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Resumo

O estudo das séries temporais é um dos tépicos mais importantes da Estatistica, tendo
como propdsito principal o desenvolvimento de métodos para modelagem de dados
que exibem correlacdo ao longo do tempo. Tais modelos nos permitem fazer previsdes.
Dentro desta area, séries temporais de valores inteiros tém chamado a aten¢do dado
que podem ser observadas em muitos contextos, por exemplo, o niimero de acidentes
mensais em uma fabrica, ou, o nimero de peixes capturados em una determinada area
do mar cada semana. Nas tltimas trés décadas tem aumentado o interesse em pro-
por metodologias para estudar séries temporais de valores inteiros, especificamente
métodos para obter previsdes futuras, as quais devem ser ntimeros inteiros ndo nega-

tivos, devido a natureza discreta destas séries.

Neste trabalho concentramo-nos em propor e estudar novos procedimentos para fazer
previsdes nos chamados processos autorregressivos de primeira ordem de valores in-
teiros, Integer-valued first-order Autoregressive Process (INAR(1)) com distribuigdo
marginal Poisson, e nos processos autorregressivos de primeira ordem condicional-
mente heterosceddsticos de valores inteiros, Integer-valued first-order Autoregressive
Conditional Heteroskedasticity Processes (INARCH(1)).

No processo INAR(1) fornecemos uma expressdo analitica para o valor esperado da
parte inteira da média condicional um passo a frente. Além disso, estudamos o com-
portamento de trés preditores coerentes, ou seja, preditores que fornecem previsdes de
valor inteiro ndo negativo, considerando diferentes cendrios e também estudamos seu

poder preditivo considerando dados modelados incorretamente.



Na secéo apresentamos uma forma alternativa de definir o processo INARCH(1)
baseado no operador thinning Poisson. Comegamos o Capitulo 4 definindo o operador
thinning Poisson e, a seguir, encontramos e provamos suas propriedades. Além disso,
na secdo (4.2| fornecemos uma demonstragdo da existéncia e unicidade da distribuicdo
marginal do processo INARCH(1) e também apresentamos propriedades da distribui-
¢do condicional & passos a frente do processo INARCH(1). Adicionalmente na se¢des
(.4land 4.5/ propomos previsdes um, dois e i passos a frente para o modelo INARCH(1).
Dado que a distribui¢do condicional um passo a frente é uma distribuicdo Poisson,
propomos sua moda e sua mediana estimadas como previsdes um passo a frente. Em-
bora a moda da distribui¢do Poisson tenha uma expressdo analitica simples, ndo ex-
iste uma expressdo para a mediana. Assim, usando estudos de simulag¢do, ndo ap-
resentados neste trabalho, nés propomos uma aproximagdo simples da mediana da
distribuicdo Poisson, a qual tem bom desempenho em termos de erro quadratico médio
e em termos de erro absoluto médio. Na secdo apresentamos propriedades tais
como média e varidncia limites da mediana aproximada. Comegamos demonstrando
que a aproximagdo é fracamente condicionalmente consistente e a seguir conseguimos
provar que dita aproximacdo é fortemente condicionalmente consistente. Também
provamos que ela é fracamente consistente e a seguir apresentamos a demostracdo de
que ela é fortemente consistente. Na secdo |4.6|apresentamos uma distribui¢do que nos
permite obter intervalos de previsdo bilaterais e unilaterais. Nas se¢oes 4.7, 4.8 e
apresentamos estudos de simulagdo de Monte Carlo que comparam os desempenhos

dos preditores propostos.

Nas segoes [3.4] e ilustramos as metodologias de previsdo estudadas e propostas
com exemplos de dados reais que ja tém sido estudados nos processos INAR(1) com

marginal Poisson e INARCH(1) respectivamente.

Palavras-chave: Modelo INARCH(1); Operador thinning Poisson; Previsao; Séries tem-

porais de valores inteiros; Simula¢do de Monte Carlo.



