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Resumo

A área de análise de sobrevivência é importante na Estat́ıstica e é comumente aplicada às ciências
biológicas, engenharias, ciências sociais, entre outras. Tipicamente, o tempo de vida ou falha pode
ter diferentes interpretações dependendo da área de aplicação. Por exemplo, o tempo de vida pode
significar a própria vida de uma pessoa, o tempo de funcionamento de um equipamento até sua falha,
o tempo de sobrevivência de um paciente com uma doença grave desde o diagnóstico, a duração de
um evento social como um casamento, entre outros significados. O tempo de vida é uma variável
aleatória não negativa, que pode ter a função de risco na forma constante, monótona crescente,
monótona decrescente ou não monótona (por exemplo, em forma de U).

Nas últimas décadas, várias famı́lias de modelos probabiĺısticos têm sido propostas. Esses modelos
podem ser constrúıdos com base em alguma transformação de uma distribuição padrão, geralmente
já conhecida na literatura. Uma dada combinação linear ou mistura de modelos G normalmente
define uma classe de modelos probabiĺısticos tendo G como caso especial.

Esta tese é composta de caṕıtulos independentes. O primeiro e último são curtos caṕıtulos que
incluem a introdução e as conclusões do estudo desenvolvido. Duas famı́lias de distribuições, de-
nominadas de classe “exponentiated logarithmic generated” (ELG) e a classe “geometric Nadarajah-
Haghighi” (NHG) são estudadas. A última é uma composição das distribuições de Nadarajah-
Haghighi e geométrica. Além disso, desenvolvemos uma biblioteca estat́ıstica para a linguagem de
programação R chamada AdequacyModel. Esta é uma melhoria do pacote que foi disponibilizado
no CRAN (Comprehensive R Archive Network) e está atualmente na versão 2.0.0. As duas prin-
cipais funções da biblioteca são as funções goodness.fit e pso. A primeira função permite obter
as estimativas de máxima verossimilhança (EMVs) dos parâmetros de um modelo e algumas medi-
das de bondade de ajuste dos modelos probabiĺısticos ajustados. É posśıvel escolher o método de
otimização para maximizar a função de log-verossimilhança. A segunda função apresenta o método
meta-heuŕıstico de busca global conhecido como Particle Swarm Optimization (PSO) proposto por
Eberhart e Kennedy (1995). Algumas metodologias podem ser utilizadas para obtenção das EMVs
necessárias para o cálculo de algumas medidas de adequação dos modelos probabĺısticos ajustados.

Palavras chaves: AdequacyModel. distribuição. mistura linear. PSO.



Abstract

The area of survival analysis is important in Statistics and it is commonly applied in biological
sciences, engineering, social sciences, among others. Typically, the time of life or failure can have
different interpretations depending on the area of application. For example, the lifetime may mean
the life itself of a person, the operating time of equipment until its failure, the time of survival of a
patient with a severe disease from the diagnosis, the duration of a social event as a marriage, among
other meanings. The time of life or survival time is a positive continuous random variable, which
can have constant, monotonic increasing, monotonic decreasing or non-monotonic (for example, in
the form of a U) hazard function.

In the last decades, several families of probabilistic models have been proposed. These models
can be constructed based on some transformation of a parent distribution, commonly already known
in the literature. A given linear combination or mixture of G models usually defines a class of
probabilistic models having G as a special case.

This thesis is composed of independent chapters. The first and last chapters are short chapters
that include the introduction and conclusions of the study developed. Two families of distributions,
namely the exponentiated logarithmic generated (ELG) class and the geometric Nadarajah-Haghighi
(NHG) class are studied. The last one is a composition of the Nadarajah-Haghighi and geometric
distributions. Further, we develop a statistical library for the R programming language called the
AdequacyModel. This is an improvement of the package that was available on CRAN (Comprehen-
sive R Archive Network) and it is currently in version 2.0.0. The two main functions of the library are
the goodness.fit and pso functions. The first function allows to obtain the maximum likelihood
estimates (MLEs) of the model parameters and some goodness-of-fit of the fitted probabilistic mod-
els. It is possible to choose the method of optimization for maximizing the log-likelihood function.
The second function presents the method meta-heuristics global search known as particle swarm
optimization (PSO) proposed by Eberhart and Kennedy (1995). Such methodology can be used for
obtaining the MLEs necessary for the calculation of some measures of adequacy of the probabilistic
models.

Keywords: AdequacyModel package. distribution. linear mixture. PSO.
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CHAPTER 1

Introduction

The area of survival analysis is important in Statistics and it is commonly applied in biological
sciences, engineering, social sciences, among others. Typically, the time of life or failure can have
different interpretations depending on the area of application. According to Lai (2013), it may
represent:

• the lifetime may mean the life itself of a person;

• the operating time of equipment until its failure;

• the time of survival of a patient with a severe disease from the diagnosis;

• the duration of a social event as a marriage.

The time of life or survival time is a positive continuous random variable, which can have constant,
monotonic increasing, monotonic decreasing or non-monotonic (for example, in the form of a U)
hazard function. The form of the failure rate function defines a possible probability model for the
survival time. For example, when the function failure rate is monotonous, probability distributions
traditionally associated with the time of survival are the exponential, Weibull and gamma. In
situations in which the function failure rate is unimodal, it is common to the use of the log-logistic
or log-normal distributions.

Although no model cited above displays failure rate function in form of U , some models of this
type are useful in the survival analysis. Such models can be constructed based on a distribution
already known in the literature by means of compositions or mixtures of probability distributions.
These compositions, in general, are obtained by a baseline distribution G in a generator of probability
distributions. For example, in the last decades new distributions have been defined as extensions
of the Weibull distribution. An important characteristic of these new distributions is that several
of them show hazard rate function in the form of U , such as the exponentiated Weibull (EW)
distribution [see Mudholkar and Srivastava (1993) and Mudholkar et al. (1995)]. This model also
presents unimodal hazard rate function.

New distributions are often generated from a modification of a baseline random variable X by (i)
linear transformation, (ii) power transformation (e.g. the Weibull is obtained from the exponential),
(iii) non-linear transformation (e.g. the lognormal from the normal), (iv) log transformation (e.g.
the log Weibull, also known as the type 1 extreme value distribution), and (v) inverse transformation
(e.g. the inverse Weibull and inverse gamma models). In what follows, we present two simple
transformations for generating new models.

11
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Power transformation

Consider G(x) be the original cumulative distribution function (cdf) and F (x) be the cdf of a
new ageing distribution derived from Y ∼ G by exponentiating as follows:

• F (x) = G(x)α: From such power transformation, we obtain exponentiated Weibull by Mud-
holkar and Srivastava (1993), the generalized modified Weibull proposed by Carrasco (2008)
and the exponentiated Erlang by Lai (2010).

• F (x) = 1 − {1 − G(x)}β: The Lomax model is obtained from the Pareto distribution in this
way.

Mixture of distributions

New models are often deduced from mixtures of two or more distributions. Let π be the mixing
proportion of two cdfs F1(x) and F2(x). The cdf F (x) resulting from the mixture between the two
cdfs is given by

F (x) = πF1(x) + (1− π)F2(x).

This thesis is composed of independent chapters. Two families of distributions, namely the expo-
nentiated logarithmic generated (ELG) class and the geometric Nadarajah-Haghighi (NHG) class are
investigated. The last one is a composition of the Nadarajah-Haghighi and geometric distributions.
Further, we develop a statistical library for the R programming language called the AdequacyModel.
This is an improvement of the package that was available on CRAN (Comprehensive R Archive Net-
work) and it is currently in version 2.0.0. The two main functions of the library are the goodness.fit
and pso functions. The first function allows to obtain the maximum likelihood estimates (MLEs)
of the model parameters and some goodness-of-fit of the fitted probabilistic models. It is possible
to choose the method of optimization for maximizing the log-likelihood function. The second func-
tion presents the method meta-heuristics global search known as particle swarm optimization (PSO)
proposed by Eberhart and Kennedy (1995). Such methodology can be used for obtaining the MLEs
necessary for the calculation of some measures of adequacy of the probabilistic models.

This thesis is composed of independent chapters. In Chapter 2 is presented the distribution
Nadarajah-Haghighi-geometric (NHG), in which they are discussed various mathematical properties.
Studies of the evaluation of intervals estimates by single and double bootstrap percentile (two levels of
bootstrap) for the parameters that index the NHG distribution is performed and discussed. Chapter
3 presents a discussion about the Exponentiated Logarithm Generated (ELG) family of distributions.
In this chapter are discussed various mathematical properties of the distributions belonging to the
ELG family of distributions. In Chapter 4 is presented the generator Type I Half-Logistic (TIHL)
family of distributions. Mathematical properties of moments, order statistics and likelihood maxi-
mum are constructed and discussed. In Chapter 5 is proposed the library AdequacyModel version
2.0.0 for the R language. The library AdequacyModel is intended for the calculation of statistics of
adequacy of adjustment of probabilistic models and optimization of overall purpose. AdequacyModel
is distributed over the license terms General Public License (GPL≥2.0) in the official repositories of
R language.
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CHAPTER 2

A new class of lifetime models and the evaluation of the

confidence intervals by double percentile bootstrap

Abstract: In this chapter, we introduce a new three-parameter distribution by compounding the
Nadarajah-Haghighi and geometric distributions, which can be interpreted as a truncated Marshall-
Olkin extended Weibull. The compounding procedure is based on the work by Marshall and Olkin
(1997), [Marshall, A.W., Olkin, I. (1997). A new method for adding a parameter to a family of
distributions with application to the exponential and Weibull families. Biometrika, v. 84, 641–652].
We prove that the new distribution can be obtained as a compound model with mixing exponential
distribution. It can have decreasing, increasing, upside-down bathtub, bathtub-shaped, constant and
decreasing-increasing-decreasing failure rate functions depending on the values of its parameters.
Some mathematical properties of the new distribution are studied including moments and quantile
function. The maximum likelihood estimation procedure is discussed and an EM algorithm is given
for estimating the model parameters. We obtain the observed information matrix and discuss infer-
ence issues. The flexibility of the new model is illustrated with an application to a real data set.

Keywords: Exponential distribution. failure rate function. geometric distribution. Maximum
likelihood estimation. Nadarajah-Haghighi distribution.

2.1 Introduction

Nadarajah and Haghighi (2011) introduced and studied the mathematical properties of an extension
of the exponential distribution that allows for increasing, decreasing and constant hazard rate func-
tions (hrfs). The model is referred to as the Nadarajah-Haghighi (NH) distribution. Its cumulative
function is given by

G(t;α, λ) = 1− exp{1− (1 + λ t)α}, t > 0, (2.1)

where λ > 0 is the scale parameter and α > 0 is the shape parameter. If T follows the Nadarajah-
Haghighi distribution, we shall denote T ∼ NH(α, λ). The corresponding density function is

g(t;α, λ) = αλ (1 + λ t)α−1 exp{1− (1 + λ t)α}, t > 0. (2.2)

The NH distribution presents several advantages if compared with some well-known generaliza-
tions of the Exponential model, such as the Gamma, Weibull and Exponentiated Exponential (EE)

14
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distributions. For example, unlike these distributions, the NH distribution allows for an increasing
hrf when its corresponding density is monotonically decreasing. The second advantage is the ability
to model data that have their mode fixed at zero. Other advantage is based on a mathematical
relationship with the Weibull distribution, in which the NH model can be interpreted as a truncated
Weibull distribution. These three facts combined may attract more complex applications in the
literature of lifetime distributions.

The NH distribution is not the only extension of the exponential distribution. In addition to the
gamma and Weibull distributions, many other generalizations have been proposed over the years.
One of them is

G(t; ρ, λ, α) = (1− ρ e−λ t)α, t > λ−1 log ρ, (2.3)

where ρ > 0, λ > 0 and α > 0, which was discussed by Gompertz (1825) to compare known human
mortality tables and to represent mortality growth. Note that the EE distribution, discussed in Gupta
et al. (1998), is actually a particular case of equation (2.3) when ρ = 1. Nadarajah and Kotz (2006)
and Barreto-Souza et al. (2010) proposed two important extensions of the exponential model, which
are the beta exponential (BE) and beta generalized exponential (BGE) distributions, respectively.
The BE and BGE distributions are special cases of the beta family of distributions, which was intro-
duced by Eugene et al. (2002). The beta family still contains other generalizations of the exponential
model such as the beta Weibull (BW) [Lee et al. (2007)] and beta modified Weibull (BMW) [Silva
et al. (2010)] distributions. The Kumaraswamy class, introduced by Cordeiro and Castro (2011),
also contains several models that extend the exponential distribution, such as the Kumaraswamy
Weibull (KwW) [Cordeiro et al. (2010)] and Kumaraswamy generalized Rayleigh (KwGR) [Gomes
et al. (2014)] distributions. References about other generalizations of the exponential model are
widespread and the reader can to see those listed in the above papers.

In this chapter, we introduce a new continuous distribution, which is an extension of the NH
model, by compounding the NH and geometric distributions. The new model is therefore another
extension of the exponential distribution and is referred to as the Nadarajah-Haghighi geometric
(NHG) distribution. The proposed distribution is more flexible for modeling lifetime data, namely in
reliability, in terms of its failure rate shapes, which are constant, decreasing, increasing, upside-down
bathtub and bathtub shaped. The compounding procedure follows the pioneering work by Marshall
and Olkin (1997). In the same way, several classes of distributions were proposed by compounding
some useful lifetime and power series (PS) distributions in the last few years. Chahkandi and Ganjali
(2009), introduced the exponential power series (EPS) class of distributions, which contains as special
cases the exponential Poisson (EP), exponential geometric (EG) and exponential logarithmic (EL)
distributions. Morais et al. (2011) defined the Weibull power series (WPS) class, which includes as
sub-models the EPS distributions. The WPS distributions can have increasing, decreasing and upside
down bathtub hrfs. The generalized exponential power series (GEPS) distributions were proposed by
Mahmoudi and Akbar (2012) following the same approach of Morais and Barreto-Souza (2011). Silva
et al. (2013) studied the extended Weibull power series (EWPS) family, which includes as special
models the EPS and WPS families. Bourguignon et al. (2014) extended the Birnbaum-Saunders
distribution through the class of Birnbaum-Saunders power series (BSPS) distributions. In a very
recent paper, Silva and Cordeiro (2015) introduced the Burr XII power series (BXIIPS) family of
distributions.
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2.2 Construction of the NHG distribution

Let T1, . . . , TN be independent and identically distributed (iid) NH random variables with cdf (2.1)
and pdf (2.2). We assume that N has a zero-truncated geometric distribution independent of the
T ’s with probability mass function (pmf) given by

pn = P (N = n) = (1− p) pn−1, n = 1, 2, . . . , (2.4)

where p ∈ (0, 1). Let X = min(T1, . . . , TN). Then, the conditional random variable (X|N = n) has
cumulative distribution function (cdf)

P (X ≤ x,N = n) = (1− p) pn−1(1− {exp[1− (1 + λx)α]}n), x > 0, n ≥ 1.

The Nadarajah-Haghighi-geometric (NHG) distribution is defined by the marginal cdf of X

F (x;α, λ, p) =
1− exp[1− (1 + λx)α]

1− p exp[1− (1 + λx)α]
, x > 0. (2.5)

Hereafter, the random variable X following (2.5) with parameters α, λ and p is denoted by X ∼
NHG(α, λ, p). The pdf of X is

f(x;α, λ, p) =
(1− p)αλ (1 + λx)α−1 exp[1− (1 + λx)α]

{1− p exp[1− (1 + λx)α]}2
, x > 0. (2.6)

It can be shown that

lim
x→0

f(x;α, λ, p) = αλ/(1− p) and lim
x→∞

f(x;α, λ, p) = 0.

We can then define the NHG distribution by (2.6) for any p < 1. The study of the new distribution
is important since it extends some distributions previously considered in the literature. In fact,
the NH distribution is obtained by taking p = 0 [see Nadarajah and Haghighi (2011)]. The EG
distribution (Adamidis and Loukas, 1998) follows by taking α = 1 and 0 < p < 1, whereas the
EEG distribution (Adamidis et al., 2005) is obtained when α = 1 for any p < 1. Clearly, the
EEG distribution extends the EG distribution. For α = 1 and p = 0, Equation (2.6) reduces to
the exponential distribution. When p → 1−, the NHG distribution distribution converges to a
distribution degenerated at zero, i.e., P (X = 0) = 1. Hence, the parameter p can be interpreted as
a degeneration parameter. Figure 2.1 displays the pdf for selected parameter values.

Proposition 2.2.1. The NHG density function is log-convex if α < 1 and 0 ≤ p < 1, and it is
log-concave if α > 1 and p ≤ 0.

Proof. Let z = (1 + λx)α. It implies that z > 1 for x > 0. We have x = (z1/α − 1)/λ. Rewriting the
NHG density function as a function of z, δ(z) say, we obtain

δ(z) =
(1− p)αλ z(α−1)/α e1−z

[1− p e1−z]2
, z > 1.

The second derivative of log[δ(z)] with respect to z is given by

d2 log[δ(z)]

d z2
= −

[
(α− 1)

α z2
− 2 p e1−z

[1− p e1−z]2

]
.
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Figure 2.1: The NHG density function for some parameter values; λ = 1.

The main motivation for this new distribution is based on four points:

1. Ability (or the inability) of the NHG distribution to model data that have their mode fixed at
zero.

2. As we shall see later, the NHG hazard rate function (hrf) can be constant, decreasing, increas-
ing, decreasing-increasing-decreasing, upside-down bathtub, bathtub-shaped or constant.

3. If Y is a Marshall-Olkin extended Weibull random variable with shape parameters α and scale
parameter λ, then the density in (2.6) is the same as that of the random variable Z = Y − λ−1

truncated at zero; that is, the NHG distribution can be interpreted as a truncated Marshall-
Olkin extended Weibull distribution.

4. It can be applied in some interesting situations such as:

• Time to relapse of cancer under the first-activation scheme. Here, N is the number of
carcinogenic cells for an individual left active after the initial treatment and Xi is the time
spent for the ith carcinogenic cell to produce a detectable cancer mass, for i ≥ 1;

• Time to the first failure. Suppose that the failure of a device occurs due to the presence of an
unknown number N of initial defects of same kind, which can be identifiable only after causing
failure and are repaired perfectly;

• Reliability. From the stochastic representations X = min{Xi}Ni=1 and Z = max{Xi}Ni=1, we
note that the NHG model can arise in series and parallel systems with identical components,
which appear in many industrial applications and biological organisms.

Proposition 2.2.2. The distribution of the form (2.5) is geometric extreme stable.

Proof. The proof follows easily using the arguments by [23]. We omit the details.



18

Proposition 2.2.3. The density function of X can be expressed as an mixture of densities of mini-
mum order statistics of T .

Proof. For any positive real number a, and for |z| < 1, we have the generalized binomial expansion

(1− z)−a =
∞∑
n=0

Γ(a+ n)

Γ(a)n!
zn, (2.7)

where Γ(·) is the gamma function. Applying (2.7) to (2.6), yields

f(x;α, λ, p) =
∞∑
n=1

pn fT(1)(x;α, λ, n), x > 0,

where
∑∞

n=1 pn = 1 and fT(1)(t;α, λ, n) is the density function of T(1) = min(T1, . . . , Tn), for fixed n,
given by

fT(1)(t;α, λ, n) = nαλ (1 + λ t)α−1{exp[1− (1 + λ t)α]}n, t > 0.

The distribution with cdf (2.8) is called the complementary Nadarajah-Haghighi-geometric (CNHG)
distribution. This distribution is a suitable model in a complementary risk problem based in the
presence of latent risks which arise in several areas such as public health, actuarial science, biomedical
studies, demography and industrial reliability (Basu and Klein, 1982). However, in this work, we do
not focus on this alternative class of distributions.

Remark. Let Y = max(T1, . . . , TN), then the cdf and pdf of Y are

FY (y;α, λ, p) =
(1− p){1− exp[1− (1 + λx)α]}
1− p{1− exp[1− (1 + λx)α]}

, y > 0 (2.8)

and

fY (y;α, λ, p) =
(1− p)αλ (1 + λx)α−1{exp[1− (1 + λx)α]}

(1− p{1− exp[1− (1 + λx)α]})2
.

Proposition 2.2.4. Let X ∼ NHG(α, λ, p). Then:
i) The cdf of the nth order statistic corresponding to the pdf (2.6) is given by

Fn(x) = [F (x;α, λ, p)]n =

{
1− exp[1− (1 + λx)α]

1− p exp[1− (1 + λx)α]

}n
; (2.9)

ii) The density function of the nth order statistic is given by

fn(x) =
n(1− p)f(x;α, λ, p)[F (x;α, λ, p)]n−1

{1− p[1− F (x;α, λ, p)]}n+1
.

Proof. The proof of Proposition 4 is trivial.

The NHG survival function is given by

S(x;α, λ, p) =
(1− p) exp[1− (1 + λx)α]

1− p exp[1− (1 + λx)α]
, x > 0,



19

and the corresponding hrf (for x > 0) becomes

h(x;α, λ, p) =
αλ (1 + λx)α−1

1− p exp[1− (1 + λx)α]
=

hNH(x;α, λ)

1− p exp[1− (1 + λx)α]
,

where hNH(x;α, λ) is the NH hrf.
Note that NH hrf h(x;α, λ, p)/h(x;α, λ) is increasing in x for p < 0 and decreasing in x for

0 < p < 1. Further, we have

lim
x→0

h(x;α, λ, p) =
αλ

1− p
and lim

x→∞
h(x;α, λ, p) =


0, α < 1,
∞, α > 1,
α λ, α = 1.

Proposition 2.2.5. For λ > 0, the NHG distribution has an increasing hrf if α > 1 and p < 0, and
it has a decreasing hrf if α < 1 and 0 < p < 1. It is constant if α = 1 e p = 0.

Proof. Let z = (1 +λx)α. It implies that z > 1 for x > 0. We have x = (z1/α−1)/λ. Now, rewriting
the NHG hrf as a function of z, η(z) say, we obtain

η(z) =
αλ z(α−1)/α

1− p exp(1− z)
, z > 1.

