1-bj—t)

j=n+1 j=m+1

Gradshteyn and Ryzhik (2000) for a description of this path. The Meijer G-function contains
many integrals with elementary and special functions (Prudnikov et al., 1986). From the result

exp{—g(x)} = Gél’g) (g(x) | g ) for an arbitrary g(-) function, I,(t) becomes

L(t) = /0 x L exp{sx — (6, x) }dx = /0 X071 e Géf (55 x€| ; ) dax.

We now assume that ¢ = p/q, where p > 1 and g > 1 are co-prime integers. Note that
this condition for calculating the integral I,(t) is not restrictive since every real number can
be approximated by a rational number. Using equation (2.24.1.1) in Prudnikov et al. (1986,
volume 3), we have

p/a=1/2(_4\=p/q §lppta | 1=F 2’1*!’, O i
() = P ( )_ 5/’3 LZ rq qu , pq ) (3.25)
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Using (3.21), (3.22) and (3.25), we can obtain M(t) for the ECCW distribution.
A second general formula for M(t) can be derived from (3.13) as

M) = Y AG+k+ D]t AG+k+1) — 1), (3.26)
jk=0

where p(t,a) can be determined from the 