The first derivative of η(z) with respect to z is given by

η′(z) =
λ z−1/α

[1− p exp(1− z)]2
∆(z), z > 1,

where
∆(z) = (α− 1)(1− p e1−z)− αλ z e1−z.

For α > 1 and p < 0, ∆(z) > 0, and hence η′(z) > 0, i.e., η(z) is increasing in (1,∞). For α < 1
and 0 < p < 1, ∆(z) < 0, and hence η′(z) < 0, i.e., η(z) is decreasing in (1,∞).

Figure 2.2 displays some plots of the NHG hrf for some parameter values. The parameter λ does
not change the shape of the hrf since it is a scale parameter. It is evident that the NHG hrf can be
decreasing, increasing, upside-down bathtub shaped or bathtub-shaped. It is difficult to determine
analytically the parameter spaces corresponding to these shapes. It is interesting to point out that
the NHG hrf can also be decreasing-increasing-decreasing. So, the NH distribution is quite flexible
and can be used effectively in analyzing real data in several areas. Thus, the beauty and importance
of the new distribution lies in its ability to model monotone as well as non-monotone failure rates,
which are quite common in reliability and biological studies.
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Figure 2.2: The NHG hrf for some parameter values; λ = 1.
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2.3 Maximum likelihood estimation

In this section, we determine the maximum likelihood estimates (MLEs) of the parameters of
the new distribution from complete samples only. Let x1, . . . , xn be observed values from the NHG
distribution with parameters α, λ and p. Let θ = (α, λ, p)> be the parameter vector. The total
log-likelihood function for θ is given by

`n(θ) = n+ n log[(1− p)αλ] + (α− 1)
n∑
i=1

log(1 + λxi)−
n∑
i=1

(1 + λxi)
α

− 2
n∑
i=1

log{1− p exp[1− (1 + λxi)
α]}.

By taking the partial derivatives of the log-likelihood function with respect to the parameters in
θ, we obtain the components of the score vector Uθ = (Uα, Uλ, Up)

>:

Uα =
n

α
+

1

α

n∑
i=1

(1− ν̇i) log(ν̇i)−
2 p

α

n∑
i=1

π̇i ν̇i log (ν̇i) ,

Uλ =
n

λ
+ (α− 1)

n∑
i=1

xi ν̇
−1/α
i − α

n∑
i=1

xi (2p+ π̇i) ν̇
1−1/α
i and Up = 2

n∑
i=1

π̇i −
n

1− p
,

where

ν̇i = (1 + λxi)
α and π̇i =

exp [1− (1 + λxi)
α]

1− p exp [1− (1 + λxi)
α]
, i = 1, . . . , n.

Setting Uα, Uλ and Up equal to zero and solving the equations simultaneously yields the MLE

θ̂ = (α̂, λ̂, p̂)> of θ = (α, λ, p)>. These equations cannot be solved analytically and statistical software
can be used to solve them numerically using iterative methods such as the Newton-Raphson type
algorithms.

2.4 Optimization algorithm

In Computer Science, the particle swarm optimization (PSO) is a computational method for
optimization of parametric and multiparametric functions. The PSO algorithm is a meta-heuristic
method, which has been providing good solutions for problems of global optimization functions
with box-constrained. The use of meta-heuristic methods such as PSO has proved to be useful for
maximizing complicated log-likelihood functions without the need for early kick functions as the
BFGS, L-BFGS-B, Nelder-Mead and simulated annealing methods. As in most heuristic methods
that are inspired by biological phenomena, the PSO method is inspired by the behavior of flying birds.
The philosophical idea of the PSO algorithm is based on the collective behavior of birds (particle)
in search of food (point of global optimal). The PSO technique was first defined by Eberhart and
Kennedy (1995) in a paper published in the Proceedings of the IEEE International Conference on
Neural Networks IV. A modification of the PSO algorithm was proposed by Shi and Eberhart (1998).
Further details on the philosophy of the PSO method are given in the book Swarm Intelligence (see
Kennedy et al., 2001).

The PSO optimizes a problem by having a population of candidate solutions and moving these
particles around in the search-space according to simple mathematical formulae over the particle’s
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position and velocity. The movement of the particles in the search space is randomized. Each
iteration of the PSO algorithm, there is a leader particle, which is the particle that minimizes the
objective function in the corresponding iteration. The remaining particles arranged in the search
region will follow the leader particle randomly and sweep the area around this leading particle. In
this local search process, another particle may become the new leader particle and the other particles
will follow the new leader randomly. In each particle arranged in the search region has a velocity
vector and position vector and its movement in the search region is given by changes in these vectors.
The PSO algorithm is presented below, where f : Rn 7→ R is the objective function to be minimized,
S is the number of particles in the swarm (set of feasible points, i.e. search region), each particle
having a vector position xi ∈ Rn in the search-space and a vector velocity defined by vi ∈ Rn. Let pi
be the best known position of particle i and g the best position of all particles.

1. For each particle i = 1, . . . , S do:

• Initialize the particle’s position with a uniformly distributed random vector: xi ∼ U(blo, bup),
where blo and bup are the lower and upper boundaries of the search-space.

• Initialize the particle’s best known position to its initial position: pi ←[ xi.

• If f(pi) < f(g) update the swarm’s best known position: g ←[ pi.

• Initialize the particle’s velocity: vi ∼ U(−|bup − blo|, |bup − blo|).

2. Until a termination criterion is met (e.g., number of iterations performed, or a solution with
adequate objective function value is found), repeat:

• For each particle i = 1, . . . , S do:

– Pick random numbers: rp, rg ∼ U(0, 1).

– For each dimension d = 1, . . . , n do:

∗ Update the particle’s velocity: vi,d ← [ ω vi,d + ϕprp(pi,d − xi,d) + ϕgrg(gd − xi,d).
– Update the particle’s position: xi ←[ xi + vi

– If f(xi) < f(pi) do:

∗ Update the particle’s best known position: pi ←[ xi
∗ If f(pi) < f(g) update the swarm’s best known position: g ←[ pi.

3. Now g holds the best found solution.

The parameter ω is called inertia coefficient and as the name implies controls the inertia of each
particle arranged in the search region. The quantities ωp and ωg control the acceleration of each
particle and are called acceleration coefficients. The PSO algorithm described above is implemented
in the programming language R is presented below.

This algorithm with few modifications will be implemented in the AdequacyModel package avail-
able on the website of R. The algorithm above is quite general and can be applied to maximize
any function involving or not a database. Using pso, a given function is maximized taking into
consideration vectors of restrictions delimiting the search-space. In truth, the pso function above is
constructed to minimize any function. However, to maximize f is equivalent to minimize −f . A
brief description of the function arguments pso are listed below.

• func: Objective function that we want to maximize;
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• S: Number of particles considered. By default, the number of particles is equal to 150;

• lim inf e lim sup: Vectors that restrict the region-search inferiorly and superiorly, respectively.

• e: Error considered. The algorithm stops if the variance in the last 10 iterations is less than
or equal to e;

• data: By default data = NULL, but when the func is a log-likelihood function, data is a data
vector;

• N: Maximum number of iterations.

One advantage of the PSO method is the we do not need to concern ourselves with initial parame-
ter values. Problems with initial values are frequent in methods such as the BFGS when the objective
function involves flat or nearly flat regions. Depending on the initial values provided, we can obtain
estimates totally different. In general, it does not occur with great frequency in methodologies of
heuristic search, whose update steps embed randomness (generation of pseudo-random number). The
example below shows clearly this problem and the use of the function pso, especially how to specify
the objective function for the argument func. The PSO method is described in the Appendix “A.
Code in R language for the PSO method”.

Example

Consider Easom function f(x, y) = − cos(x) cos(y) exp{−[(x−π)2 +(y−π)2]}, and −10 ≤ x, y ≤
10. The Easom function is minimized at x = y = π, with f(π, π) = −1. The use of the pso function
to minimize the above function is

easom <- function(par,x){

x1 = par[1]

x2 = par[2]

-cos(x1)*cos(x2)*exp(-((x1-pi)^2 + (x2-pi)^2))

}

set.seed(0)

pso(func=easom,S=350,lim_inf=c(-10,-10),lim_sup=c(10,10))
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Figure 2.3: Points of minimum obtained by optim and pso functions the using methods BFGS and
PSO.

In both minimizations there was convergence. For minimization through BFGS method we use
the optim function of the R linguage with the argument method = "BFGS". For more details on the
function optim do it help(optim). Figure 2.3(a) presents four estimates obtained by the BFGS
method whose points are the points of minimum obtained by the BFGS method, whose the BFGS
procedure with different initial shots. In the legend are described the initial shots. In these four
estimates for different shots the optim function indicates convergence.

Before performing the pso function, the seed of the Mersenne-Twister generator proposed by
Matsumoto and Nishimura (1998) is fixed at zero, i.e, set.seed(0). Is it possible to perceive clearly
through Figure 2.3 that the minimization method using the PSO function pso is much more efficient
and approaches better the global minimum.

2.5 Bootstrap confidence intervals

The bootstrap method was introduced in 1979 by Bradley Efron. This method was inspired by a
previous methodology based on resampling called jackknife. Efron 1979 summarized the methodolo-
gies based on resampling that until then existed and established a new area of research. The idea of
replacing complicated and often inaccurate simulation methods based on resampling approaches has
attracted several researchers to develop methodologies based on bootstrap for various purposes. With
the popularization of the bootstrap method, some researchers have begun to establish mathematical
conditions under which the bootstrap is justifiable.

In the literature there are many jobs that make use of bootstrap methodologies. In general, the
bootstrap method is used to correct the biases of the estimators, construct of confidence intervals,
hypothesis tests, estimation of standard errors of estimators, among others.
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The bootstrap methods present two approaches, namely the parametric bootstrap and nonpara-
metric bootstrap. Parametric bootstrap refers to the case where the resampling is performed based
on a distribution F (θ̂) known or established, wherein θ̂ is an estimator for θ. On the other hand, in
bootstrap nonparametric there is the lack of a true distribution F . The resampling is based on the
empirical distribution function F̂n. Resample of F̂n is equivalent to resample data with replacement.

2.5.1 Bootstrap percentile interval

Let Tn be an estimator of the scale θ based on n observations and t its estimate. Let T ∗n be the
same estimator based on n observations resampling from the original sample with replacement and t∗

its estimate. For simplicity, suppose Tn is a continuous random variable. Denoting the pth quantile
of the distribution of the random variable Tn − θ by ap, we obtain

Pr
{
Tn − θ ≤ aα1

2

}
= Pr

{
Tn − θ ≥ a1−α2

2

}
=
α

2
.

As the amount Q = Tn− θ is invertible and Tn depends only on the sample, we can construct the
confidence interval for θ by rewriting the events above, i.e., we can replace the events Tn − θ ≤ aα1

2

and Tn − θ ≥ a1−α2
2

by θ > Tn − aα1
2

and θ < Tn − a1−α2
2

, respectively. Thus, the confidence interval
of level γ has the limits

`α/2 = t− a1−α2
2
, `1−α/2 = t− aα1

2
.

In many situations, we do not know the distribution of Tn − θ. In such cases, suppose that there
is some transformation Tn, U = h(Tn), such that U has a symmetric distribution. Suppose also that
we can obtain the confidence interval of level 1− α to φ = h(θ). According to Davison and Hinkley
(1997), we may use bootstrapping to obtain an approximation of the distribution of Tn− θ using the
distribution of T ∗n − t. Thus, we estimate the p quantile of Tn − θ by the (J + 1)p-th ordered value
of t∗ − t, i.e., the p-th quantile of Tn − θ is estimated by t∗((J+1)p) − t. Similarly, the p quantile of

h(Tn) − h(θ) = U − φ can be estimated by the (J + 1)p-th ordered value of h(T ∗n) − h(t) = u∗ − u.
Let bp be the p-th quantile of U − φ. Since U has a symmetrical distribution, then U − φ also has
a symmetrical distribution, as soon as it is true that bα

2
= −b1−α

2
. Using the symmetry of U − φ,

we have h(`α/2) = u + bα/2 and h(`1−α/2) = u + b1−α/2. As bα/2 and b1−α/2 are quantiles of U − φ
and we can obtain these quantiles, the lower and upper limits of the confidence intervals are given
by u+ (u∗((J+1)α/2) − u) and u+ (u∗((J+1)(1−α/2)) − u), respectively, leading to the limits

u∗((J+1)α/2), u∗((J+1)(1−α/2)),

whose transformation to θ is

t∗(J+1)α/2, t∗(J+1)(1−α/2). (2.10)

Note that we do not know the transformation h. The confidence interval of level 1 − α for the
parameter θ does not involve h and it can be evaluated without knowledge of this transformation.
The interval (2.10) is known as the bootstrap interval percentile. According to Davison and Hinkley
(1997, p. 203) the percentile method can be applied to any statistic.
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2.5.2 Interval Double Bootstrap Percentile

When using the percentile method, we can obtain a coverage different from the desired level
(1 − α). The interesting thing is that we can continue making use of bootstrap to correct this
discrepancy. This fact reveals the flexibility of the bootstrap method.

The idea to obtain confidence intervals more accurate is to make use of the double bootstrap, i.e.,
for each replica of the original bootstrap there will be conducted another bootstrap. Consider the
situation where only a trust boundary is of interest and it is the upper limit with nominal confidence
level 1− α, where

Pr {Tn − θ ≤ aα(F ) | F} = Pr
{
t(F̂n)− t(F ) ≤ aα(F ) | F

}
= α.

Ignoring the errors of simulation, which is really evaluated is the confidence limit t(F̂n)− aα(F̂n).

The bias of the bootstrap percentile follows from the fact that aα(F̂n) 6= aα(F ), which implies

Pr
{
t(F ) ≤ t(F̂n)− aα(F̂n) | F

}
6= 1− α. (2.11)

Davison and Hinkley (1997) propose to correct the bias by adding a correction to aα(F̂n), However,

an approach more successful is to adjust the index α. Thus, we can replace aα(F̂n) by aq(α)(F̂n) and
estimate what the adjusted value (q̂α) it must be used. Therefore, we obtain q(α) satisfying

Pr
{
t(F ) ≤ t(F̂n)− aq(α)(F̂n) | F

}
= 1− α. (2.12)

Note that the solution q(α) depends on F , i.e., q(α) = q(α, F ). Since the distribution F is

unknown, we can estimate q(α) by q̂(α) = q(α, F̂n). Let x∗n = {X∗1 , X∗2 , . . . , X∗n} by a sample
obtained randomly with replacement of xn and x∗∗n = {X∗∗1 , X

∗∗
2 , . . . , X

∗∗
n } a new sample obtained

by refitting x∗n with empirical distribution functions given by F̂ ∗n and F̂ ∗∗n , respectively. Let T ∗n and
T ∗∗n be the statistics Tn evaluated at x∗n and x∗∗n , where t∗ and t∗∗ are the estimates, respectively. We

denote Pr∗{ · } as a conditional probability in F̂n and Pr∗∗{ · } as a conditional probability in F̂ ∗n .
We can obtain q̂(α) using the bootstrap version of equation (2.12) given by

Pr∗
{
t(F̂n) ≤ t(F̂ ∗n)− aq̂(α)(F̂

∗
n) | F̂n

}
= 1− α. (2.13)

From the definition (2.13), a scheme involving a second level of bootstrap is given by

Pr∗
[
Pr∗∗

{
T ∗∗n ≤ 2T ∗n − t | F̂ ∗n

}
≥ q̂(α) | F̂n

]
= 1− α. (2.14)

Davison and Hinkley (1997), the coverage 1 − α + O(n−a) is corrected for 1 − α + O(n−a−1/2).
For unilateral confidence limits, we have a = 1

2
or a = 1. For the cases where the bilateral confidence

interval, the coverage 1− α +O(n−1) is corrected to 1− α +O(n−2).
In general, especially in non-parametric problems, the calculation of (2.14) can not be done

exactly. Thus, approximate methods must be used. A basic algorithm is given as follows. Suppose
we have J samples of F̂n and denote these estimates by F̂ ∗n,1, . . . , F̂

∗
n,j, where F̂ ∗n,j is the j-th empirical

distribution function. Set

u∗j = Pr(T ∗∗n ≤ 2t∗j − t | F̂ ∗n,j). (2.15)
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The values u∗1, . . . , u
∗
j can be determined by approximation. We generate K samples of F̂ ∗n,j and

for each of them we obtain t∗∗j,1, . . . t
∗∗
j,k, for k = 1, 2, . . . , K. So,

u∗K,j = K−1

K∑
k=1

I{t∗∗j,k ≤ 2t∗j − t}, (2.16)

wherein I{A} is the indicator function for a event A. The Monte Carlo version of (2.14) is given by

J−1

J∑
j=1

I{u∗K,j ≥ q̂(α)} = 1− α, (2.17)

where q̂(α) is the quantile α of u∗K,j. The simplest way to obtain q̂(α) is by sorting the values u∗K,j
such that u∗K,1 ≤ u∗K,2 ≤ · · · ≤ u∗K,J ∈ (0, 1), and setting q̂(α) = u∗K,(α(J+1)). The (J + 1)α-th quantile
the u∗K,j is used to obtain the corrected quantile of t∗j − t. The double bootstrap percentile intervals
algorithm for bilateral is presented below:

1. For a given sample (original sample) calculate the quantity t;

2. Generate J samples and obtain t∗j , for j = 1, . . . , J ;

3. Generate K new bootstrap samples for each of the J samples in the previous step, and for each
one, calculate t∗∗j,k, with k = 1, 2, . . . , K;

4. Calculate

u∗j = K−1

K∑
k=1

I
{
t∗∗j,k ≤ 2t∗j − t

}
,

where I is the indicator function;

5. Order vector u∗ with J positions and obtain the lower and upper quantile of u∗, which are
given, respectively by, qinf = u∗(J+1)∗α/2 and qsup = u∗(J+1)(1−α/2);

6. Order values t∗1, t
∗
2, . . . , t

∗
J (i.e, t∗(1) ≤ t∗(2) ≤ · · · ≤ t∗(J)) and build the confidence interval for the

original sample using quantile estimates evaluated in the previous step. Considering the values
of the ordered statistics t∗j , for j = 1, 2, . . . , J , the limits of the interval of level 1− α are given
by

t∗((J+1)α/2), t
∗
((J+1)(1−α/2)).

2.6 Simulations and hardware used

The function pso is computationally intensive, especially when the objective function involves
some data sets. This situation is common when the goal is to maximize a log-likelihood function. The
problem arises with great intensity when we use the pso function iteratively as in the case of Monte
Carlo simulations. The simulations presented are extremely itensive because they will be studied
using bootstrap percentile single and dual (two levels of bootstrap) to obtain interval estimates for the
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NHG parameters. For the case of double bootstrap, in each replica Monte Carlo will have a bootstrap
and in each bootstrap will be conducted another bootstrap render the simulations impractical in some
hardware.

The simulations are performed using the language R version 3.2.0 in the hardware from the Na-
tional Center for High Performance Processing of São Paulo, Brazil (CENAPAD-SP). The CENAPAD-
SP provides a powerful computing environment, based on machines RISC (IBM) and Intel/Itanimum2
(SGI), with operating system based on Unix. The processing capacity theoretical of these two envi-
ronments totals around 33 TFLOPS beyond of 250 TB external disk. Its use is measured in Service
Units, what are accounted as users run commands and process jobs. In particular, the simulations
performed make use of the SGI Altix ICE 8400 LX system installed in CENAPAD-SP that have
64 CPU’s and 384 cores Intel Xeon Six Core 5680 of 3.33GHz, 1152 GB of RAM and Infiniband
interconnect. The theoretical processing capability of the system is approximately 5 TFLOPS.

The jobs that are submitted for processing on SGI Altix ICE 8400 LX are managed and have
allocated resources by the PBSPro software (Altair Portable Batch System Professional 11.0.2), which
also has the function of managing the queues of jobs submitted to processing in the cluster. The
cluster runs the opreracional system SUSE Linux Enterprise Server 11 SP1 (x86 64) kernel 2.6.32.13
64 bits. Access to the cluster is through a local machine using SSH (Secure Shell), which is part of
the suite of protocols TCP/IP that makes secure remote administration of Unix-type servers.

It is possible to use in an efficient way all of the computing resources of SGI Altix ICE 8400 LX
running parallel computing by OpenMPI (Message Passing Interface), which is nothing more than
a standard for parallel computing in data communication. The use of standard OpenMPI in R is
through the Rmpi, SNOW, doSNOW and foreach libraries available on the license terms GPL-2 (GNU
General Public License).

This pattern allows using R by dividing each nonparametric bootstrap in several cores of different
nodes in the cluster. Thus, the code executes sequentially until it finds a parallel builder, i.e., there is
a flow of execution main (master thread) and when required new threads are triggered to divide the
work and, finally, it is performed a join for recovery of the results. Divide each replica of bootstrap
does not cause problems because each replica bootstarp is mathematically independent of another.

For the simulations we consider 10,000 replication of Monte Carlo, and in each replica it is
carried out two levels of bootstrap percentile. The first level of bootstrap is composed of 500 samples
(J = 500) and the second level is carried out 250 new samples (K = 250). The simulations are
extremely intensive since for each Monte Carlo replication, we perform an optimization by PSO and
within each replication of bootstrap (first level of bootstrap) another optimization is performed by
PSO, closing a total of 5 million optimizations. Table 2.1 displays the times of the execution of R

scripts, in hours, on hardware mentioned above. Note that for n = 500 whereas the double bootstrap
scheme, some simulations exceeded 11 days.

The performance of interval estimates is evaluated by percentile bootstrap and double percentile
bootstrap at a nominal level of 95% for different sample sizes (n = 20, n = 60, n = 100 and n = 500).
The real model has fixed parameters α = 1.5, λ = 1.3 and p = 0.5.

For the first level of bootstrap, we obtain the standard errors of the MLEs obtained by the PSO
method. Small errors in the estimates are obtained for different sample sizes as shown in Figure 2.4.
The performance of interval estimates by single and double bootstrap is assessed by the percentage of
coverage, i.e., it is considered the percentage of confidence intervals containing the true parameter.
It is noted that build interval estimates by single percentile bootstrap is not a good strategy for
obtaining random intervals for the model parameters. In all cases there are much lower coverages to
the nominal levels. However, using the second level of bootstrap to correct the estimate obtained by
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simple percentile bootstrap method represents a good improvement in the interval estimates. Table
2.2 displays the improvement in coverage when using the double percentile bootstrap method. It
is possible also note a small increase in the range of interval estimates by using the second level of
bootstrap. Anyway, the small amplitudes do not represent a problem.

Table 2.1: Times of executions of Monte Carlo simulations to evaluate the interval estimates obtained
by single and double percentile bootstrap.

n Simple Bootstrap (In hours) Double Bootstrap (In hours)
20 105.3212 150.4235
60 175.3455 191.9864
100 213.7565 265.5455
500 400.3253 450.4535

Table 2.2: Coverage and range of interval estimates by simple bootstrap, double and nominal level
of 95%.

Simple Bootstrap Double Bootstrap
n Parameters Coverage (%) Range Coverage (%) Range

n = 20
α 65.0327 2.1562 92.3441 3.2432
λ 62.1665 2.1605 93.4551 2.3423
p 67.3002 0.9663 94.2138 1.3563

n = 60
α 71.1454 0.7446 93.5233 3.2124
λ 77.7465 2.1454 92.3453 2.3567
p 66.7213 1.2423 94.4354 2.8433

n = 100
α 72.2198 1.4354 92.4345 3.3315
λ 69.2300 2.1322 94.2130 1.0035
p 69.4357 0.5493 93.4365 2.1252

n = 500
α 83.1233 2.1215 94.7834 3.2123
λ 71.9011 1.2321 94.3254 3.2122
p 72.2965 1.1190 93.9342 1.2134

1 - The column for the range refers to the average range.
2 - We consider 10 thousand Monte Carlo replicas.
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Figure 2.4: Errors evaluated by bootstrap the maximum likelihood using the PSO method with 500
bootstrap replicates.

2.7 Application

For this application, we use a real data set referred as the to times between failures (thousands
of hours) of secondary reactor pumps. The data are presented in Table 2.3. A descriptive analysis
of the data is given in Table 2.4.

There are certainly other competitive distributions to fit these data. It is also reasonable to
understand that generated distributions can certainly be used in practice and depending on the
problem a distribution will provide a better fit than others.

For this application, we consider the EXP(λ) distribution (exponential distribution), NHG(α, λ, p)
distribution, NH(λ, β) distribution (Nadarajah-Haghighi model) proposed by Nadarajah and Haghighi
(2011) and the ENG(α, λ, β) defined by Lemonte (2013). The cdfs are given in Table 2.5 presented
more forward.

Table 2.3: Times between failures (thousands of hours) of secondary reactor pumps.

2.160 0.150 4.082 0.746 0.358 0.199 0.402 0.101 0.605 0.954
1.359 0.273 0.491 3.465 0.070 6.560 1.060 0.062 4.992 0.614
5.320 0.347 1.921
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Table 2.4: Descriptive statistics.

Statistics
Real data sets

Time between failures (hours)
Mean 1.5779
Median 0.6140
Mode 0.5000
Variance 3.7275
Skewness 1.3643
Kurtosis 0.5445
Maximum 6.5600
Minimum 0.0620
n 23

In order to determine the shape of the most appropriate hazard function for modeling, a graphical
analysis data can be performed. In this context, the total time in test (TTT) plot proposed by
Aarset (1987) may be used. Let T be a random variable with non-negative values which represents
the survival time. The TTT curve is obtained by constructing the plot of G(r/n) = [(

∑r
i=1 Ti:n) +

(n− r)Tr:n]/(
∑n

i=1 Ti:n) versus r/n, for r = 1, . . . , n, where Ti:n, i = 1, . . . , n are the order statistics
of the sample [see Mudholkar and Hutson (1996)].

We shall use the programming language R version 3.0.2. In particular, we use the AdequacyModel
package in version 1.0.8 available for download at http://cran.r-project.org/web/packages/

AdequacyModel/index.html under the terms of the GPL-2 and GPL-3. The plots can be easily
obtained using the TTT function of the AdequacyModel. For more details on this function, see
help(TTT). The TTT plot for the current data is displayed in Figure 2.5, which alternates between
convex and concave, suggesting according to Aarset (1987) that better risk function to the data in
question has decreasing form.

Figure 2.6 displays the estimated distributions to the data obtained in a nonparametric manner
using kernel density estimation with the Gaussian filter. Let x1, . . . , xn be independent and identically
distributed observations, where each of them follows an unknown f distribution. The kernel density
estimator is given by

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K

(
x− xi
h

)
, (2.18)

where K(·) is the kernel function usually symmetrical,
∫∞
−∞K(x)dx = 1, and h > 0 is a smooth-

ing parameter known in the literature as bandwidth. Numerous kernel functions are available in the
literature. The normal standard distribution is the most widely used because it has convenient math-
ematical properties. Silverman (1986) demonstrated that for the K standard normal, the bandwidth

ideal is h =
(

4σ̂5

3n

) 1
5 ≈ 1.06 σ̂ n−1/5, where σ̂ is the standard deviation of the sample.

http://cran.r-project.org/web/packages/AdequacyModel/index.html
http://cran.r-project.org/web/packages/AdequacyModel/index.html
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Figure 2.5: The TTT plot for the times between failures (thousands of hours) of secondary reactor
pumps.
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Figure 2.6: Gaussian kernel density estimation for the data of the time between failures (thousands
of hours) of secondary reactor pumps.

The AdequacyModel package provides a computational support for researchers who want to work
with continuos distributions, mainly in the survival analysis area. The AdequacyModel package
is used to obtainment some adequacy statistics such as the AIC (Akaike Information Criterion),
CAIC (Consistent Akaikes Information Criterion), BIC (Bayesian Information Criterion), HQIC
(Hannan-Quinn information criterion), A∗ (Anderson-Darling) and W ∗ (Camér-von Misses) and
KS (Kolmogorov-Smirnov) statistics, which are described by Chen and Balakrishnan (1995). The
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goodness.fit is the function in the AdequacyModel package used to avaluate these statistics. Other
details can be obtained with the command help(goodness.fit).

Chen and Balakrishnan (1995) constructed the Cramér-von Mises and Anderson-Darling corrected
statistics based on the suggestions from Stephens (1986). We use these statistics, where we have a
random sample (x1, . . . , xn) with empirical distribution function Fn(x) and want to test if the sample
comes from a special distribution. The statistics W ∗ and A∗ are given by

W ∗ =

{
n

∫ +∞

−∞
{Fn(x)− F (x; θ̂n)}2dF (x; θ̂n)

}(
1 +

0.5

n

)
= W 2

(
1 +

0.5

n

)
, (2.19)

A∗ =

{
n

∫ +∞

−∞

{Fn(x)− F (x; θ̂n)}2

{F (x; θ̂)(1− F (x; θ̂n))}
dF (x; θ̂n)

}(
1 +

0.75

n
+

2.25

n2

)
= A2

(
1 +

0.75

n
+

2.25

n2

)
, (2.20)

respectively, where Fn(x) is the empirical distribution function, F (x; θ̂n) is the specified distribution
function evaluated at the MLE θ̂n of θ. Note that the statistics W ∗ and A∗ are given by difference
distances of Fn(x) and F (x; θ̂n). Thus, the lower are the W ∗ and A∗ statistics more evidence we have
that F (x; θ̂n) generates the sample. The details to compute the statistics W ∗ and A∗ are given by
Chen and Balakrishnan.

The R language is also used to obtain the MLEs by heuristic method of global optimization PSO
discussed in the previous section. Currently, the version 1.0.8 of the AdequacyModel package does
not support the methodology PSO. However, possibly the standard algorithm or a modification will
be present in future versions of the package. The standard errors of the MLEs of the model parameters
are calculated by bootstrap non-parametric. For the calculation, we consider 500 bootstrap samples
(B = 500) [see Davison (1997) and Efron and Tibshirani (1993)].

Let x1, . . . , xn be a random sample. Let also Fθ(x) be the distribution function of the sample,
where θ (unknown) is the true parameter and θ̂ a estimator of θ. A bootstrap sample (non-parametric
bootstrap) is obtained sampling with replacement from the original sample. The procedure generates
a new sample (x∗1, . . . , x

∗
n) (bootstrap sample). Let θ̂∗ be the estimate of θ based on the bootstrap

sample and B be the fixed number of bootstrap samples. The bootstrap estimate of the standard
error of θ̂ is given by

ŝe(θ̂) =

√√√√ 1

B

B∑
i=1

(θ̂∗i −
¯̂
θ∗) ,

where

¯̂
θ∗ =

1

B

B∑
i=1

θ̂∗.

Table 2.5 presents the MLEs of the parameters of the distributions obtained by the PSO method.
They are also given for the estimated standard errors obtained via nonparametric bootstrap. Also, we
construed interval estimates by double percentile bootstrap for the model parameters. The estimates
are presented in Table 2.6 for a confidence level of 95%. We consider 500 samples for the first level
and 250 bootstrap samples for the second level.
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Table 2.5: The MLEs of the parameters for the NHG, ENH, NH and EXP models through of the
PSO method (standard errors bootstrap in parentheses).

Distributions Estimates of the parameters Equation

NHG(α, λ, p) 0.4195 5.7294 −0.7929 F (x) = 1−e1−(1+λx)α

1−p e1−(1+λx)α

(0.0732) (0.1230) (0.0897)

ENH(α, λ, β) 0.2856 42.0728 3.1569 F (x) =
[
1− e1−(1+λx)α

]β
(0.1125) (0.1323) (0.3774)

NH(α, λ) 0.4934 2.5010 F (x) = 1− e1−(1+λx)α

(0.1281) (0.2744)
EXP(λ) 0.6172 F (x) = 1− e−λx

(0.1081)

1 - We use rounding to the fourth decimal place.

Table 2.6: Interval estimates by double percentile bootstrap for the model parameters at a confidence
level of 95%.

Distributions Interval estimates
NHG(α, λ, p) (0.3578; 0.8177) (0.8884; 13.8570) (−3.7684; −0.0001)
ENH(α, λ, β) (0.2621; 0.7341) (0.8400; 49.9999) (0.9062; 5.8346)
NH(α, λ) (0.3804; 1.4111) (0.3665; 5.9659)
EXP(λ) (0.4228; 1.1551)

1 - We use rounding to the fourth decimal place.
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Figure 2.7: Estimated for densities fitted to the times between failures (thousands of hours) of
secondary reactor pumps.
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Table 2.7: Goodness-of-fit statistics.

Statistics
Distribution AIC CAIC BIC HQIC KS A∗ W∗

NHG(α, λ, p) 72.8293 74.0925 76.2358 73.6860 0.1684 0.2547 0.0323
ENH(α, λ, β) 289.7261 290.9892 293.1326 290.5828 0.6630 0.3020 0.0424
NH(α, λ) 239.9434 240.5434 242.2144 240.5146 0.7119 0.3546 0.0513
EXP(λ) 168.9795 169.1700 170.1150 169.2650 0.1994 0.5069 0.0795

1 - The statistics were obtained in the package AdequacyModel version 1.0.8.
2 - Was used rounding to the fourth decimal place.

2.8 Concluding remarks

We study the Nadarajah-Haghighi-geometric (NHG) distribution, which can be viewed as an
improved extension of the Nadarajah-Haghighi distribution (NH distribution). The NHG density
function can take various forms depending on its shape parameters. Moreover, its failure rate function
can have different forms: decreasing, increasing, upside-down bathtub, bathtub-shaped, constant
and decreasing-increasing-decreasing. Then, it can be used quite effectively in analyzing real data in
practice. The estimation of parameters is approached by the maximum likelihood method. The new
distribution may attract wider applications for modeling failure times due to fatigue and lifetime
data in fields such as engineering, finance, economics, and insurance, among several others. One
applications to real data illustrate the potentiality of the family. Future research could be addressed
to study the complementary Nadarajah-Haghighi-geometric distribution. This class of distributions
is a suitable model in a complementary risk, problem based in the presence of latent risks which
arise in several areas such as public health, actuarial science, biomedical studies, demography and
industrial reliability.



APPENDIX A

Code in R language for the PSO method

pso <- function(func,S=150,lim_inf,lim_sup,e=0.0001,data=NULL,N=100){

b_lo = min(lim_inf)

b_up = max(lim_sup)

integer_max = .Machine$integer.max

if(length(lim_sup)!=length(lim_inf)){

stop("The vectors lim_inf and lim_sup must have the same dimension.")

}

dimension = length(lim_sup)

swarm_xi = swarm_pi = swarm_vi = matrix(NA,nrow=S,ncol=dimension)

# The best position of the particles.

g = runif(n=dimension,min=lim_inf,max=lim_sup)

# Objective function calculated in g.

f_g = func(par=as.vector(g),x=as.vector(data))

if(NaN%in%f_g==TRUE || Inf%in%abs(f_g)==TRUE){

while(NaN%in%f_g==TRUE || Inf%in%abs(f_g)==TRUE){

g = runif(n=dimension,min=lim_inf,max=lim_sup)

f_g = func(par=g,x=as.vector(data))

}

}

# Here begins initialization of the algorithm.

x_i = mapply(runif,n=S,min=lim_inf,max=lim_sup)

# Initializing the best position of particularities i to initial position.

swarm_pi = swarm_xi = x_i

f_pi = apply(X=x_i,MARGIN=1,FUN=func,x=as.vector(data))

is.integer0 <- function(x){
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is.integer(x) && length(x)==0L

}

if(NaN%in%f_pi==TRUE || Inf%in%abs(f_pi)){

while(NaN%in%f_pi==TRUE || Inf%in%abs(f_pi)){

id_inf_fpi = which(abs(f_pi)==Inf)

if(is.integer0(id_inf_fpi)!=TRUE){

f_pi[id_inf_fpi] = integer_max

}

id_nan_fpi = which(f_pi==NaN)

if(is.integer0(id_nan_fpi)!=TRUE){

x_i[id_nan_fpi,] = mapply(runif,n=length(id_nan_fpi),min=lim_inf,

max=lim_sup)

swarm_pi = swarm_xi = x_i

f_pi = apply(X=x_i,MARGIN=1,FUN=func,x=as.vector(data))

}

}

}

minimo_fpi = min(f_pi)

if(minimo_fpi < f_g) g = x_i[which.min(f_pi),]

# Initializing the speeds of the particles.

swarm_vi = mapply(runif,n=S,min=-abs(rep(abs(b_up-b_lo),dimension)),

max=abs(rep(abs(b_up-b_lo),dimension)))

# Here ends the initialization of the algorithm

omega = 0.5

phi_p = 0.5

phi_g = 0.5

m=1

vector_f_g <- vector()

while(is.na(var(vector_f_g)) || m<50 ||

var(vector_f_g[length(vector_f_g):(length(vector_f_g)-10)])>e){

# r_p and r_g are randomized numbers in (0.1).

r_p = runif(n=dimension,min=0,max=1)

r_g = runif(n=dimension,min=0,max=1)

# Updating the vector speed.

swarm_vi = omega*swarm_vi+phi_p*r_p*(swarm_pi-swarm_xi)+

phi_g*r_g*(g-swarm_xi)
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# Updating the position of each particle.

swarm_xi = swarm_xi+swarm_vi

myoptim = function(...) tryCatch(optim(...), error = function(e) NA)

f_xi = apply(X=swarm_xi,MARGIN=1,FUN=func,x=as.vector(data))

f_pi = apply(X=swarm_pi,MARGIN=1,FUN=func,x=as.vector(data))

f_g = func(par=g,x=as.vector(data))

if(NaN%in%f_xi==TRUE || NaN%in%f_pi==TRUE){

while(NaN%in%f_xi==TRUE){

id_comb = c(which(is.na(f_xi)==TRUE),which(is.na(f_pi)==TRUE))

if(is.integer0(id_comb)!=TRUE){

new_xi = mapply(runif,n=length(id_comb),min=lim_inf,

max=lim_sup)

swarm_pi[id_comb,]=swarm_xi[id_comb,] = new_xi

if(length(id_comb)>1){

if_xi[id_comb] = apply(X=swarm_xi[id_comb,],MARGIN=1,

FUN=func,x=as.vector(data))

f_pi[id_comb] = apply(X=swarm_pi[id_comb,],MARGIN=1,FUN=func,

x=as.vector(data))

}else{

f_xi[id_comb] = func(par=new_xi,x=as.vector(data))

}

}

}

}

if(Inf%in%abs(f_xi)==TRUE){

f_xi[which(is.infinite(f_xi))]=integer_max

}

if(Inf%in%abs(f_pi)==TRUE){

f_pi[which(is.infinite(f_pi))]=integer_max

}

# There are values below the lower limit of restrictions?

id_test_inf=

which(apply(swarm_xi<t(matrix(rep(lim_inf,S),dimension,S)),1,sum)>=1)

id_test_sup=

which(apply(swarm_xi>t(matrix(rep(lim_sup,S),dimension,S)),1,sum)>=1)

if(is.integer0(id_test_inf)!=TRUE){

swarm_pi[id_test_inf,] = swarm_xi[id_test_inf,] =

mapply(runif,n=length(id_test_inf),

min=lim_inf,max=lim_sup)
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}

if(is.integer0(id_test_sup)!=TRUE){

swarm_pi[id_test_sup,] = swarm_xi[id_test_sup,] =

mapply(runif,n=length(id_test_sup),

min=lim_inf,max=lim_sup)

}

if(is.integer0(which((f_xi<=f_pi)==TRUE))){

swarm_pi[which((f_xi<=f_pi)),] = swarm_pi[which((f_xi<=f_pi)),]

}

if(f_xi[which.min(f_xi)] <= f_pi[which.min(f_pi)]){

swarm_pi[which.min(f_pi),] = swarm_xi[which.min(f_xi),]

if(f_pi[which.min(f_pi)] < f_g) g = swarm_pi[which.min(f_pi),]

} # Here ends the block if.

vector_f_g[m] = f_g

m = m+1

if(m>N){

break

}

} # Here ends the block while.

f_x = apply(X=swarm_xi,MARGIN=1,FUN=func,x=as.vector(data))

list(par_pso=g,f_pso=vector_f_g)

} # Here ends the function.
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CHAPTER 3

The exponentiated logarithmic generated family of

distributions

Abstract: Generalized distributions are very common in statistics and in many applied areas. In
this paper, we study some mathematical properties of a new generator of continuous distributions
with three additional parameters called the exponentiated logarithmic generated family to extend
the normal, Weibull, gamma and Gumbel distributions, among other well-known distributions. Some
special models are discussed. Seveal properties of this family are studied, some inference procedures
developed and simulation studies performed to verify the adequacy of the estimators of the model
parameters. We prove empirically the potentiality of the new family by means of two real data
sets. We also provide a simulation study for different samples sizes to assess the performance of the
maximum likelihood estimates obtained by the Swarm Optimization method. We also evaluate the
performance of single and dual bootstrap methods in the construction of interval estimates for the
parameters. Because of the intensive simulations, we use parallel computing on a supercomputer.

Keywords: Bootstrap. Generalized distribution. Lifetime. Logarithmic distribution. Mixture.

3.1 Introduction

The modeling and analysis of lifetime distributions play an important role in a wide variety of
practical fields such as biological and engineering sciences. However, in many practical situations,
well-known continuous distributions do not provide an adequate fit. For example, if the data are
asymmetric, the normal distribution will not be a good choice. So, several methods of introducing
extra shape parameters to expand a class of distributions have been studied.

The use of new generators of continuous distributions from classic ones has become very common
in recent years. The beta-generated family was proposed by Eugene et al. (2002) and further
discussed in Zografos and Balakrishnan (2009), who introduced the gamma-generated family. More
recently, Cordeiro and de Castro (2011) defined the Kumaraswamy-G family.

The chief motivation of the generalized distributions for modeling failure time data lies in its
flexibility to model both monotonic and non-monotonic failure rates even though the baseline failure
rate may be monotonic. The additional shape parameters aim to introduce skewness and to vary
tail weights. Furthermore, various distributions have been constructed by mixing some useful life
distributions and analyzed them with respect to different characteristics.

In this chapter, we propose a new method to add three parameters to a parent distribution with
the hope that it yields a “better” fit in certain practical situations. Several properties are also given.
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Some inferential aspects of this family are studied in details, and four special cases are discussed. The
new family of distributions shares an attactive interpretation (see Section 2). Further, two successful
empirical applications show its flexibility and also motivate its applications.

3.2 New Generator

For an interpretation of this family, first consider a parallel system with N independent compo-
nents, N be a random variable with probability mass function (pmf)

P (N = n) =
−1

log(1− a)
× an

n
0 < a < 1, n ∈ N.

Suppose that X1, . . . , XN are independent identically distributed (i.i.d.) random variables with
common cdf G(x)b. Then, MN = max(X1, . . . , XN) represents the lifetime of the system and

ΠMN
(x) =

∞∑
n=1

P (MN ≤ x|N = n)P (N = n)

=
∞∑
n=1

−1

log(1− a)

an

n

[
G(x)b

]n
=

log
[
1− aG(x)b

]
log(1− a)

.

For c positive integer, we consider a system formed by independent components following the cdf
given by

Π(x) =
log
[
1− aG(x)b

]
log(1− a)

.

Suppose the system fails if all c components fail. Then, the cdf of X is (3.1). The generator of
continuous distributions presented is called the Exponentiated Logarithmic Generated (ELG) family
with cumulative distribution function (cdf) given by

F (x) =

{
log[1− aG(x, ξ)b]

log(1− a)

}c
, (3.1)

where a ∈ (0, 1) (scale parameter), b > 0 (shape parameter) and c > 0 (shape parameter). The
probability density function (pdf) obtained by differentiating F (x) is given by

f(x) =
a b c [log(1− a)]−c g(x, ξ)G(x, ξ)b−1

{
log
[
1− aG(x, ξ)b

]}c−1

aG(x, ξ)b − 1
. (3.2)

For a given (cdf) G(x; ξ), denote by f(x) the (pdf) of the Exponentiated Logarithmic Generated
(ELG-G) distribution.

Lemma 3.2.1. f(x) given in (3.2) is a well-defined density function.

Proof. We observe that f(x) is nonnegative. We prove that the integration over the support of the
random variable is one. Consider the case when the support of f(x) is (−∞,∞). In this case, we
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have

∞∫
−∞

f(x)dx =

∞∫
−∞

−a b c [log(1− a)]−c g(x, ξ)G(x, ξ)b−1
{

log
[
1− aG(x, ξ)b

]}c−1

1− aG(x)b
dx

=
−c

[log(1− a)]c

a∫
0

[log(1− u)]c−1

1− u
du = 1.

For simulating the data from the ELG-G distribution, let u ∼ U(0, 1) [u generate the uniform
distribution in (0,1)]. The solution of non-linear equation

xu = QG

{[
1

a

(
1− [1− a]u

1
c

)] 1
b

}
(3.3)

has cdf (3.1), where QG = G−1(·) is the quantile function (qf) of G.

Remark. The following properties use Stirling polynomials. We consider the basic formula for the
Stirling polynomial proposed by Ward (1934, p. 87-95). The notation for the Stirling polynomial
adopted is ψn−1(x) in accordance with the notation presented by Nielsen (1906, p. 70-72) and Ward
(1934, p. 87). The Stirling polynomial is defined by

ψn−1(x) =
(−1)n−1

(n+ 1)!

[
Hn−1
n − x+ 2

n+ 2
Hn−2
n +

(x+ 2)(x+ 3)

(n+ 2)(n+ 3)
Hn−3
n

− · · ·+ (−1)n−1 (x+ 2)(x+ 3) · · · (x+ n)

(n+ 2)(n+ 3) · · · (2n)
H0
n

]
, (3.4)

where the Hm
n ’s are positive integers defined recursively by Hm

n+1 = (2n+1−m)Hm
n +(n−m+1)Hm−1

n ,
and H0

0 = 1, H0
n+1 = 1 × 3 × 5 × · · · × (2n+ 1) and Hn

n+1 = 1.
To avoid recursion in equation (3.4), the quantities Hm

n+1 can follow the Stirling polynomial given
in http: // mathworld. wolfram. com/ StirlingPolynomial. html . Let

Sn(m) =
(−1)n(

m
n

) s(m+ 1,m− n+ 1), (3.5)

where m ≥ n, and s(n,m) is the Stirling number of the first kind defined by Roman (1984, p. 129).
We can obtain s(n,m) from the Stirling numbers of the second kind defined by

S(n,m) =
1

m!

m∑
i=0

(−1)i
(
m

i

)
(n− i)n. (3.6)

Based on (3.6), we have

s(n,m) =
n−m∑
k=0

(−1)k
(
k + n− 1

k + n−m

)(
2n−m

n− k −m

)
S(k −m+ n, k). (3.7)

http://mathworld.wolfram.com/StirlingPolynomial.html
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More details about equation (3.7) and the relationship between first order Stirling numbers and second
order Stirling numbers can be obtained in http://mathworld.wolfram.com/StirlingNumberofthe

FirstKind.html.
According with Castellares and Lemonte (2014, p. 2), we have ψn−1(x) = Sn(x)/[n!

(x + 1)]. So, we can calculate ψn−1(x) without explicitly obtain the values of Hm
n . Castellares and

Lemonte (2014, p. 5) developed scripts in the R language to evaluate the quantities Hn
m and ψn(·).

We give in Appendix A an implemented function in the Julia programming language (Bezanzon et
al., 2012) to evaluate the Stirling polynomial at the point x defined by (3.4) and functions of the
Stirling numbers of first and second order given by equations (3.5) and (3.6), respectively.

Proposition 3.2.2. Let
[
− log(1−z)

z

]δ
= 1 + δz

∑∞
n=0 ψn(n + δ)zn, with δ ∈ R and |z| < 1. This

expansion is absolutely convergent.

Proof. The proof is given by Flajonet and Odlyzko (1990) and Flajonet and Sedgewick (2009) (see
Theorem VI.2, p. 385).

If we know an expansion for
[
− log(1−z)

z

]δ
for δ > 0 and |z| < 1, and that this expansion converges

absolutely, it is easy to obtain another expansion for [− log(1−z)]δ that is also absolutely convergent.
Thus, it follows that

[− log(1− z)]δ = zδ + δ
∞∑
n=0

ψn(n+ δ)zδ+n+1. (3.8)

Proposition 3.2.3. Based on the assumptions below, it is possible to obtain equation (3.8). Let

[− log(1− z)]δ = zδ
∞∑
m=0

ρm(δ) zm, (3.9)

where δ ∈ R, |z| < 1, ρ0(δ) = 1, ρm(δ) = δψm−1(m + δ − 1) for m ≥ 1 and ψm(·) is a Stirling
polynomial.

Proof. Note that

zδ
∞∑
m=0

ρm(δ)zm = zδ

[
ρ0(δ)z0 +

∞∑
m=1

ρm(δ)zm

]

= zδ +
∞∑
m=1

ρm(δ) zm+δ = zδ + δ
∞∑
m=0

ψm(m+ δ) zδ+m+1.

Thus, it follows that the cdf F (x) can be expressed as a mixture of exponentiated-G (exp-G) cdfs
with power parameters (m+ c)b, say exp-G([m+ c]b). We have

F (x) =
∞∑
m=0

bmH(m+c)b(x), (3.10)

http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html
http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html
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where H(m+c)b(x) is the cdf of the exp-G([m + c]b) distribution and bm (for m ≥ 0) are constants
defined by

bm =
ρm(c)am+c

[− log(1− a)]c
.

By differentiating (3.10), we obtain

f(x) =
∞∑
m=0

bm h(m+c)b, (3.11)

where h(m+c)b(x) is the exp-G density with power parameter (m+c)b. We have
∑∞

m=0 bm = 1. Figure
3.1 displays the convergence of

∑n
m=0 bm with n = 1, 2, . . . , 15, a = 0.5 and c = 1.2.
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Figure 3.1: Sums of the constants of the linear combination in equation (3.10).

3.3 Special distributions

Four of the many distributions obtained as special models of the ELG-G family are given in this
section. We consider the baseline distributions: Normal, Weibull, Gamma and Log-Logistic. The
last three distributions are largely used in survival analysis. In the following, we shall provide the
pdf and some plots of the hazard rate function (hrf) for each of these four cases. Clearly, a, b and c
are the generator-G parameters.

3.3.1 ELG-Normal

In applied statistics, the normal distribution is widely used because when the sample size is large,
it can serve as an approximate distribution for other models. The ELG-normal distribution is defined
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from (3.1) by taking G(x) and g(x) to be the cdf and pdf of the normal N(µ, σ2) distribution. Its
density function is given by

fGN(x) =
−a b c [log(1− a)]−c Φ(x−µ

σ
)b−1φ(x−µ

σ
)
[
log
(
1− aΦ(x−µ

σ
)b
)]c−1

σ
{

1− aΦ(x−µ
σ

)b
} ,

where x ∈ R, µ ∈ R is a location parameter, σ > 0 and a ∈ (0, 1) are the scale parameters, b, c are
the shape parameters, and φ(·) and Φ(·) are the pdf and cdf of the standard normal distribution,
respectively.

Plots of the ELG-normal density for some parameter values are displayed in Figure 3.2. It is
evident that this distribution is much more flexible than the normal distribution.
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Figure 3.2: The ELG-normal pdf for µ = 1, σ = 1 and some values of a, b and c.

3.3.2 ELG-Weibull

The Weibull distribution is a very popular model due to its large applicability in survival analysis.
Let G(x) be the Weibull cdf with scale parameter β > 0 and shape parameter α > 0, say G(x) =
1− exp{−(βx)α}, for x > 0. The ELG-Weibull density function is obtained from (3.2) as

fELG−W (x) =
−a b c [1− e−(xβ)α ]b−1αβα xα−1 e−(xβ)α {log{1− a[1− e−(xβ)α ]b}}c−1

[log(1− a)]c {1− a[1− e−(xβ)α ]b}
. (3.12)

Plots of the ELG-Weibull density function for selected parameter values are given in Figure 3.3.
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Figure 3.3: The ELG-Weibull pdf for α = 0.5, β = 2.0 and some values of a, b and c.

Figure 3.4 illustrates some possible shapes of the ELG-Weibull hrf for selected parameter values.

0 1 2 3 4

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0
0
.1

2

x

r(
x)

a = 0.99, b = 0.2, c = 5.0
a = 0.75, b = 0.5, c = 5.0
a = 0.50, b = 1.0, c = 5.0
a = 0.25, b = 3.0, c = 5.0
a = 0.01, b = 5.0, c = 5.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

x

f(
x)

a = 0.90, b = 1.0, c = 1.0
a = 0.80, b = 1.0, c = 2.0
a = 0.50, b = 1.0, c = 3.0
a = 0.20, b = 1.0, c = 4.0
a = 0.01, b = 1.0, c = 5.0

0 1 2 3 4

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

h
(x

)

a = 0.9, b = 5.0, c = 1.00
a = 0.9, b = 4.0, c = 0.75
a = 0.9, b = 3.0, c = 0.50
a = 0.9, b = 2.0, c = 0.25
a = 0.9, b = 1.0, c = 0.10

Figure 3.4: The ELG-Weibull hrf for α = 0.5, β = 2.0 and some values of a, b and c.

3.3.3 ELG-Gamma

Another distribution that frequently used in survival analysis is the gamma distribution. Taking
G(x) to be gamma cdf with shape α > 0 and scale β > 0, say G(x) = γ(α, x/β)/Γ(α), where
Γ(α) =

∫∞
0
tα−1e−tdt denotes the gamma function, and γ(α, z) =

∫ z
0
tα−1e−tdt denotes the incomplete

gamma function, the ELG-gamma density (for x > 0) becomes

fELG−Ga(x) =

−a b c xα−1 e−x/β
[
γ(α,x/β)

Γ(α)

]b−1
{

log

{
1− a

[
γ(α,x/β)

Γ(α)

]b}}c−1

βα Γ(α) [log(1− a)]c
{

1− a
[
γ(α,x/β)

Γ(α)

]b} . (3.13)



50

Figure 3.5 displays some possible shapes of the ELG-gamma density. These plots reveal that this
distribution has great flexibility.
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Figure 3.5: The ELG-gamma pdf for α = 1.0, β = 2.0 and some values of a, b and c.

Plots of the ELG-gamma hrf for selected parameter values are displayed in Figure 3.6. The
monotonically increasing and bathtub shapes are evident.
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Figure 3.6: The ELG-Gamma hrf for the parameters α = 1.0, β = 2.0 and some values of a, b and c.

3.3.4 ELG-Log-logistic (ELGLL)

Consider the log-logistic distribution with scale parameter α > 0 and shape parameter β > 0,
where the pdf and cdf (for x > 0) are

g(x) =
β

αβ
xβ−1

[
1 +

(x
α

)]−2

and G(x) = 1−
[
1 +

(x
α

)β]−1

.
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Inserting these expressions into (3.2) gives the ELGLL pdf

fELGLL(x) =

−a b c β xβ−1
[
1− 1

1+(x/α)β

]b−1
{

log

{
1− a

[
1− 1

1+(x/α)β

]b}}c−1

αβ [log(1− a)]c
(
1 + x

α

)2
{

1− a
[
1− 1

1+(x/α)β

]b} . (3.14)

Figure 3.7 provides some possible shapes of the ELGLL density function for selected parameters
values.
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Figure 3.7: The ELGLL pdf for α = 2.0, β = 2.0 and some values of a, b and c.

A random variable with density (3.14) is denoted by X ∼ ELGLL(a, b, c, α, β). For α = 2 and
β = 2, possible shapes for the hrf of X are given in Figure 3.8.
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Figure 3.8: The ELGLL hrf for α = 2.0, β = 2.0 and some values of a, b and c.
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3.4 Mathematical properties

3.4.1 Moments

We assume that Y is a random variable having the baseline cdf G(x). The moments of X can be
obtained from the (r, k)th probability weighted moment (PWM) of Y defined by

ωr,k = E[Y rG(Y )k] =

∫ ∞
−∞

xrG(x)k g(x)dx.

We can write from equation (3.10),

µ′r = E(Xr) =
∞∑
m=0

[(m+ c)b] bm ωr,(m+c)b−1,

where ωr,(m+c)b−1 =
∫ 1

0
QG(u)r u(m+c)b−1du can be evaluated at least numerically from any baseline

qf.
We provide two formulae for the moment generating function (mgf) M(s) = E(esX) of X. The

first formula for M(s) comes from equation (3.10) as

M(s) =
∞∑
m=0

bmM(m+c)b(s), (3.15)

where M(m+c)b(s) is the exp-G generating function with power parameter (m+ c)b.
Equation (3.15) can also be expressed as

M(s) =
∞∑
m=0

[(m+ c)b] bm ρ(m+c)b(s), (3.16)

where the quantity ρk(s) =
∫ 1

0
exp [sQG(u)]u(m+c)bdu can be evaluated numerically. Equations (3.15)

and (3.16) are the main results of this section.

3.4.2 Incomplete moments

Incomplete moments of a income distribution form natural building blocks for measuring in-
equality: for example, the Lorenz and Bonferroni curves depend upon the incomplete moments of
the income distribution.

The nth incomplete moment of X is defined as mn(y) =
∫ y
−∞ x

n f(x)dx. Then, it can be expressed
as

mn(y) =
∞∑
m=0

bm

∫ G(y; ξ)

0

QG(u)n u(m+c)b du. (3.17)

The integral in (3.17) can be evaluated at least numerically for most baseline distributions.
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3.5 Maximum Likelihood Estimation

Let x1, . . . , xn be the observed values from the ELG-G distribution with the p × 1 parameter
vector θ = (a, b, c, ξ)>. We determine the MLEs of the parameters in θ from complete samples only.
The total log-likelihood function for θ is given by

`(Θ) = n log(a b c)− n c log[− log(1− a)] +
n∑
i=1

log[g(xi; ξ)] + (b− 1)
n∑
i=1

G(xi; ξ)

+ (c− 1)
n∑
i=1

log
{
− log[1− aG(xi; ξ)b]

}
−

n∑
i=1

log[1− aG(xi; ξ)b]. (3.18)

The MLEs â, b̂, ĉ and ξ̂ are determined as the values of a, b, c and ξ that maximize the log-
likelihood function (3.18). There will be, in general, no closed-forms for these estimates, which
require, in practice, numerical methods.

3.6 Bootstrap confidence intervals

The bootstrap method was introduced in 1979 by Efron (1979), who revitalized the jackknife
resampling methodology and established a new area of research. The bootstrap methods present two
approaches: the parametric bootstrap and nonparametric bootstrap. Parametric bootstrap refers
to the case where the resampling is performed based on a distribution F (θ̂) known or established,

where θ̂ is an estimator of θ. On the other hand, in bootstrap nonparametric, there is the lack of
the distribution F . The resampling technique is based on the empirical distribution function F̂n.
Resample of F̂n is equivalent to resample data with replacement.

3.6.1 Bootstrap percentile interval

Let Tn be an estimator of the scale θ based on n observations and t its estimate. Let T ∗n be the
same estimator based on n observations resampling from the original sample with replacement and t∗

its estimate. For simplicity, suppose Tn is a continuous random variable. Denoting the pth quantile
of the distribution of the random variable Tn − θ by ap, we obtain

Pr
{
Tn − θ ≤ aα1

2

}
= Pr

{
Tn − θ ≥ a1−α2

2

}
=
α

2
.

As the amount Q = Tn − θ is invertible and Tn depends only on the sample, we can build the
confidence interval for θ rewriting the events above, i.e., we can rewrite the events Tn− θ ≤ aα1

2
and

Tn− θ ≥ a1−α2
2

with θ > Tn− aα1
2

and θ < Tn− a1−α2
2

, respectively. Thus, the confidence interval of
level γ is given by the limits

`α/2 = t− a1−α2
2
, `1−α/2 = t− aα1

2
.

In many situations, we do not know the distribution of Tn − θ. In such cases, suppose that there
is some transformation Tn, U = h(Tn), such that U has a symmetric distribution. Suppose also that
we can obtain the confidence interval of level 1− α to φ = h(θ). According to Davison and Hinkley
(1997), we may use bootstrapping to obtain an approximation of the distribution Tn − θ using the
distribution of T ∗n − t. Thus, we estimate the p quantile of Tn − θ by the (J + 1)p-th ordered value
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of t∗ − t, i.e., the p-th quantile of Tn − θ is estimated by t∗((J+1)p) − t. Similarly, the p quantile of

h(Tn) − h(θ) = U − φ can be estimated by the (J + 1)p-th ordered value of h(T ∗n) − h(t) = u∗ − u.
Let bp be the p-th quantile of U − φ. Since U has symmetrical distribution, then U − φ also has a
symmetrical distribution, as soon as it is true that bα

2
= −b1−α

2
. Using the symmetry of U − φ, we

have h(`α/2) = u + bα/2 and h(`1−α/2) = u + b1−α/2. As bα/2 and b1−α/2 are quantiles of U − φ and
we know calculate these quantiles, the lower and upper limits of the confidence intervals are given
by u+ (u∗((J+1)α/2) − u) and u+ (u∗((J+1)(1−α/2)) − u), respectively, leading to the limits

u∗((J+1)α/2), u∗((J+1)(1−α/2)),

whose transformation to θ is

t∗(J+1)α/2, t∗(J+1)(1−α/2). (3.19)

Note that we do not know the transformation h. The confidence interval of level 1 − α for the
parameter θ does not involve h and it can be evaluated without knowledge of this transformation.
The interval (3.19) is known as the bootstrap interval percentile. According to Davison and Hinkley
(1997, p. 203) the percentile method can be applied to any statistic.

3.7 Optimization algorithm

3.7.1 Swarm intelligence and particle swarm optimization

A package developed for R language widely used in the area of probability distributions is the
AdequacyModel package, version 1.0.8, available for download in https://cran.r-project.org/

web/packages/AdequacyModel/index.html under the terms of the GPL license (≥ 2).
This package focuses on construction of statistics of adequacy of adjustment of probabilistic

models and these statistics depend on the MLEs also provided by the package. However, it is noted
that several users of the package are having difficulties to obtain these estimates using optimization
methods very popular as is the case of Nelder-Mead method (Nelder and Mead, 1965), L-BFGS-B
(Nelder and Mead, 1965) and simulated annealing (Belisle, 1992). In general, these users are working
with new distributions that have a large number of parameters. The main problem is summed up
by the difficulty to obtain initial values necessary for these methods and non-convergence of the
algorithm for global optimization used for maximization of the log-likelihood function of these new
models. In this sense, the swarm intelligence proved to be a good strategy for the optimization
of these functions and, in general, produce better results and with the advantage of not having to
provide initial values. The Swarm Intelligence (SI) is the term used to designate systems of artificial
intelligence, where the collective behavior of individuals in a population provides simple solutions or
consistent patterns emerge.

The SI was employed using the Particle Swarm Optimization (PSO) method developed by Eber-
hart and Kennedy (1995) to obtain the MLEs of the model parameters and in the study of simulation
about the interval estimates for bootstrap percentile as presented in Section 3.7.3, as well as to ob-
tain the MLEs for different models considered in applying the ELG-G model (see Section 3.8). The
implementation of the PSO method built in this work will be improved and adapted to later versions
of the AdequacyModel package.

Eberhart and Kennedy (1995) developed the PSO method using as a basis the studies of Reynolds
(1987) and Heppner and Grenander (1990) that provided models of simulations of flock of birds. The

https://cran.r-project.org/web/packages/AdequacyModel/index.html
https://cran.r-project.org/web/packages/AdequacyModel/index.html
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PSO method optimizes a problem by having a population of candidate solutions and moving these
particles around in the search-space according to simple mathematical formulae over the particle’s
position and velocity. The movement of the particles in the search space is randomized. The PSO
algorithm is presented below, where f : Rn 7→ R is the objective function to be minimized, S is the
number of particles in the swarm (set of feasible points, i.e. search region), each particle having a
vector position xi ∈ Rn in the search-space and a vector velocity defined by vi ∈ Rn. Let pi be the
best known position of particle i and g the best position of all particles.

1. For each particle i = 1, . . . , S do:

• Initialize the particle’s position with a uniformly distributed random vector: xi ∼ U(blo, bup),
where blo and bup are the lower and upper boundaries of the search-space.

• Initialize the particle’s best known position to its initial position: pi ←[ xi.

• If f(pi) < f(g) update the swarm’s best known position: g ←[ pi.

• Initialize the particle’s velocity: vi ∼ U(−|bup − blo|, |bup − blo|).

2. Until a termination criterion is met (e.g. number of iterations performed, or a solution with
adequate objective function value is found), repeat:

• For each particle i = 1, . . . , S do:

– Pick random numbers: rp, rg ∼ U(0, 1).

– For each dimension d = 1, . . . , n do:

∗ Update the particle’s velocity: vi,d ← [ ω vi,d + ϕprp(pi,d − xi,d) + ϕgrg(gd − xi,d).
– Update the particle’s position: xi ←[ xi + vi

– If f(xi) < f(pi) do:

∗ Update the particle’s best known position: pi ←[ xi
∗ If f(pi) < f(g) update the swarm’s best known position: g ←[ pi.

3. Now g holds the best found solution.

The parameter ω is called inertia coefficient and as the name implies controls the inertia of each
particle arranged in the search region. The quantities ωp and ωg control the acceleration of each
particle and are called accelerated coefficients. The variance of the best candidates can be used as a
stopping criterion, i.e., the algorithm will stop if the variance is less than some real ε > 0.

3.7.2 Hardware Used

The law that established the II PLANIN (Plan Informatics and Automation), approved by the
Brazilian National Congress in October 1991, proposed the installation of a National Center for
Supercomputing (CESUP) to provide advanced computing services to brazilian researchers. This
center was set up at the Federal University of Rio Grande do Sul (UFRGS). The Brazil has some
High Performance Processing National Centers (CENAPAD).

We use the hardware available in the National Supercomputing Center - CESUP (CENAPAD
UFRGS). The CESUP has two clusters: Cluster Sun Fire, dubbed of Newton, and the Altix cluster
SGI, also known as Gauss. The cluster settings are described below.
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Cluster Sun Fire (Newton):

• 45 processing nodes and 3 nodes of management; 8 GPUs nVIDIA Tesla; 1 GPU AMD Fire-
Stream; 1 switch Voltaire InfiniBand; total of 1296GB of RAM memory; total of 188TB of
storage capacity, wherein 158TB are shared with the cluster SGI Altix Gauss; theoretical per-
formance peak of 12.94 Tflops.

Cluster SGI Altix (Gauss):

• 64 blades of the processing and 3 nodes of service; total of 4TB of RAM memory; total of
174TB of storage capacity, wherein 158TB are shared with the cluster Sun Fire (Newton);
theoretical performance peak of 15.97 Tflops.

We use the cluster SGI Altix (Gauss). Each of the 64 units processing of the SGI Altix cluster
has 2 dodeca-core processors (24 cores) AMD Opteron working at a frequency of 2.3GHz, 128KB
of cache L1 per core (data + instructions), 512KB of cache L2 per core and 12MB of cache L3 per
socket. Cluster Gauss has integrated DDR3 memory controller that supports frequencies of 1333MHz
and bandwidth of 42.7GB/s per CPU, totaling 64GB of RAM per unit. More information about the
hardware available by CESUP can be found in http://www.cesup.ufrgs.br/.

These hardware provide greater speed in Monte Carlo simulations to be presented later. We
use the R programming language and the Rmpi, doSNOW and foreach packages to create the parallel
processes. The Rmpi package provides an interface (wrapper) to MPI APIs. It also provides interac-
tive R slave environment. The doSNOW package provides a parallel backend for the %dopar% function
(function available in the foreach package for parallelization of loops) using the Rmpi package.

3.7.3 Simulation study

We present some Monte Carlo simulations to evaluate the performance of interval estimates by
bootstrap percentile. We simulate 20,000 trails of the ELG-Weibull true model with fixed parameters
a = 0.5, b = 1.5 and c = 1.5, with the baseline Weibull distribution having parameters α = 1.5 and
β = 1.5. We take the nominal level of 95% and sample sizes: 20, 60, 100 and 500. We consider 500
bootstrap resampling in each Monte Carlo iteration.

The evaluation of the random intervals obtained by bootstrap percentile is taken by the level of
coverage of these intervals, i.e., we determine the percentage of confidence intervals containing the
true parameter within the interval. Taking advantage of the bootstrap used for construction the
percentile intervals, we evaluate the standard errors of the MLEs obtained by the PSO method.

Table 1 gives the average of the standard errors obtained using non-parametric bootstrap. The
table also shows the average of the amplitudes of interval estimates, the coverage of the intervals
for different sample sizes and the time of the simulations presented in hours. For small samples,
in particular, for n = 20, we note that the interval estimates by bootstrap percentiles coverage far
below the fixed nominal level. The coverage becomes reasonably close to the 95% nominal level in
larger samples (100 and 500).

The amplitudes of interval estimates are small for all scenarios of the simulations. We also register
the bootstrap errors for each iteration of Monte Carlo. For different sample sizes, we note small errors
for all parameters of the ELG-Weibull model. We evaluate the errors by bootstrap because there is

http://www.cesup.ufrgs.br/
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Table 3.1: Percentage of coverage and average amplitude of interval estimates for the parameters
added by the generator by bootstrap percentile at a nominal level of 95%.

n Parameter Coverage (%) Amplitude Error Time (in hours)

n = 20
a 86.7854 1.3456 2.3325

100.4356b 87.4416 1.7376 4.1464
c 89.7584 2.1222 1.4353

n = 60
a 91.5443 2.1210 1.2756

170.1102b 90.5432 1.5436 3.2542
c 92.3453 2.0787 2.4252

n = 100
a 93.4545 1.5345 2.3431

213.4464b 92.4539 2.4536 2.3014
c 94.4235 3.3445 3.3945

n = 500
a 93.9716 1.5646 2.1455

432.5643b 94.2325 2.5345 2.5514
c 95.1215 3.2148 3.8789

no exact way to obtain the errors of the MLEs using the PSO method. Figure 3.9 displays boxplots
of the errors for the parameters added in the ELG-Weibull distribution.
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Figure 3.9: Errors evaluated by bootstrap and the MLEs obtained by the PSO method with 500
bootstrap replicates.
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3.8 Applications

In this section, the usefulness of the ELG-Weibull distribution is proved empirically by means of
two real data sets. In the applications, we use the AdequacyModel package version 1.0.8 available
in the R programming language. First, we consider a data set from Smith and Naylor (1987). The
data are the strengths of 1.5 cm glass fibres, measured at the National Physical Laboratory, England.
Unfortunately, the units of measurement are not given in the paper. The data set is also available
for download at http://www.stat.ncsu.edu/research/sas/sicl/data/. The second application
takes into account the data related to the percentages of body fat determined by underwater weighting
and various body circumference measurements for 250 men. For details about the data set, see
http://lib.stat.cmu.edu/datasets/. Table 3.2 gives some descriptive statistics for the two data
sets. They are obtained in the AdequacyModel package (version 1.0.8).

Table 3.2: Descriptive statistics.

Statistics
Real data sets

Glass Fibres Body Fat (%)
Mean 1.5068 19.3012
Median 1.5900 19.2500
Mode 1.7000 22.5000
Variance 0.1051 67.7355
Skewness -0.8999 0.1953
Kurtosis 0.9238 -0.3815
Maximum 2.2400 47.5000
Minimum 0.5500 3.0000
n 63 250

One of the important devices, which can help selecting a particular model, is the total time on test
(TTT) plot (Aarset, 1987). The TTT plots for the fibres data and for the number of successive failure
data are displayed in Figure 3.10. Both TTT plots in Figure 3.10 yield a concave curve and then an
increasing hrf. Then, these plots indicate the appropriateness of the ELG-Weibull distribution to fit
these data. Figure 3.11 displays the Gaussian kernel density estimation for the glass fibres data and
percentage of body fat data.

For these data sets, we fit the ELG-Weibull (ELG-W) distribution defined by (3.12) and compare
it with the Kumarasuamy Weibull Poisson (KW-WP) (Ramos et al., 2015), Kumaraswamy Weibull
(KW-W) (Cordeiro et al., 2010), exponentiated Weibull (EW) (Mudholkar and Srivastava, 1993),
New-type Nadarajah-Haghighi (NTNH) (Lemonte, 2013), modified Weibull (MW) (Xie et al., 2002),
Chen (Chen, 2000), gamma and Nadarajah-Haghighi (NH) (Nadarajah and Haghighi, 2011) distri-
butions. The MLEs of the model parameters (with standard errors in parentheses) for the ELG-W,
KW-WP, EW, NTNH and the other models are listed in Table 3.3 for the two data sets. The R lan-
guage was also used to obtain the MLEs by heuristic method of global optimization PSO discussed
in the previous section.

We can also perform formal goodness-of-fit tests in order to verify which distribution fits better
to these data. We consider the Cramér-von Mises (W) and Anderson-Darling (A), described in
details by Chen and Balakrishnan (1995), and Kolmogorov-Smirnov (KS) statistics. In general, the
smaller the values of these statistics, the better the fit. Table 3.4 gives the values of the Akaike
information criterion (AIC), Bayesian information criterion (BIC), consistent Akaike information

http://www.stat.ncsu.edu/research/sas/sicl/data/
http://lib.stat.cmu.edu/datasets/
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Figure 3.10: The TTT plots for the: (a) glass fibres and (b) percentage of body fat.
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Figure 3.11: The Gaussian kernel density estimation for: (a) the glass fibres and (b) percentage of
body fat.

criterion (CAIC) and Hannan-Quinn information criterion (HQIC), and the A, W and KS statistics
for the models fitted to both data sets. Thus, according to these formal tests, the ELG-W model fits
the data better than the other distributions. Since the values of the AIC, CAIC and HQIC statistics
are smaller for the ELG-W distribution compared to those values of the other fitted models, the new
distribution is a very competitive model to explain the data.
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Table 3.3: MLEs for the glass fibres data denoted by (I) and percentage of body fat data denoted
by (II).

Data set Distribution Estimates and standard errors in parenthesis

I

ELG-W (α, β, a, b, c) 3.5684 1.1824 0.9944 0.1650 2.7926

(0.0132) (0.0111) (0.0018) (0.0442) (0.0922)

KW-WP (a, b, c, λ, β) 0.9377 3.2395 6.4021 17.2578 0.3163

(0.0055) (0.0921) (0.0025) (0.7777) (0.2853)

KW-W (a, b, c, β) 7.7418 2.6226 0.7262 14.1218

(0.0171) (0.2583) (0.0543) (0.3187)

EW (α, β, a) 7.2846 1.7181 0.6712

(0.0099) (0.1129) (0.0724)

NTNH (α, λ, β) 14.2416 0.0648 9.9259

(0.3474) (0.0667) (0.3701)

MW (α, β, λ) 3.1640 5.6882 13.6191

(0.3537) (0.1323) (0.2122)

Chen (λ, β) 0.0720 1.9604

(0.0042) (0.0335)

Gamma (α, β) 0.0864 17.4396

(0.0014) (0.1240)

NH (α, λ) 24.884 0.0212

(0.2120) (0.00014)

II

ELG-W (α, β, a, b, c) 1.8303 12.8023 0.9733 2.5701 0.6136

(0.0221) (0.0043) (0.0345) (0.0627) (0.0225)

KW-WP (a, b, c, λ, β) 22.1310 24.9999 0.2568 13.9977 0.2074

(0.2221) (0.0030) (0.0053) (0.102) (0.0022)

KW-W (a, b, c, β) 0.5013 14.8283 8.9928 24.9999

(0.0002) (0.5876) (0.2531) (1.1113)

EW (α, β, a) 3.0043 23.8105 0.7558

(0.0553) (0.0077) (0.1137)

NTNH (α, λ, β) 1.8273 0.0419 3.7999

(0.0033) (0.0033) (0.0003)

MW (α, β, λ) 21.6646 1.5020 0.0241

(0.0033) (0.0028) (0.0534)

Chen (λ, β) 0.0065 0.5192

(0.0001) (0.0448)

Gamma (α, β) 4.1876 4.6091

(0.3322) (0.2232)

NH (α, λ) 17.3791 0.0022

(0.1840) (0.7525)

Plots of the estimated pdfs, cdfs and survival functions of the ELG-W and other models fitted
to both data sets are displayed in Figures 3.12, 3.13 and 3.14, respectively. They reveal that the
ELG-W distribution is superior to the other distributions in terms of model fitting.
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Table 3.4: Goodness-of-fit statistics for the glass fibres data denoted by (I) and percentages of body
fat data denoted by (II).

Data set Distribution A∗ W ∗ KS AIC CAIC BIC HQIC

I

ELG-W (α, β, a, b, c) 0.5513 0.0959 0.1105 34.4784 35.5311 45.1941 38.6930

KW-WP (a, b, c, λ, β) 1.7612 0.3216 0.1689 44.3267 45.3794 55.0424 48.5413

KW-W (a, b, c, β) 1.2689 0.2304 0.1516 38.2397 38.9293 46.8122 41.6113

EW (α, β, a) 1.1118 0.2000 0.1462 35.3510 35.7578 41.7804 37.8798

NTNH (α, λ, β) 2.7480 0.5006 0.2105 50.0737 50.4805 56.5031 52.6024

MW (α, β, λ) 1.2901 0.2345 0.1514 36.3860 36.7927 42.8154 38.9147

Chen (λ, β) 0.9623 0.1615 0.1373 36.9227 37.1227 41.2090 38.6085

Gamma (α, β) 3.1174 0.5684 0.2164 51.9031 52.1031 56.1893 53.5889

NH (α, λ) 2.3541 0.4294 0.4513 143.1259 143.3259 147.4121 144.8117

II

ELG-W (α, β, a, b, c) 0.1246 0.0164 0.0242 1758.6590 1758.9050 1776.2660 1765.7460

KW-WP (a, b, c, λ, β) 1.3448 0.2200 0.0627 1772.8220 1773.0680 1790.4290 1779.9080

KW-W (a, b, c, β) 1.3420 0.2204 0.0667 1770.3700 1770.5330 1784.4560 1776.0390

EW (α, β, a) 0.2549 0.0347 0.0327 1757.7540 1757.8510 1768.3180 1762.0050

NTNH (α, λ, β) 1.6362 0.2702 0.0743 1771.6980 1771.7950 1782.2620 1775.9490

MW (α, β, λ) 0.4229 0.0525 0.0399 1771.6800 1771.7770 1782.2440 1775.9310

Chen (λ, β) 0.5479 0.0688 0.0360 1768.4090 1768.4580 1775.4520 1771.2440

Gamma (α, β) 1.9585 0.3240 0.0764 1773.3760 1773.4240 1780.4180 1776.2100

NH (α, λ) 0.4922 0.0772 0.2186 1872.0240 1872.0730 1879.0670 1874.8590

1 - The statistics are obtained in the AdequacyModel package, version 1.0.8.

2 - It is used rounding to the fourth decimal place.
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Figure 3.12: Estimates of the density functions for the: (a) glass fibres (b) percentages of body fat.
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Figure 3.13: Estimates of the distribution functions and empirical distribution for the: (a) glass fibre
and (b) percentages of body fat.
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Figure 3.14: Kaplan-Meier (K-M) estimates compared with the ELG-W survival estimates for the:
(a) glass fibres and (b) percentages of body fat.

3.9 Conclusions

We define a new class of distributions called the exponentiated logarithmic-G (“ELG”) family.
The proposed family can be motivated by compounding the exponentiated generated construction
and the logarithmic distribution. It can provide better fits than some well-known lifetime distribu-
tions, which represents a remarkable feature of this family. We derive some of its structural properties
including moments, quantile and generating functions. We use the maximum likelihood method to
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estimate the model parameters. We provide a simulation study to show the accuracy of the esti-
mates. Further, we adopt the bootstrap percentile technique to obtain confidence intervals for the
model parameters. We give two applications to real data to illustrate the potentiality of the proposed
family. We hope this generalization may attract wider applications in Statistics.



APPENDIX B

Script in Julia language

# Binomial coefficient to be generalized to noninteger

# arguments (including complex x and y) as

function binomialG(x,y)

return gamma(BigFloat(x)+1)/(gamma(BigFloat(y)+1)*

gamma(BigFloat(x)-BigFloat(y)+1))

end

# Stirling numbers of the second kind.

function S(n,m)

a = 1/gamma(m+1)

v = zeros(Float64,int(trunc(m))+1,1)

for i = 0:(length(v)-1)

v[i+1] = (-1)^i*binomialG(m,i)*(m-i)^n

end

return a*sum(v)

end

# Stirling numbers of the first kind.

function s(n,m)

if n<m

return 0

else

v = zeros(Float64,int(trunc(n-m))+1,1)

for k = 0:(length(v)-1)

v[k+1]=(-1)^k*binomialG(k+n-1,k+n-m)*

binomialG(2*n-m,n-k-m)*S(k-m+n,k)

end

return sum(v)

end

end

# Stirling polynomial defined in

# http://mathworld.wolfram.com/StirlingPolynomial.html

64
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function poly(n,m)

return (-1)^n/binomialG(m,n)*s(m+1,m-n+1)

end

# Fundamental formula for the Stirling polynomial defined by

# MORGAN WARD (1934, p. 2).

function psi(n,m)

if n>m

error("Sorry. With this algorithm is only

possible to calculate for n <= m.")

end

return poly(n,m)/(factorial(BigInt(n))*(m+1))

end
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CHAPTER 4

The Type I Half-Logistic Family of Distributions

Abstract: We study general mathematical properties of a new class of continuous distributions
with an extra positive parameter called the type I half-logistic family. We present some special
models and investigate the asymptotics and shapes. The new density function can be expressed as a
linear combination of exponentiated densities based on the same baseline distribution. We derive a
power series for the quantile function. Explicit expressions for the ordinary and incomplete moments,
quantile and generating functions, Bonferroni and Lorenz curves, Shannon and Rényi entropies and
order statistics are determined. We introduce a bivariate extension of the new family. We discuss the
estimation of the model parameters by maximum likelihood and illustrate its potentiality by means
of two applications to real data.

Keywords: Half-logistic distribution. Maximum likelihood. Moment. Order statistic. Quantile
function. Rényi entropy.

4.1 Introduction

Recently, there has been an increased interest in defining new generated families of univariate
continuous distributions by introducing additional shape parameters to the baseline model. The gen-
erated distributions have attracted several statisticians to develop new models because the compu-
tational and analytical facilities available in most symbolic computation software platforms. Several
mathematical properties of the extended distributions may be easily explored using mixture forms of
exponentiated-G (exp-G for short) distributions. These last distributions are studied by Mudholkar
and Hutson (1996), Gupta and Kundu (2001) and Nadarajah and Kotz (2006), among others. We
define the cumulative distribution function (cdf) of the new type I half-logistic (TIHL) family of
distributions by

F (x;λ, ξ) =

∫ − log[1−G(x;ξ)]

0

2λe−λt

(1 + e−λt)2
dt =

1− [1−G(x; ξ)]λ

1 + [1−G(x; ξ)]λ
, (4.1)

where G(x; ξ) is the baseline cdf depending on a parameter vector ξ and λ > 0 is an additional shape
parameter. For each baseline G, we can generate the type I half-logistic-G (“TIHL-G”) distribution
by the cdf (4.1). Equation (4.1) is a wider class of continuous distributions.

The corresponding probability density function (pdf) to (4.1) is given by

f(x;λ, ξ) =
2λ g(x; ξ)[1−G(x; ξ)]λ−1

{1 + [1−G(x; ξ)]λ}2 , (4.2)
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where g(x; ξ) is the baseline pdf. Equation (4.2) will be most tractable when G(x; ξ) and g(x; ξ) have
simple expressions. Hereafter, a random variable X having pdf (4.2) is denoted by X ∼ TIHL(ξ, λ).
Further, we omit the dependence on the parameters ξ and λ and write simply f(x) = f(x; ξ, λ).

The hazard rate function (hrf) of X becomes

h(x) =
λ g(x; ξ)

[1−G(x; ξ)] {1 + [1−G(x; ξ)]λ}
. (4.3)

The TIHL family class is easily simulated by inverting (4.1) as follows: if u has a uniform U(0, 1)
distribution, the solution of the nonlinear equation

xu = G−1

(
1−

[
1− u
1 + u

] 1
λ

)
, (4.4)

has density function (4.2).

4.2 Special TIHL distributions

4.2.1 The type I half-logistic normal (TIHL-N) model

The TIHL-N distribution is defined from (4.2) by taking G(x; ξ) = Φ(x−µ
σ

) and g(x; ξ) = φ(x−µ
σ

)
to be the cdf and pdf of the normal distribution with parameters µ and σ2, respectively, where φ(·)
and Φ(·) are the pdf and cdf of the standard normal distribution, respectively, and ξ = (µ, σ2). The
TIHL-N pdf is

f(x;λ, µ, σ) =
2λφ(x−µ

σ
)[1− Φ(x−µ

σ
)]λ−1

σ
{

1 + [1− Φ(x−µ
σ

)]λ
}2 , (4.5)

where x ∈ R, µ ∈ R is a location parameter and σ > 0 is a scale parameter.
A random variable with density (4.5) is denoted by X ∼ TIHL-N(λ, µ, σ2). Plots of the TIHL-N

density function for some parameter values are displayed in Figures 4.1(a) and 4.1(b). These plots
indicate that increasing λ causes a flattening of the pdf curves.
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Figure 4.1: The TIHL-N densities for (a) µ = 2.5 and σ = 3.4 and for (b) µ = 2.5.

4.2.2 The type I half-logistic gamma (TIHL-Ga) model

Consider the gamma distribution with shape parameter β1 > 0 and scale parameter β2 > 0, where
the pdf and cdf (for x > 0) are

g(x; β1, β2) =
ββ12

Γ(β1)
xβ1−1 e−β2 x and G(x; β1β2) =

γ(β1; β2 x)

Γ(β1)
,

where γ(β1; β2 x) =
∫ β2 x

0
tβ1−1 e−t dt is the incomplete gamma function. Inserting these expressions

in (4.2) gives the TIHL-Ga density function

f(x;λ, β1, β2) =
2λ

β
β1
2

Γ(β1)
xβ1−1 e−β2 x

[
1− γ(β1,β2 x)

Γ(β1)

]λ−1{
1 +

[
1− γ(β1,β2 x)

Γ(β1)

]λ}2 .

The hrf of the TIHL-Ga distribution reduces to

h(x;λ, β1, β2) =
λββ12 x

β1−1e−β2 x

Γ(β1)

[(
1− γ(β1,xβ2)

Γ(β1)

)λ
+ 1

] [
1− γ(β1,β2 x)

Γ(β1)

] . (4.6)

Plots of the TIHL-Ga density for selected parameter values are displayed in Figures 4.2(a) and
4.2(b). The plots indicate great flexibility of this distribution. It is interesting for modeling data
with asymmetry to the right. Figure 4.2(a) and Figure 4.2(b) are given by varying the parameters
β1 and λ with β2 = 1.1 fixed and by varying the parameters β2 and λ with β1 = 0.5 fixed. The hrf of
the TIHL-Ga distribution has the following forms: monotonically decreasing and inverted bathtub
as shown in Figures 4.3(a) and 4.3(b).
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Figure 4.2: The TIHL-Ga densities for (a) β2 = 1.1 and for (b) β1 = 0.5.
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Figure 4.3: The hrf of the TIHL-Ga model.
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4.2.3 The type I half-logistic Fréchet (TIHL-Fr) model

The pdf and cdf of the Fréchet distribution with scale parameter α and shape parameter β are

g(x;α, β) = β αβ x−β−1 e−(α
x

)β and G(x;α, β) = e−(α
x

)β .

Inserting these expressions in (4.2) yields the TIHL-Fr density function

f(x;λ, α, β) =
2λβ αβ x−β−1 e−(α

x
)β [1− e−(α

x
)β ]λ−1{

1 + [1− e−(α
x

)β ]λ
}2 . (4.7)

The hrf of the TIHL-Fr model is given by

h(x;λ, α, β) =
λβ αβx−β−1e−(α

x
)β[(

1− e−(αx )
β)λ

+ 1

] [
1− e−(α

x
)β
] . (4.8)

Plots of the TIHL-Fr density function for some parameter values are displayed in Figures 4.4(a)
and 4.4(b). The TIHL-Fr(λ, α, β) model is a very competitive model for analysis of lifetime data due
to its great flexibility. Figure 4.4(a) and 4.4(b) are constructed by varying β and λ with α = 1.5
and by varying α and λ with β = 0.5. Plots of the hrf of the TIHL-Fr distribution are displayed in
Figures 4.5(a) and 4.5(b).
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Figure 4.4: The TIHL-Fr densities for (a) α = 1.5 and for (b) β = 0.5.
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Figure 4.5: The hrf of the TIHL-Fr model.

4.3 Asymptotes and Shapes

Proposition 4.3.1. The asymptotics of equations (4.1), (4.2) and (4.3) as G(x)→ 0 are

F (x) ∼ λ

2
G(x) as G(x)→ 0,

f(x) ∼ λ

2
g(x) as G(x)→ 0,

h(x) ∼ λ

2
g(x) as G(x)→ 0.

Proposition 4.3.2. The asymptotics of equations (4.1), (4.2) and (4.3) as x→∞ are

1− F (x) ∼ 2 Ḡ(x)λ as x→∞,
f(x) ∼ 2λ g(x) Ḡ(x)λ−1 as x→∞,

h(x) ∼ λ g(x)

Ḡ(x)
as x→∞,

wherein Ḡ(x) = 1−G(x).

The shapes of the density and hazard rate functions of X can be described analytically. The
critical points of the TIHL density function are the roots of the equation:

g′(x)

g(x)
− (λ− 1)

g(x)

1−G(x)
+

2λg(x)[1−G(x)]λ−1

1 + [1−G(x)]λ
= 0. (4.9)
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There may be more than one root to (4.9). Let λ(x) = d2 log[f(x)]
dx2

. We have

λ(x) =
g′′(x)g(x)− g′(x)2

g(x)2
− (λ− 1)

g′(x)[1−G(x)] + g(x)2

[1−G(x)]2

+
2λg′(x)[1−G(x)]λ−1

1 + [1−G(x)]λ
− 2λ(λ− 1)g(x)2[1−G(x)]λ−2

1 + [1−G(x)]λ

+ 2

{
λg(x)[1−G(x)]λ−1

1 + [1−G(x)]λ

}2

.

If x = x0 is a root of (4.9) then it corresponds to a local maximum if λ(x) > 0 for all x < x0 and
λ(x) < 0 for all x > x0. It corresponds to a local minimum if λ(x) < 0 for all x < x0 and λ(x) > 0
for all x > x0. It refers to a point of inflexion if either λ(x) > 0 for all x 6= x0 or λ(x) < 0 for all
x 6= x0.

The critical points of h(x) are obtained from

g′(x)

g(x)
+

g(x)

1−G(x)
+
λg(x)[1−G(x)]λ−1

1 + [1−G(x)]λ
= 0. (4.10)

There may be more than one root to (4.10). Let τ(x) = d2 log[h(x)]/dx2. We have

τ(x) =
g′′(x)g(x)− g′(x)2

g(x)2
+
g′(x)[1−G(x)] + g(x)2

[1−G(x)]2

+
λg′(x)[1−G(x)]λ−1

1 + [1−G(x)]λ
− λ(λ− 1)g(x)2[1−G(x)]λ−2

1 + [1−G(x)]λ

+

{
λg(x)[1−G(x)]λ−1

1 + [1−G(x)]λ

}2

.

If x = x0 is a root of (4.10) then it refers to a local maximum if τ(x) > 0 for all x < x0 and τ(x) < 0
for all x > x0. It corresponds to a local minimum if τ(x) < 0 for all x < x0 and τ(x) > 0 for all
x > x0. It gives an inflexion point if either τ(x) > 0 for all x 6= x0 or τ(x) < 0 for all x 6= x0.

4.4 Useful expansions

We can demonstrate that the cdf (4.1) of X admits the expansion

F (x) =
∞∑
k=0

bkHk(x), (4.11)

where

bk =
∞∑
i=0

(−1)i+k
[(
iλ

k

)
−
(

(i+ 1)λ

k

)]
(4.12)

and Ha(x) = G(x)a denotes the exponentiated-G (“exp-G” for short) cdf with power parameter
a > 0.
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The density function of X can be expressed as an infinite linear combination of exp-G densities

f(x) =
∞∑
k=0

bk+1 hk+1(x), (4.13)

where hk+1(x) = (k + 1)G(x)k g(x) (for k ≥ 0) is the exp-G density with power parameter k + 1.
Equation (4.13) reveals that the TIHL density function is a linear combination of exp-G density
functions. Thus, some mathematical properties of the new model can be derived from those exp-G
properties. For example, the ordinary and incomplete moments and moment generating function
(mgf) of X follow from those exp-G quantities.

We provide some mathematical properties of X in the next sections. Established algebraic ex-
pansions to determine some structural properties of the TIHL family can be more efficient than
computing those directly by numerical integration of its density function, which can be prone to
rounding off errors among others. The formulae derived throughout the chapter can be easily han-
dled in softwares such as Mathematica and Maple.

4.5 Generating function

In this section, we provide two formulae for the mgf M(t) = E(et X) of X. A first formula comes
from (4.13) as

M(t) =
∞∑
k=0

bk+1Mk+1(t), (4.14)

where Mk+1(t) is the generating function of the exp-G distribution with power parameter k + 1.
Hence, M(t) can be determined from the exp-G generating function.

A second formula for M(t) can be derived from equation (4.14) as

M(t) =
∞∑
k=0

(k + 1) bk+1 ρk(t), (4.15)

where the quantity ρk(t) is given by

ρk(t) =

∫ ∞
−∞

etx G(x)k g(x)dx =

∫ 1

0

exp[t QG(u)] ukdu. (4.16)

We can derive the mgf’s of several TIHL-G distributions directly from equation (4.16). For
example, the mgf’s of the type I half-logistic exponential (with parameter λ and t < λ−1) and type
I half-logistic Pareto (with parameter ν > 1) distributions are

M(t) =
∞∑
k=0

(k + 1 )bk+1 B(k + 1, 1− λ t)

and

M(t) = e−t

∞∑
k,r=0

(k + 1) bk+1 B(k + 1, 1− rν−1)

r!
tr,

respectively.
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4.6 Estimation

Several approaches for parameter estimation were proposed in the literature but the maximum
likelihood method is the most commonly employed. The maximum likelihood estimators (MLEs)
enjoy desirable properties and can be used when constructing confidence intervals and regions and also
in test statistics. The normal approximation for these estimators in large sample distribution theory
is easily handled either analytically or numerically. So, we consider the estimation of the unknown
parameters for this family from complete samples only by maximum likelihood. Let x1, . . . , xn be
observed values from the TIHL-G distribution with parameters λ and ξ. Let Θ = (λ, ξ)> be the
r × 1 parameter vector. The total log-likelihood function for Θ is given by

`n = `n(Θ) = n log[2λ] +
n∑
i=1

log [g(xi; ξ)] + (λ− 1)
n∑
i=1

log [G(xi; ξ)]

− 2
n∑
i=1

log
{

1 + [1−G(xi; ξ)]λ
}
. (4.17)

Equation (4.17) can be maximized either directly by using the R (optim function) R Core Team
(2016), SAS (PROC NLMIXED), Ox program (sub-routine MaxBFGS) [see Doornik and Ooms (2007)] or
Julia language through the optimize function of the NLopt package Bezanson et al. (2012) or by
solving the nonlinear likelihood equations obtained by differentiating (4.17). The components of the

score function Un(Θ) = (∂`n/∂a, ∂`n/∂b, ∂`n/∂p, ∂`n/∂ξ)> are given by

∂`n
∂λ

=
n

λ
+

n∑
i=1

log[1−G(xi, ξ)]− 2

n∑
i=1

[1−G(xi, ξ)]λ log[1−G(xi, ξ)]
1 + [1−G(xi, ξ)]λ

and

∂`n
∂ξ

=

n∑
i=1

g(ξ)(xi, ξ)

g(xi, ξ)
+ (1− λ)

n∑
i=1

G(ξ)(xi, ξ)

1−G(xi, ξ)
+ 2λ

n∑
i=1

G(ξ)(xi, ξ)[1−G(xi, ξ)]λ−1

1 + [1−G(xi, ξ)]λ
,

where h(ξ)(·) means the derivative of the function h with respect to ξ. Likelihood ratio tests can be
performed for the proposed family of distributions in the usual way.

4.7 Applications

Here, we provide two applications to real data in order to illustrate the potentiality of the TIHL
family. In both applications, we consider the TIHL-Weibull (TIHL-W) distribution. In the applica-
tions, we use the AdequacyModel package version 1.0.8 available for the programming language R. The
package is currently maintained by one of the authors of this paper and more information can be ob-
tained from http://cran.rstudio.com/web/packages/AdequacyModel/index.html. The package
is distributed under the terms of the licenses GNU General Public License (GPL≥ 2).

The first data set (Smith and Naylor, 1987) represents the strengths of 1.5 cm glass fibres,
measured at the National Physical Laboratory, England. The authors do not provide the unit
measurement. The second application take into account the percentage of body fat data determined
by underwater weighing and various body circumference measurements for 250 men. For details

http://cran.rstudio.com/web/packages/AdequacyModel/index.html
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Table 4.1: Descriptive statistics.

Statistics
Real data sets

Glass Fibres Body Fat (%)
Mean 1.5068 19.3012
Median 1.5900 19.2500
Mode 1.7000 22.5000
Variance 0.1051 67.7355
Skewness -0.8999 0.1953
Kurtosis 0.9238 -0.3815
Maximum 2.2400 47.5000
Minimum 0.5500 3.0000
n 63 250

about the data set, see http://lib.stat.cmu.edu/datasets/. Table 4.1 gives some descriptive
statistics for the two data sets.

In situations, where the data are censored or uncensored, we can obtain qualitative information
about the hrf by means of plot analysis. We emphasize that the data sets here are uncensored. For
uncensored data, the total time in test (TTT) plot proposed by Aarset (1987) may be used. Let T
be a random variable with non-negative values, which represents the survival time. The TTT curve
is constructed by plotting G(r/n) = [(

∑r
i=1 Ti:n) + (n− r)Tr:n]/(

∑n
i=1 Ti:n) versus r/n (r = 1, . . . , n),

where Ti:n, for i = 1, . . . , n, are the order statistics of the sample (see Mudholkar and Hutson, 1996).
The plots can be easily obtained using the TTT function of the AdequacyModel package. For more
details, see help(TTT). The TTT plots for the data sets in this study are given in Figures 4.6(a)
and 4.6(b). For both plots, the TTT curve is concave, which according to Aarset (1987), provides
evidence that a monotonic increasing hrf is adequate. Figures 4.7(a) and 4.7(b) display the fitted
densities to the current data obtained in a nonparametric manner using the kernel density estimation
with the Gaussian filter. Let X1, . . . , Xn be a random vector of random variables independent and
identically distributed where each variable follows an unknown f distribution. The kernel density
estimator is given by

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K

(
x− xi
h

)
, (4.18)

where K(·) is the kernel function usually symmetrical and
∫∞
−∞K(x)dx = 1, and h > 0 is a smoothing

parameter known in literature as bandwidth. Numerous kernel functions are adopted in the literature.
The normal standard distribution is the most widely used because it has convenient mathematical
properties. Silverman (1986) demonstrated that for the K standard normal, the bandwidth ideal is

h =
(

4σ̂5

3n

) 1
5 ≈ 1.06 σ̂ n−1/5, where σ̂ is the standard deviation of the sample.

We compare the fits of five distributions to two real data sets, namely the TIHL-W, gamma,
Kumaraswamy Weibull (see Cordeiro et al., 2010) and Kumarasuamy Weibull Poisson defined by

f(x) =
λ a b c βc

eλ − 1
xc−1

[
1− e−(βx)c

]a−1
{

1−
[
1− e−(βx)c

]a}b−1

×

exp

[
λ
{

1−
[
1− e−(βx)c

]a}b − (βx)c
]
, (4.19)

http://lib.stat.cmu.edu/datasets/
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Figure 4.6: The TTT plot for: (a) the glass fibres data (b) and percentage of body fat.
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Figure 4.7: Gaussian kernel density estimation for: (a) the glass fibres data and (b) for percentage
of body fat.

where λ, a, b, c and β are non-negative constants. The MLEs of the model parameters are obtained
by simulated annealing method, this being a generic probabilistic meta-heuristic method for the
global optimization problem proposed by Kirkpatrick and Vecchi (1983). We choose the simulated
annealing method because of the complexity of the log-likelihood functions for some distributions.
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Some classes of distributions that have been proposed recently in the literature, in general, have
log-likelihood functions with approximately planar regions which complicates the optimization by
traditional methods (quasi-Newton methods) as is the case of the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm proposed by Broydenet et al. (1970). We believe that a heuristic approach offers
good solutions to these problems. Optimization by simulated annealing can be easily obtained using
the optim function of the R language by minimizing the negative log-likelihood.

In order to verify which distribution fits better the current data sets, we consider the Cramér-von
Mises (W ∗) and Anderson-Darling (A∗) statistics described by Chen and Balakrishnan (1995). If we
have a random sample (x1, . . . , xn) with empirical distribution function Fn(x), we use these statistics
to test if the sample comes from a specified distribution. They are given by

W ∗ =

{
n

∫ +∞

−∞
{Fn(x)− F (x; θ̂n)}2dF (x; θ̂n)

}(
1 +

0.5

n

)
= W 2

(
1 +

0.5

n

)
, (4.20)

A∗ =

{
n

∫ +∞

−∞

{Fn(x)− F (x; θ̂n)}2

{F (x; θ̂)(1− F (x; θ̂n))}
dF (x; θ̂n)

}(
1 +

0.75

n
+

2.25

n2

)
= A2

(
1 +

0.75

n
+

2.25

n2

)
, (4.21)

respectively, where Fn(x) is the empirical distribution function, F (x; θ̂n) is the postulated cdf evalu-

ated at the MLE θ̂n of θ. The statistics W ∗ and A∗ are given by the differences of Fn(x) and F (x; θ̂n).
The lower are their values more evidence we have that F (x; θ̂n) generates the sample. The details to
compute the statistics W ∗ and A∗ are discussed by Chen and Balakrishnan.

Table 4.2 lists the MLEs (and the corresponding standard errors in parentheses) of the unknown
parameters for the lifetime models fitted to the glass fiber data, whereas Table 4.3 lists those values for
the percentage body fat data. The MLEs and their standard errors can also be calculated through the
goodness.fit function of the AdequacyModel package. In addition to the MLEs and standard errors,
the goodness.fit function also provides various goodness-of-fit statistics such as the Cramér-von
Mises (W ∗) and Anderson-Darling (A∗) statistics Chen and Balakrishnan (1995), Consistent Akaike
Information Criterion (CAIC) Akaike (1974), Bayesian Information Criterion (BIC) Schwarz (1978)
and Hannan-Quinn Information Criterion (HQIC) Hannan and Quinn (1979). These statistics can
be used to assess the adequacy of the fitted distributions to the real data sets.

The MLEs are obtained by simulated annealing and the corrected biases using the bootstrap
method Efron and Tibshirani (1973). Let B be the number of bootstrap samples obtained from the
data with replacement (nonparametric bootstrap) and

θ̂∗ =
B∑
b=1

θ̂∗(b)/B, (4.22)

where θ̂∗(b) is the vector of the estimates of the model parameters obtained by the simulated annealing

method for each of the B samples, for b = 1, . . . , B. The estimated biases b̂iasB = θ̂∗ − θ̂ are given
by Efron and Tibshirani (p. 225, 1973). Thus, the corrected MLEs by bootstrap can be expressed
as

θ̂c = θ̂ − b̂iasB. (4.23)

We adopt the nonparametric bootstrap for calculating the estimated standard errors taking the
following steps:
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1. Generate B independent random samples (x∗1, . . . , x
∗
B) with replacement from the original sam-

ple (x1, . . . , xn) and calculate θ̂∗(b), for b = 1, . . . , B;

2. Calculate the bootstrap estimate of the standard error of θ̂ by

ŝeB(θ̂) =

{
B∑
b=1

[θ̂∗(b)− θ̂∗(·)]2/(B − 1)

}1/2

, (4.24)

where θ̂∗(·) =
∑B

b=1 θ̂
∗(b)/B.

We can obtain the standard errors of the corrected estimates by bootstrap (θ̂c). However, the

computational cost is higher. The estimates of the standard errors are calculated for θ̂ and listed in
Tables 4.2 and 4.3.

The plots displayed in Figures 4.8(a) and 4.8(b) indicate that the TIHL-W distribution provides
the best fit compared to the other fitted distributions. We note the good adequacy of the fitted
TIHL-W distribution in the plots given in Figures 4.9(a) and 4.9(b). Figure 12 gives the estimates
of the TIHL-W survival function and Kaplan-Meier (K-M) for the two data sets.

Table 4.4 provides the goodness-of-fit statistics obtained by the goodness.fit function of the
AdequacyModel script of the R language. For more details on the goodness.fit function, run
help(goodness.fit). There is a great adjustment of the TIHL-W distribution for both data sets.
Such statistics are highlighted in Table 4.4. They confirm the good fit of the TIHL-W model as
indicated by the previous plots.

Table 4.2: MLEs for the of glass fiber data (standard errors in parentheses).

Distribution Estimates - (θ̂c and ŝeB(θ̂), with B = 1000)
Gamma (α, β) 0.0864 17.4410

(0.0042) (0.0021)
TIHL-W (α, β, λ) 5.0496 1.5921 1.3116

(0.0019) (0.0111) (0.0188)
Kw-W (a, b, c, β) 0.5548 1.3771 6.7651 0.4310

(0.0002) (0.0086) (0.0667) (0.0090)
Kw-WP (a, b, c, λ, β) 0.5733 0.4513 3.6545 1.1568 0.8373

(0.0055) (0.0032) (0.0002) (0.0097) (0.0551)

Table 4.3: MLEs for the percentage of body fat data (standard errors in paren-
theses).

Distribution Estimates - (θ̂c and ŝeB(θ̂), com B = 1000)
Gamma (α, β) 4.7270 5.1566

(0.0321) (0.0243)
TIHL-W (α, β, λ) 2.1911 9.4252 0.2311

(0.0001) (0.0075) (0.0044)
Kw-W (a, b, c, β) 0.9156 21.4399 2.2454 0.0099

(0.0437) (0.0054) (0.0077) (0.0043)
Kw-WP (a, b, c, λ, β) 4.5428 2.9458 0.4713 9.3050 0.0222

(0.1223) (0.0673) (0.0445) (0.0066) (0.0059)
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Figure 4.8: Estimates of the density functions for the: (a) glass fibres data and (b) percentage of
body fat.
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Figure 4.9: Estimates of the distribution function and empirical distribution for the: (a) glass fibre
data and (b) percentage of body fat data.
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Figure 4.10: Kaplan-Meier estimates (K-M estimates) compared with the TIHL-W survival estimates
for the: (a) glass fibre data and (b) percentage of body fat data. The confidence intervals are
considered 95%.

Table 4.4: Goodness-of-fit statistics for the fits to the glass fibre data denoted by (I) and percentage
of body fat data denoted by (II).

Data set Distribution A∗ W ∗ AIC CAIC BIC HQIC

I

Gamma (α, β) 3.1174 0.5684 51.9031 52.1031 56.1893 53.5889
TIHL-W (α, β, λ) 1.0059 0.1821 33.6543 34.0610 40.0837 36.1830
Kw-W (a, b, c, β) 1.7572 0.3210 89.8182 90.5078 98.3907 93.1898
Kw-WP (a, b, c, λ, β) 1.7877 0.3263 118.3556 119.4082 129.0713 122.5701

II

Gamma (α, β) 2.0318 0.3362 1840.1960 1840.2440 1847.2390 1843.0300
TIHL-W (α, β, λ) 0.3149 0.0437 1758.1510 1758.2480 1768.7150 1762.4020
Kw-W (a, b, c, β) 0.7447 0.1201 1780.6800 1780.8430 1794.7660 1786.3490
Kw-WP (a, b, c, λ, β) 2.4070 0.3983 1864.2450 1864.4910 1881.8520 1871.3310

4.8 Concluding Remarks

In this chapter, we propose a new class of distributions called the type I half-logistic (TIHL)
family. Some special cases are presented. We provide a mixture representation in terms of exponen-
tiated distributions which is important to derive various of its structural properties in full generality.
Some general mathematical properties such as the shapes, asymptotics, ordinary and incomplete
moments, quantile and generating functions, entropies and order statistics are investigated. For each
baseline distribution, our results can be easily adapted to obtain the main structural properties of
the generated distribution. We provide an extension to the bivariate case. The estimation of the
model parameters is approached by the method of maximum likelihood and bootstrap is considered
to estimate the biases and standard errors of the maximum likelihood estimators. We perform two



83

applications by means of uncensored real data sets to demonstrate the the new family is a very
competitive generator to other classes of distributions.
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CHAPTER 5

AdequacyModel: An R Package for modeling probability

distributions and general optimization

Abstract: Statistical analysis of lifetime data is an important topic in biomedical science, reliability,
engineering, social sciences and several other areas. An important step in the treatment of lifetime
data is the proposal of more flexible models, which provide a good representation for both nature of
data and the shape of its empirical distribution. For some of these new models, however, it is very
difficult to obtain the maximum likelihood estimates, since the corresponding likelihood functions
have nearly flat regions, which make many derivative-based optimization methods well-established
in the literature unsuitable for obtaining these estimates. In such cases, the use of meta-heuristic
optimization algorithms usually provides good solutions to this class of problems. On this subject,
this chapter introduces the AdequacyModel package for the R statistical computing environment,
which is available on the Comprehensive R Archive Network (CRAN). The main application concerns
to a new robust optimization package with two major contributions. The first one refers to the
assessment of the adequacy of probabilistic models through a combination of several statistics, which
measure the relative quality of statistical models for a given data set. The second one provides a
general optimization method based on meta-heuristic functions for maximizing or minimizing an
arbitrary objective function. It is important to emphasize that the proposed package can be used
not only in statistics but in physics and mathematics as demonstrate in several examples. The
AdequacyModel package has been cited very frequently by papers related to new lifetime distributions.
This package is in version 2.0.0 and has been continuously updated.

Keywords: AdequacyModel. goodness-of-fit. lifetime. maximum likelihood. optimization. R.

5.1 Introduction

Probability distributions for lifetime data analysis are continually evolving due to increasing
amount of available information from real phenomena and the development of statistical software
packages to analyze these data. In this context, new probabilistic models for parametric inference
and applications are proposed in parallel with computer based tools, which allow for using more
complex distributions with a larger number of parameters to better study sizeable masses of data.

In the last two decades, several methods have been proposed to generate lifetime distributions
in the literature. In addition to generalizing the traditional models, the relevance of these new
distributions relies on the fact that, according to the problem, each of them can provide better fit to
a given data set. New distributions often result from a modification of a baseline random variable

86
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Z by (i) linear transformation, (ii) power transformation (e.g. the Weibull distribution is obtained
from the exponential distribution), (iii) non-linear transformation (e.g. the lognormal distribution
comes from the normal distribution), (iv) log transformation (e.g. the log Weibull distribution, also
known as the type 1 extreme value distribution), and (v) inverse transformation (e.g. the inverse
Weibull and inverse gamma models).

Furthermore, several other methods have been proposed in order to generate more flexible models,
which furnish a good representation for both nature of data and the shape of its empirical distri-
bution. Some well-known techniques for generating continuous univariate distributions include the
power transformation (exponentiated class of distributions), the Marshall-Olkin family, the beta and
Kumaraswamy generalized families and the compounding models.

Next, we provide a brief summary of the above methods, which are related to the statistical
package studied in this chapter. The subtitles are followed by reference papers. In Section 5.1.2, we
remark about heuristics algorithms for NP-complete problems, which include the swarm intelligence
paradigm. In Section 5.2, the Particle Swarm Optimization (PSO) method is implemented in the
AdequacyModel package for the R statistical environment. Further, we present the pso function with
several examples. We compare the results obtained by the pso function with those obtained by
traditional global search approaches, such as the quasi-Newton BFGS [see Broyden et al. (1970)],
Nelder-Mead [see Nelder and Mead (1965)] and simulated-annealing [see Bélisle (p. 890, 1992)]
methods. For comparison purposes, we use several functions, which are well-known by their opti-
mization difficulties. Section 5.3 provides several adequacy measures, which give the relative quality
of the competing statistical models for a given data set. Finally, concluding remarks and the current
package version are addressed in Section 5.4.

5.1.1 A short review on recent families of distributions

Marshall-Olkin family of distributions. Paper by Marshall and Olkin (1997).

Marshall and Olkin (1997) introduced an interesting method of adding a new parameter to an
existing distribution. The resulting distribution, known as the Marshall-Olkin (MO) extended
distribution, includes the parent distribution as a special case and gives more flexibility to model
several types of data. Let Ḡ(·) = 1 − G(·) denote the survival function of a continuous random
variable X, which depends on a parameter vector β = (β1, . . . , βq)

> of dimension q. Then, the
corresponding MOG distribution has survival function given by

F̄ (x) =
α Ḡ(x)

1− ᾱ Ḡ(x)
=

α Ḡ(x)

G(x) + α Ḡ(x)
, x ∈ R, α > 0,

where ᾱ = 1− α. If α = 1, we have F̄ (·) = Ḡ(·). For more details, the reader is referred to Marshall
and Olkin (1997) and Lai (2013).

Exponentiated family of distributions. Paper by Gupta and Kundu (1999).

The exponentiation transform of cumulative distributions can furnish more flexible models. Such
procedure generates the so-called exponentiated G (EG) family. This approach consists to add a
positive real parameter, say α > 0, to a cumulative distribution function (cdf) G(·) by exponentiation,
which yields a cdf G(·)α that usually provides interesting mathematical properties and better fits
to data sets in different contexts. Indeed, although this transformation is simple, the generated
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distribution from it is richer than the corresponding baseline G(·) and, therefore, it requires a special
treatment. This technique of generating continuous univariate distributions has attracted a lot of
attention in the last decade mainly after the work by Gupta and Kundu (1999), which proposed the
exponentiated exponential distribution. Let G(·) and g(·) be the cdf and probability density function
(pdf), respectively, of a known random variable Z (say, a baseline model). A random variable X is
said to have the EG class if its cdf and pdf are given by

F (x) = G(x)α and f(x) = α g(x)G(x)α−1, α > 0,

respectively.

Beta family of distributions. Paper by Eugene, Lee, and Famoye (2002).

Starting from a baseline continuous cdf G(·), which depends on a parameter vector β of dimension
q, Eugene et al. (2002) defined the beta generalized (BG) family by the cdf

F (x) =
1

B(a, b)

∫ G(x)

0

ωa−1(1− ω)b−1dω, x ∈ R,

where a > 0 and b > 0 are shape parameters, B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the beta function and
Γ(a) =

∫∞
0
ωa−1e−ωdω is the gamma function. The corresponding pdf of the BG family is given by

f(x) =
1

B(a, b)
g(x)G(x)a−1 [1−G(x)]b−1, x ∈ R.

The BG family has received considerable attention over the last years, in particular after the works
of Eugene et al. (2002) and Jones (2009). Since the publication of these seminal papers, many other
generalizations have been proposed. Razzaghi (2009) used the beta normal (BN ) distribution in
dose-response modeling and risk assessment for quantitative responses. Recently, Rego et al. (2012)
provided a better foundation for the BN distribution and presented some properties and an analytical
study of its bimodality. Another interesting application of the BN distribution can be found in SAR
image processing; see Cintra et al. (2014), who introduced the beta generalized normal distribution
defined by compounding the beta and generalized normal distributions.

Kumaraswamy family of distributions. Paper by Cordeiro and de Castro (2011).

Kumaraswamy (1980) proposed a distribution for double bounded random processes with hydro-
logical applications. The Kumaraswamy (KW) distribution received considerable interest in hydrology
and related areas, see Fletcher and Ponnambalam (1996) and Seifi et al. (2000). Its cdf and pdf with
two shape parameters a > 0 and b > 0 are given by

F (x) = 1− (1− xa)b and f(x) = a b xa−1(1− xa)b−1, x ∈ (0, 1),

respectively. Based on the KW distribution, Cordeiro and Castro (2011) defined the Kumaraswamy
generalized (KWG) family by

F (x) = 1− [1−G(x)a]b, x > 0, (5.1)

where a > 0 and b > 0 are two additional parameters whose role is to provide skewness and to vary
tail weights. The pdf corresponding to (5.1) has a very simple form

f(x) = a b g(x)G(x)a−1[1−G(x)a]b−1, x > 0.
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Compounding family of distributions. Paper by Adamidis and Loukas (1998).

The family of the compounding models is obtained by compounding absolutely continuous and
discrete distributions. It was pionnered by Marshall and Olkin (1997) and after that extended by
several authors, mainly after the work by Adamidis and Loukas (1998). The compounding lifetime
distributions recently added to the statistical literature extended important and well-established
lifetime models, based on the exponential, Weibull and gamma distributions. Further, they allow
for greater flexibility of the tails and are motivated for industrial applications and biological studies.
This type of compounding family arises by combining the power series and lifetime distributions.
Let N be a discrete random variable having a zero truncated power series (PS) probability mass
function given by P (N = n) = an θ

n/A(θ), where n ∈ N and N and T ’s are independent. The
coefficients an’s depend only on n, A(θ) =

∑∞
n=1 an θ

n (for θ > 0) is such that A(θ) is finite.
We define X = min{T1, . . . , TN}. Then, the conditional cumulative distribution of X|N = n is
FX|N=n(x) = 1− [1−G(x)]n and the marginal cdf of X becomes

F (x) = 1− 1

A(θ)
A {θ [1−G(x)]} , x > 0. (5.2)

Table 5.1 lists some PS distributions (truncated at zero) such as the Poisson, logarithmic, geometric
and binomial distributions.

Table 5.1: Useful quantities for some PS distributions.

Distribution an A(θ) θ

Poisson n!−1 eθ − 1 θ ∈ (0,∞)

Logarithmic n−1 − log(1− θ) θ ∈ (0, 1)

Geometric 1 θ/(1− θ) θ ∈ (0, 1)

Binomial
(
m
n

)
(θ + 1)m − 1 θ ∈ (0, 1)

For some of these new models, however, it is very difficult to obtain the maximum likelihood
estimates (MLEs), since the corresponding likelihood functions have nearly flat regions, which make
many derivative-based optimization methods unsuitable for obtaining such estimates. In such cases,
the use of meta-heuristic optimization algorithms usually provides solutions to this class of problems.

5.1.2 Heuristic algorithms for NP-complete problems

In the computational complexity theory, NP is an acronym for non-deterministic polynomial time,
which denotes a set of problems that are not solvable in polynomial time by a non-deterministic
Turing machine.

The great importance of such class of problems relies on the fact that it contains many search
and optimization problems for which we would like to know if there is a solution. For example, note
that the complexity class P (polynomial time) is a subset of NP, which can also contains as specific
problems the so-called NP-complete problems, whose solutions are sufficient to deal with any other
NP problem in polynomial time. Among the most important NP problems are the Hamiltonian-cycle
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problem, which takes a graph G as input and asks whether there is a simple cycle in G that visits
each vertex of G exactly once and then returns to its starting vertex; the circuit-sat problem, which
takes as input a Boolean circuit with a single output node, and asks whether there is an assignment
of values to the circuit’s inputs so that its output value is ‘1’; and the vertex-cover, which is the
decision problem that takes a graph G and an integer k as input, and asks whether there is a vertex
cover for G containing at most k vertices.

The non-deterministic algorithm is a special type (and quite unrealistic) of an algorithm that
“guess correctly” in all steps. Thus, the NP are problems whose solution can be found and verified in
time polynomial by a non-deterministic algorithm. In Mathematics, the question whether P = NP
or P 6= NP is still an open problem. Without a solution, we think that in certain problems the
solution is not currently achieved in polynomial time due to the fact that we do not have yet an
algorithm that provide solutions in polynomial time or there is a class of problems whose solutions
can not be obtained by a polynomial time model-based. This class of problems are usually called
the NP-complete or NP-hard problems, whose solutions are more complex to achieve.

In Statistics, we are usually interested in the problem of search or optimizing a function, i.e.
maximize or minimize an objective function, such as, for example, the likelihood function. Note
that new families of distributions have been proposed with extra parameters and, in some of these
new families, the corresponding likelihood functions have approximately flat regions. In this case,
deterministic methods, especially those that make use of derivatives, are unable to find a satisfac-
tory solution. So, heuristic methods for problems of search present several methods that provide
reasonable solutions to the NP problems. Among these heuristic methods that look for solutions to
problems of search, we mention the paradigm of swarm intelligence and the PSO method.

Swarm intelligence

According to Parsopoulos and Vrahatis (2002), swarm intelligence is an exciting new research
field still in its infancy compared to other paradigms in artificial intelligence. It is a branch of
artificial intelligence concerned to the study of collective behavior of decentralized and self-organized
systems in a social structure. These kind of systems are composed by agents that interact in a small
organization (swarm) wherein each individual is a particle.

The main idea behind swarm intelligence is that an isolated particle has a very limited action
in search an ideal point for the solution of an NP-complete problem. However, the joint behavior
of the particles in the search region shows evidence of artificial intelligence, i.e., the ability to take
decisions to respond to changes. In this sense, the swarm intelligence concept arises directly from
nature and is based on, for example, the self-organizing exploratory pattern of the schools of fish,
flocks of birds and ant colonies. This collective behavior can not be described simply by aggregating
the behavior of each element. Such situations have encouraged practitioners to obtain a satisfactory
effect in the search for solutions to complex problems by studying methods that promote intelligent
behavior through collaboration and competition among individuals.

Swarm-based algorithms have been widely developed in the last decade and the many successful
applications in a variety of complex problems make it a very promising, efficient and robust optimiza-
tion tool, although very simple to implement. The idea is modeling very simple local interactions
among individuals from which complex problem-solving behaviors arise.
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5.2 Conceptual design of the framework

Particle Swarm Optimization (PSO)

In computer science, the PSO is a computational method for optimization of parametric and mul-
tiparametric functions. The PSO algorithm is a meta-heuristic method, which has been providing
good solutions for problems of global optimization functions with box-constrained. The use of meta-
heuristic methods such as PSO has proved to be useful for maximizing complicated log-likelihood
functions without the need for early kick functions as the BFGS, L-BFGS-B, Nelder-Mead and sim-
ulated annealing methods. As in most heuristic methods that are inspired by biological phenomena,
the PSO method is inspired by the behavior of flying birds. The philosophical idea of the PSO
algorithm is based on the collective behavior of birds (particle) in search of food (point of global
optimal). This technique was first defined by Eberhart and Kennedy (1995) in a paper published in
the Proceedings of the IEEE International Conference on Neural Networks IV. A modification of the
PSO algorithm was proposed by Shi and Eberhart (1998). Further details on the philosophy of the
PSO method are given in the book Swarm Intelligence [see Kennedy and Eberhart (2001)].

The PSO optimizes a problem by having a population of candidate solutions and moving these
particles around in the search-space according to simple mathematical formulae over the particle’s
position and velocity. The movement of the particles in the search space is randomized. Each
iteration of the PSO algorithm, there is a leader particle, which is the particle that minimizes the
objective function in the corresponding iteration. The remaining particles arranged in the search
region will follow the leader particle randomly and sweep the area around this leading particle. In
this local search process, another particle may become the new leader particle and the other particles
will follow the new leader randomly. Each particle arranged in the search region has a velocity vector
and position vector and its movement in the search region is given by changes in these vectors. The
PSO algorithm is presented below, where f : Rn 7→ R is the objective function to be minimized, S is
the number of particles in the swarm (set of feasible points, i.e., search region), each particle having
a vector position xi ∈ Rn in the search-space and a vector velocity defined by vi ∈ Rn. Let pi be the
best known position of particle i and g the best position of all particles.

1. For each particle i = 1, . . . , S do:

• Initialize the particle’s position with a uniformly distributed random vector: xi ∼ U(blo, bup),
where blo and bup are the lower and upper boundaries of the search-space.

• Initialize the particle’s best known position to its initial position: pi ←[ xi.

• If f(pi) < f(g) update the swarm’s best known position: g ←[ pi.

• Initialize the particle’s velocity: vi ∼ U(−|bup − blo|, |bup − blo|).

2. Until a termination criterion is met (e.g. number of iterations performed, or a solution with
adequate objective function value is found), repeat:

• For each particle i = 1, . . . , S do:

– Pick random numbers: rp, rg ∼ U(0, 1).

– For each dimension d = 1, . . . , n do:

∗ Update the particle’s velocity: vi,d ← [ ω vi,d + ϕprp(pi,d − xi,d) + ϕgrg(gd − xi,d).
– Update the particle’s position: xi ←[ xi + vi
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– If f(xi) < f(pi) do:

∗ Update the particle’s best known position: pi ←[ xi
∗ If f(pi) < f(g) update the swarm’s best known position: g ←[ pi.

3. Now g holds the best found solution.

The parameter ω is called inertia coefficient and as the name implies controls the inertia of each
particle arranged in the search region. The quantities ωp and ωg control the acceleration of each
particle and are called acceleration coefficients. The PSO algorithm described above implemented in
the programming language R is presented below.

This algorithm with few modifications will be implemented in the AdequacyModel package avail-
able on the website of R. The algorithm above is quite general and can be applied to maximize any
function involving or not a database. Using the pso function, a given function is maximized taking
into consideration vectors of restrictions delimiting the search-space. In fact, the pso function is
constructed to minimize any function. However, to maximize f is equivalent to minimize −f . A
brief description of the pso function arguments are listed below:

• func: objective function to be minimized;

• S: number of particles considered. By default, the number of particles is equal to 150;

• lim inf e lim sup: vectors that restrict the region-search inferiorly and superiorly, respectively.

• e: error considered. The algorithm stops if the variance in the last 10 iterations is less than or
equal to e;

• data: by default data = NULL, but when the func is a log-likelihood function, data is a data
vector;

• N: minimum number of iterations (default N = 500);

• prop: Proportion of last minimum value that is calculated variance used as a stopping criterion.
That is, if the number of iterations is greater or equal to the minimum number of iterations N,
calculate the variance of the last values of minimum obtained, where 0 ≤ prop ≤ 1.

One advantage of the PSO method is that we do not need to concern ourselves with initial
shots. Problems with initial shots are frequent in methods such as the BFGS when the objective
function involves flat or nearly flat regions. To depend on the initial shots provided, we can obtain
estimates totally different. In general, this does not occur with great frequency in methodologies
of heuristic search, whose update steps embed randomness (generation of pseudo-random number).
The example below shows clearly this problem and the use of the pso function, especially how to
specify the objective function for the argument func.

In the pso function, it is used a minimization guests to N, i.e., the criterion of stopping will only
be evaluated if the number of iterations of the PSO algorithm is greater or equal to N. The amount of
minimum values considered in the calculation of the variance is given by the proportion of minimum
values established by the argument prop which by default is prop = 0.2. That is, if the last 20%
(prop = 0.2) of the minimum values has less variance than or equal to e, the algorithm will stop
global search, indicating convergence according to the established criteria. This indicates that there
was no significant improvements in this proportion of the last iterations. Thus, if the variance is less
than or equal to ε > 0 assigned to the argument e of the pso function, the algorithm will stop the
iterations and return the best point that minimizes the objective function.
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Example

Initially, we will consider the case of a global search in a univariate function, where we are
interested in estimate only a one-dimensional vector. Consider the objective function f(θ) = 6 +
θ2 sin(14θ). This is a function with some local minima, such that the value of θ that minimizes
globally f is equal to 2.3605 and f(2.3605) = −11.5618. Figure 5.1 displays the plot of f(θ), for
θ ∈ [−2.5, 2.5], such that is highlighted the estimates of the global minimum for the BFGS, Nelder-
Mead, simulated annealing and PSO methods.
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Figure 5.1: Function f(θ) = 6 + θ2 sin(14θ) with global minimum estimates.

It is noted that the global minimum estimates obtained by the BFGS, SANN and Nelder-Mead
methods through the optim function (details about the optim function execute ?optim) are heavily
influenced by kickoff given zero. Note that there is ε > 0 such that f has derivative close to
zero around (−ε, ε). However, the global minimum estimate obtained by the pso function of the
AdequacyModel package provided the true global minimum, i.e., the minimum is equal to that one
obtained analytically.

Notes: [1] In all cases, the algorithms converged according to the criteria of convergences imple-
mented by the optim function of the stats package nstalled by default in the installation of the R

language and the pso function is obtained by installing the AdequacyModel package.

[2] For the BFGS, Nelder-Mead and simulated annealing methods were given the same initial kick
zero. For the case of the simulated annealing and PSO methods, these methodologies involve ran-
domization, and it is fixed a seed at the value 9, i.e., set.seed(9).

[3] The global minimum values obtained by the BFGS, Nelder-Mead and simualted annealing methods
are identical and influenced by the kickoff. Unlike these methodologies, the PSO method implemented
by the pso function does not require initial kicks.

[4] These results can be replicated using the AdequacyModel package and the code below:
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R> f <- function(x){

+ -(6 + x^2 * sin(14*x))

+ }

R> f_pso <- function(x,par){

+ theta = par[1]

+ -(6 + theta^2 * sin(14*theta))

+ }

R> set.seed(9)

R> result_pso_f = pso(func=f_pso,S=500,lim_inf=c(-2.5),lim_sup=c(2.5),

+ e = 0.0001)

R> set.seed(9)

R> result_sann_f = optim(par=c(0),fn=f, lower=-2.5, upper = 2.5, method="SANN")

R> result_bfgs_f = optim(par=c(0),fn=f, lower=-2.5, upper = 2.5, method="BFGS")

R> result_nelder_f = optim(par=c(0),fn=f, lower=-2.5, upper = 2.5,

+ method="Nelder-Mead")

Note that the use of the pso function is rather simplistic. This function is implemented to
be parsimonious in order to facilitate its use. The following example use pso function for multi-
parameter optimizations.

Example

Consider the Easom function f(x, y) = − cos(x) cos(y) exp{−[(x − π)2 + (y − π)2]}, and −10 ≤
x, y ≤ 10. Some plots are displayed at different angles in Figures 5.2(a) and 5.2(b). The Easom
function is minimized at x = y = π, and f(π, π) = −1. The use of the pso function to minimize the
above function is

R> easom <- function(x,par){

+ x1 = par[1]

+ x2 = par[2]

+ -cos(x1) * cos(x2) * exp(-((x1-pi)^2 + (x2-pi)^2))

+ }

R> set.seed(9)

R> results_pso = pso(func = easom, S = 500, lim_inf = c(-10,-10),

+ lim_sup = c(10,10), e = 0.0001)

Before the execution of the pso function, we sent a seed, i.e., set.seed(9), for which the same
results can be replicated. The estimated minimum points by the pso function are x̂ = 3.139752 and
ŷ = 3.141564, very close to x = y = π. The convergence of the methodology for very close values to
the global optimum can be best observed in Easom function levels curves displayed in Figure 5.3.
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Figure 5.2: Easom function at two different angles.

We use the BFGS method through the optim function. We have, for example, for the initial
kick x = −9 and y = 9, and there is convergence in the BFGS algorithm, where the kickoff is the
minimum point itself (x̂ = −9 and ŷ = 9), which is quite different from the minimum true point
x = y = π. This fact can be obtained from the code below.

R> easom1 <- function(x){

+ x1 = x[1]

+ x2 = x[2]

+ -cos(x1) * cos(x2) * exp(-((x1-pi)^2 + (x2-pi)^2))

+ }

R> result_bfgs_easom = optim(par = c(9,9), fn = easom1, method = "BFGS")

Notes: [1] Note that result_bfgs_easom$convergence == 0 is equal to TRUE, which indicates con-
vergence. For more details about the convergence criterion of the BFGS method implemented in the
optim function execute help(optim). So, this method is very sensitive to initial kicks. In addition,
in the case of Easom function, convergence is hampered by the existence of infinite candidates to the
point of minimum distributed on a flat region. The output stored in the object result_bfgs_easom
is presented below:

R> result_bfgs_easom

$par

[1] -9 9

$value

[1] -1.283436e-30
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$counts

function gradient

1 1

$convergence

[1] 0

$message

NULL

[2] Setting result_nelder_easom=optim(par=c(-9,9),fn=easom1,method="Nelder-Mead"), we
also obtain a point distant from the minimum estimate of the true global minimum point, where
x̂ = −8.1 and ŷ = 9 gives a minimum value approximately equal to zero. The results stored in
result_nelder_easom are given below:

R> result_nelder_easom

$par

[1] -8.1 9.0

$value

[1] -3.609875e-71

$counts

function gradient

3 NA

$convergence

[1] 0

$message

NULL

[3] A similar fact is obtained using the simulated method in which the estimates can be obtained with
the code that follows:

R> set.seed(9)

R> result_sann_easom = optim(par = c(-9,9), fn = easom1, method = "SANN")

In this case, it is noted that result_sann_easom$convergence == 0 is TRUE (there is conver-
gence). However, the estimated minimum point has coordinates distant from the coordinates of the
true minimum point, where the estimated coordinates are x̂ = 1.110688 and ŷ = 13.934928 with seed
fixed at 9, i.e. set.seed(9).
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Figure 5.3: Curves of levels of the Easom function.

Example: Now, we consider the example of the use of the pso function to minimize the Cross-in-
tray function. This is a difficult function to be minimized for different reasons from those presented
in the previous example. The Cross-in-tray function has many local minima as can be seen in Figures
5.4(a) and 5.4(b). This fact can certainly hamper the convergence of various algorithms that lead to
a global optimum. The Cross-in-tray function is defined by

f(x, y) = −0.0001

(∣∣∣∣∣sin(x) sin(y) exp

(∣∣∣∣∣100−
√
x2 + y2

π

∣∣∣∣∣
)∣∣∣∣∣+ 1

)0.1

,

where −10 ≤ x, y ≤ 10 and

Min =


f(1.34941, −1.34941) = −2.06261
f(1.34941, 1.34941) = −2.06261
f(−1.34941, 1.34941) = −2.06261
f(−1.34941, −1.34941) = −2.06261

.

Note that this function has four points of global minimum. Any estimate of the minimum points
(x̂, ŷ) that applied in f(·) presents minimum value close to -2.0626 will be a good solution.
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Figure 5.4: Cross-in-tray function at two different angles.

By means of the optim function, we note the convergence of the BFGS, Nelder-Mead and simu-
lated annealing methods with initial kicks at x = 0 and y = 0, where the estimated values of x and
y are x̂ = ŷ = 0 in the three methodologies and f(x̂, ŷ) = −0.0001.

The minimization of the Cross-in-tray function by using the PSO function achieves a satisfac-
tory outcome as we can see in Figure 5.5. By the pso function, the estimated minimum point is
(1.3490, 1.3490) with a minimum value equal to f(1.3490, 1.3490) = −2.0626. These same results
can be obtained with the script below:

R> cross <- function(x,par){

+ x1 = par[1]

+ x2 = par[2]

+ -0.0001 * (abs(sin(x1) * sin(x2) * exp(abs(100-sqrt(x1^2+x2^2)/pi)))

+ + 1)^0.1

+ }

R> set.seed(9)

R> result_pso_cross <- pso(func = cross, S = 500, lim_inf = c(-10,-10),

+ lim_sup = c(10,10), e = 0.0001)
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Figure 5.5: Curves of levels of Cross-in-tray function.

Note: The results of the optimization using the optim function and the Nelder-Mead, BFGS and
simulated annealing methods can be obtained with the code below such that, for all these method-
ologies, the initial shot is given at the point (0, 0).

R> cross1 <- function(x){

+ x1 = x[1]

+ x2 = x[2]

+ -0.0001 * (abs(sin(x1) * sin(x2) * exp(abs(100-sqrt(x1^2+x2^2)/pi)))

+ + 1)^0.1

+ }

R> result_bfgs_cross = optim(par = c(0,0), fn = cross1, lower = -10,

+ upper = 10, method = "BFGS")

R> result_nelder_cross = optim(par = c(0,0), fn = cross1, lower = -10,

+ upper = 10, method = "Nelder-Mead")

R> set.seed(9)

R> result_sann_cross = optim(par = c(0,0), fn = cross1, lower = -10,

upper = 10, method = "SANN")

Example: Consider the case of the Hölder function, very peculiar and difficult to be optimized.
It is defined by

f(x, y) = −

∣∣∣∣∣sin(x) cos(y) exp

(∣∣∣∣∣1−
√
x2 + y2

π

∣∣∣∣∣
)∣∣∣∣∣ ,

where
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Min =


f(8.05502, 9.66459) = −19.2085
f(−8.05502, 9.66459) = −19.2085
f(8.05502, −9.66459) = −19.2085
f(−8.05502, −9.66459) = −19.2085

,

where −10 ≤ x, y ≤ 10. Figure 5.6 displays the plots of the Hölder function defined above.

xy

z

−15

−10

−5

(a)

x
y

z

−15

−10

−5

(b)

Figure 5.6: Hölder function at two different angles.

For the Hölder function, the results obtained from Nelder-Mead, BFGS and simulated annealing
methods, thus as occurred in the previous examples, were not good. However, in all cases, there was
a convergence following these methodologies implemented in the optim function. With initial kicks
at the point (0, 0), the convergence leads to this point, i.e., the three methodologies estimate the
minimum point at x̂ = 0 and ŷ = 0.

For the simulated annealing method, the seed was set at 9, i.e., set.seed(9). The details for
the optim function can be obtained in the documentation of this function.

An interesting fact is that the pso function also failed to get good estimates for S = 500, i.e.,
when considering 500 particles for optimization. However, the problem is easily circumvented by
raising the number of particles. Figure 5.7 displays plots of the levels of the Hölder function with the
point of convergence of the PSO algorithm. This result was obtained by using the following script:

R> holder <- function(x,par){

+ x1 = par[1]

+ x2 = par[2]

+ -abs(sin(x1)*cos(x2) * exp(abs(1 - sqrt(x1^2+x2^2)/pi)))

+ }

R> result_pso_holder = pso(func = holder, S = 10000, lim_inf = c(-10,-10),

+ lim_sup = c(10,10), e = 0.0001)
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Figure 5.7: Curves of levels of Hölder function.

5.3 Fitting a distribution

In parametric inference, the problem of inferring about the unknown joint distribution, say Fθ,
from a sample X1, . . . , Xn reduces to the problem of inferring about the unknown parameter θ. So,
suppose we have a parametric family of distributions F = {Fθ; θ ∈ Θ}, where Θ is the parameter
space of θ. Suppose also that in F exists a Fθ such that F evaluated in θ̂n provides the best element
to model X1, . . . , Xn, i.e., θ̂n is an estimator of θ.

In Statistics, we usually estimate θ by the maximum likelihood estimate (MLE) θ̂n. However, not
always the assumption that F is adequate, i.e., it can be that F evaluated at θ̂n does not provide
a distribution that can model properly X1, . . . , Xn. Thus, we need to check the adequacy of the
adjustment of the best element in F and decide if Fθ̂n is, or not, a good distribution for X1, . . . , Xn.

In this way, we need to verify if the best element of F can represent the joint distribution of
X1, . . . , Xn, i.e., we need to process the best value θ ∈ Θ. One way to obtain an adequate distribution
is using the likelihood ratio statistic. However, many times, this statistics is complicated and can
even be inadequate as a statistical test, mainly in small samples, where the asymptotic χ2 distribution
can be poor.

Alternatives to the likelihood ratio test were proposed by Chen and Balakrishnan (1995) that are
corrections to the Carmér-von Mises and Anderson Darling statistics proposed by von-Mises (1931),
Cramér (1928) and Anderson and Darling (1952).

We use these statistics when we have a random sample xn = {x1, . . . , xn} with empirical distribu-
tion function Fn(x) and we want to test if the sample has a specified distribution. The Cramér-von
Mises (A∗) and Anderson-Darling (W ∗) are, respectively, given by
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W ∗ =

{
n

∫ +∞

−∞
{Fn(x)− F (x; θ̂n)}2dF (x; θ̂n)

}(
1 +

0.5

n

)
= W 2

(
1 +

0.5

n

)
, (5.3)

A∗ =

{
n

∫ +∞

−∞

{Fn(x)− F (x; θ̂n)}2

{F (x; θ̂)(1− F (x; θ̂n))}
dF (x; θ̂n)

}(
1 +

0.75

n
+

2.25

n2

)
= A2

(
1 +

0.75

n
+

2.25

n2

)
, (5.4)

where Fn(x) is the empirical distribution function, F (x; θ̂n) is the postulated cdf evaluated at the

MLE θ̂n of θ, and W 2 and A2 are the Cramér-von Mises and Anderson-Darling statistics, respectively.
For more details about the W 2 and A2 statistics, see Craér (1928), von-Mises (1931) and Anderson

and Darling (1952). This statistic is given by the difference between Fn(x) and F (x; θ̂n). Thus,

as lower are them more evidence we have that F (x; θ̂n) generate the sample. The null hypothesis
tested using the statistics (5.3) and (5.4) is that the random sample x1, . . . , xn has distribution
F (x; θ). According to Chen and Balakrishnan (1995, p. 155), the W 2 and A2 statistics can be readily
calculated as

W 2 =
n∑
i=1

[ui − {(2i− 1)/(2n)}]2 + 1/(12n) (5.5)

and

A2 = −n− n−1

n∑
i=1

{(2i− 1) log(ui) + (2n+ 1− 2i) log(1− ui)}, (5.6)

where ui = Φ((yi − y)/sy), vi = F (xi; θ̂n), yi = Φ−1(vi) (Φ is the standard normal cdf) and sy is the
sample standard deviation of the yi’s, for i = 1, 2, . . . , n. The algorithm below can be adpoted to
obtain W ∗ and A∗:

1. Estimate θ by θ̂n (consistently), order the sample values in crescent values to calculate vi =

F (xi; θ̂n);

2. Calculate yi = Φ−1(vi), where Φ−1 is the standard normal quantile function;

3. Calculate ui = Φ{(yi − y)/sy}, where y = n−1
∑n

i=1 yi and s2
y = (n− 1)−1

∑n
i=1(yi − y)2;

4. Calculate W 2 e A2 using equations (5.5) and (5.6), respectively;

5. Obtain W ∗ = W 2(1 + 0.5/n) and A∗ = A2(1 + 0.75/n+ 2.25/n2), where n is the sample size;

6. We reject H0 at the significance level α if the test statistics exceed the critical values presented
by Chen and Balakrishnan (1995, p. 155).

What is commonly done in practice is to use W ∗ and A∗ to compare two or more continuous
distributions. The distribution that gives the lowest values of W ∗ or A∗ is the best suited to explain
the random sample.

The goodness.fit function provides some useful statistics to assess the quality of fit of probabilis-
tic models, including the W ∗ and A∗ statistics. The function can also determine other goodness-of-fit
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statistics such as the AIC (Akaike Information Criterion), CAIC (Consistent Akaikes Information
Criterion), BIC (Bayesian Information Criterion), HQIC (Hannan-Quinn Information Criterion) and
KST (Kolmogorov-Smirnov Test). The general form for the function is given below with the descrip-
tions of each one of its arguments.

goodness.fit(pdf, cdf, starts=NULL, data, method="PSO", domain=c(0,Inf), mle =

NULL)},

where

• pdf: probability density function;

• cdf: cumulative distribution function;

• starts: initial parameters to maximize the likelihood function;

• data: data vector;

• method: method used for minimization of the -log-likelihood function. The methods supported
are: PSO (default), BFGS, Nelder-Mead, SANN (simulated annealing), CG (conjugate gra-
dients). We can also provide only the first letter of the methodology, i.e., P, B, N, S or C,
respectively;

• domain: domain of the pdf. By default the domain of the pdf is the open interval (0,∞). This
option must be a vector with two components;

• mle: vector with the MLEs. This option should be used if one already has knowledge of the
MLEs. The default is NULL, i.e., user the function will try to obtain the MLEs;

• ...: If method = PSO, then all the arguments of pso function could be passed to the goodness.fit
function.

An important observation is that it is not necessary to define the likelihood function or log-
likelihood. Just we need to define the pdf and cdf. The function will self-criticism to the arguments
passed to the goodness.fit. For example, if supplied to the arguments pdf or cdf functions that
do not be pdfs and cdfs, a notice will be given so that the user can check the arguments passed. We
provide below two examples of the use of the goodness.fit function.

Example: Suppose the problem is that it has a data set of stress (until fracture) of carbon
fibres (in Gba). The data were obtained by Nichols and Padgett (2006) are available for use in
the AdequacyModel package and can be accessed with the command data(carbone). Further,
details regarding the set of data is obtained in the documentation of the package with the command
help(carbone). Suppose also that we are interested in obtaining the best model in F = {Fθ; θ ∈ Θ}
that can represent the distribution of X1, . . . , Xn, whose observations are in carbone. Here, we
consider that F is the Exp-Weibull (exponentiated Weibull) distribution. Its cdf is given by

F (x, α, β, a) =
{

1− exp
[
−(αx)β

]}a
,

where α, β and c are positive parameters and x > 0. Thus, each element in F is of the form
F (x;α, β, a).
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We initially implement the pdf f(x;α, β, a) and the cdf F (x;α, β, a). They will serve as arguments
for pdf and cdf, respectively. We present below the implementation of the functions that will be
given to the goodness.fit function.

R> # Probability density function.

R> pdf_expweibull <- function(par, x) {

+ alpha = par[1]

+ beta = par[2]

+ a = par[3]

+ alpha * beta * a * exp(-(alpha * x) ^ beta) * (alpha * x) ^ (beta

+ - 1) * (1 - exp(-(alpha * x) ^ beta)) ^ (a - 1)

+ }

R> # Cumulative distribution function.

R> cdf_expweibull <- function(par, x) {

+ alpha = par[1]

+ beta = par[2]

+ a = par[3]

+ (1 - exp(-(alpha * x) ^ beta)) ^ a

+ }

R> data(carbone)

R> results = goodness.fit(pdf = pdf_expweibull, cdf = cdf_expweibull,

+ starts = c(1, 1, 1), data = carbone, method = "BFGS", domain = c(0, Inf),

+ mle = NULL)

The object results feature all the goodness-of-fit statistics cited previously as well as the MLEs
in case of mle = NULL (default). The error of the MLEs if the argument method receives PSO, BFGS,
Nelder-Mead, SANN and CG. Thus,

• R> results$W provides the statistic W ∗;

• R> results$A provides the statistic A∗;

• R> results$KS provides the statistic of Kolmogorov-Smirnov;

• R> results$mle provides a vector with the MLEs of the model parameters given as arguments
for the pdf;

• R> results$AIC: provides the AIC statistic;

• R> results$CAIC: provides the CAIC statistic;

• R> results$BIC: provides the BIC statistic;

• R> results$HQIC: provides the HQIC statistic;
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• R> result$KS: returns an object of class htest with information on the Kolmogorov-Smirnov
test;

• R> results$Erro: provides the standard erros the MLEs of the parameters, which index the
model parameters given as arguments for the pdf and cdf;

• R> results$value: displays the minimum value of the function -log(likelihood);

• R> result$Convergence: provides information on the convergence of the method passed as
an argument for method. If result$Convergence} == 0 for TRUE, there was convergence.

In case of method = "PSO" (default), the errors will not be provided. The researcher may obtain
such errors through bootstrap. For details of how to obtain the estimates of the standard errors of the
MLEs of the model parameters, see Davison and Hinkley (1997). Just below follow the results stored
in the object results (output of the goodness.fit function) and a plot with the fitted Exp-Weibull
density.

R> results

$W

[1] 0.07047089

$A

[1] 0.4133608

$KS

One-sample Kolmogorov-Smirnov test

data: data

D = 0.064568, p-value = 0.7987

alternative hypothesis: two-sided

$mle

[1] 0.3731249 2.4058010 1.3198053

$AIC

[1] 288.6641

$‘CAIC ‘

[1] 288.9141

$BIC

[1] 296.4796

$HQIC

[1] 291.8272
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$Erro

[1] 0.06265212 0.60467076 0.59835491

$Value

[1] 141.332

$Convergence

[1] 0
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Figure 5.8: Fitted Exp-Weibull density to stress data (until fracture) of carbon fibers in Gba.

Notes: [1] The Kolmogorov-Smirnov statistic may return NA with a certain frequency. The return
NA informs that this statistic is not reliable for the current data set. More details about this issue can
be obtained with help(ks.test). In situations where results$Convergence==0 is TRUE, there was
convergence for the method passed as an argument to the method that minimizes the log-likelihood
function multiplied by -1, that is, it minimizes -log(likelihood).

[2] The convergence criterion as well as other details about possible values returned by results$Conv

ergence can be obtained with help(optim) if the argument method of the goodness.fit function
receives the strings "BFGS", "Nelder-Mead", "SANN" or "CG" (or such those initials letters "B", "N",
"S" or "C"). For the PSO methodology of minimization of the -log(likelihood) function (default
method = "PSO"), the convergence criterion is displayed as discussed in Section 5.2, which normally
is satisfied.
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[3] The code for obtaining Figure 5.8 is presented below:

R> pdf(file = "plot_adjustment.pdf", width = 9, height = 9, paper = "special",

+ family = "Bookman", pointsize = 14)

+ x = seq(0, 6, length.out = 250)

+ hist(carbone, probability = TRUE, xlab = "x", main = "")

+ lines(x, pdf_expweibull(par = results$mle, x), lwd = 2)

+ legend( "topright", legend = c(expression(paste("Exp-Weibull"))),

+ lwd = c(2.5), inset = 0.03, lty = c(1), cex = 1.1, col = c("black"))

+ dev.off()

TTT plot

Several aspects of an absolutely continuous distribution can be seen more clearly from the hazard
rate function (hrf) than from either the distribution or density functions. The hrf is an important
quantity characterizing life phenomena. Let X be a random variable with the pdf f(x) and the cdf
F (x). The hrf of X is defined by

h(x) =
f(x)

1− F (x)
,

where 1− F (x) is the survival function.
The hrf may be increase, decrease, constant, upside-down bathtub, bathtub-shaped or indicate a

more complicated process. In many applications there is a qualitative information about the hazard
rate shape, which can help in selecting a specified model. In this context, a device called total time
on test (TTT) or its scaled TTT transform proposed by Aarset (1987) may be used for obtaining
the empirical behavior of the hrf.

The scaled TTT transform if defined by (0 < u < 1)

φX(u) =
H−1
X (u)

H−1
X (1)

,

where H−1
X (u) =

Q(u)∫
0

[1−F (x)]dx and Q(u) is the quantile function of X. The quantity φX(·) can be

empirically approximated by

T (i/n) =

∑i
k=1Xk:n + (n− i)Xi:n∑n

k=1 Xk

,

where i = 1, . . . , n and Xk:n, k = 1, . . . , n, are the order statistics of the sample. Thus, the TTT plot
is obtained by plotting T (i/n) against i/n. We can detect the type of hazard rate that the data have.
It is a straight diagonal for constant failure rates, it is convex for decreasing failure rates and concave
for increasing failure rates. It is first convex and then concave if the failure rate is bathtub-shaped.
It is first concave and then convex if the failure rate is upside-down bathtub. For more details, see
Aarset (1987).

The computation of the TTT plot is proposed in the AdequacyModel package. The data set
named carbone will now be used to illustrate the TTT plot function of this package. The real data
sets correspond to a data set from Nichols and Padgett (2006) on breaking stress of carbon fibres
(in Gba). In order to obtain the TTT curve, the TTT function has been developed. The following
instructions illustrate these functions:
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R> library(AdequacyModel)

R> data(carbone)

R> TTT(carbone, col = "red", lwd = 2.5, grid = TRUE, lty = 2)

The TTT plot for the carbone data set Nichols and Padgett (2006) is displayed in Figure 5.9,
which reveals increasing hrf. This plot indicates that distributions with increasing hrf seem to be
appropriate for modeling the cabone data set, so that several distributions that have increasing hrf
could be good candidates; see the theoretical plot in Figure 1 in Aarset (1987).
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Figure 5.9: TTT-plot for carbon data.

5.4 Concluding remarks and the package current usage

It can be said that the AdequacyModel package provides a comprehensive and efficient method
to perform a robust and general purpose optimization of an arbitrary objective function, mainly for
situations where the objective function has approximately flat regions, which represents an important
advantage over derivative-based optimization approaches. Further, it provides a conclusive toolbox
for assessing the adequacy of probabilistic models for a given data set by combining several statistical
measures. The quantities computed include (W ∗, W ∗, AIC, BIC, CAIC, among others). Due to the
great interest in and active development of lifetime models, which in general need to maximize
the likelihood function, it was deliberately constructed in an object-oriented and extensible fashion.
Consequently, it is ready for the many extensions that are sure to come in near future. The source
code is open and extensive documentation of the system is freely available. We emphasize that this
package has been developed with the objective of helping R users to fit probabilistic models in a wide
range of scientific studies. Indeed, this package is already used by a lot of practitioners and academics
for model fits and goodness-of-fit statistics in biomedical and health sciences (Bourguignon et al.,
2015; Cordeiro et al., 2015; Ramos et al., 2013); physics (Cordeiro et al., 2016); reliability (Ramos
et al., 2013); financial and actuarial mathematics (Duarte et al., 2016). Figures 5.10 and 5.11 show,
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respectively, the numbers of downloads of AdequacyModel package from 2013-12-20 to 2016-04-11
and the numbers of downloads of the package by countries in the RStudio repository.
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Figure 5.10: Numbers of downloads from AdequacyModel package by RStudio repository.
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Figure 5.11: Numbers of downloads from AdequacyModel package by countries by RStudio repository.
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