Abstract

The study of time series is one of the most important subjects in the statistical litera-
ture, the main purpose being to provide methods for modeling data sets that exhibit
correlation over time and to allow to make predictions. Integer-valued time series have
paid the attention because they occur in many contexts, for example, the numbers of
accidents in a manufacturing plant each month, or the numbers of fishes caught in a
particular area of sea each week, often as counts of events, objects or individuals in
consecutive intervals or at consecutive points in time. In the last three decades, there
has been an increasing interest in proposing methodologies to study integer-valued

time series, including how to obtain non-negative and integer predictors.

We center our attention in studying and proposing new forecasting procedures for
the Integer-valued first-order Autoregressive Process (INAR(1)) with Poisson marginal
distribution, based on the binomial thinning operator and for the Integer-valued first-
order Autoregressive Conditional Heteroskedasticity Process (INARCH(1)), which

takes into account the overdispersion.

In Chapter 3 we provide an analytic expression for the expected value of the integer
part of the one-step ahead conditional mean for the INAR(1) process. In addition,
using Monte Carlo simulation, we present a study of the behavior of three coherent
forecasts, i. e., predictors which to provide non-negative and integer valued forecasts,

and, we also present a study of their predictive power under misspecified data.

In section we present an alternative way to define the INARCH(1) process, based

on the Poisson thinning operator. We begin Chapter 4 defining the Poisson thinning



operator and then we find and prove its properties. After that, we provide a proof
of existence and uniqueness of the marginal stationary distribution of the INARCH(1)
process and we present properties of its conditional distribution h—steps ahead. Addi-
tionally, in Section[4.4/and Section[#.5we propose one, two and h—steps ahead forecasts
for INARCH(1) processes. We propose the estimated mode and median of a Poisson
distribution as forecasts one-step ahead. Although the mode of a Poisson distribution
has an easy analytic expression, there is no expression for the median. Hence, by simu-
lation study, which does not present in this work, we propose an easy approximation of
the median of a Poisson distribution which works very well in terms of mean squared
error and mean absolute error. In Section {4.3| we show properties such as mean and
variance limits of the approximate median. We begin with the proof of weakly con-
ditional consistency of the approximate median, and then we get to prove strongly
conditional consistency. Further, we are able to demonstrate weakly consistency of the
approximate median and then we get to prove its strongly consistency. In Section
we show a distribution which allows to obtain one-sided and two-sided predictions
intervals. In sections and (4.9| we present Monte Carlo simulation studies that

compare the behaviors of the proposed forecasts.

For the models considered here, in Section 3.4/ and Section we illustrate the pro-
posed and studied approaches with different real data sets, which were studied in

these processes.

Key-words: Forecasting; INARCH(1) processes; Integer-valued time series; Monte Carlo

simulation; Poisson thinning operator.
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Chapter

Introduction

Resumo

O estudo das séries temporais é um dos mais importantes tépicos da Estatistica, tendo
como propdsito principal o desenvolvimento de métodos para modelagem de dados
que exibem correlacdo ao longo do tempo. Tais modelos nos permitem fazer previsdes.
Nas tultimas décadas, tem havido um crescente interesse no estudo de séries tempo-
rais em que os dados sdo ntiimeros inteiros de tamanho ndo muito grande. Tais séries
temporais de valores discretos podem ser observadas em muitos contextos. McKen-
zie| [2003] mostra alguns exemplos: ntiimero de acidentes que ocorrem por més em
um local de trabalho, ntiimero de pacientes tratados por hora em uma unidade de
emergéncia em um hospital, nimero de peixes capturados por semana em uma de-
terminada 4rea, ntimero de linhas telefénicas ocupadas numa rede a cada meia hora,
nimero de maquinas que estdo em pleno funcionamento em um grande laboratério

no inicio de cada dia.

Neste trabalho concentramo-nos nos chamados processos autorregressivos de primeira
ordem de valores inteiros, Integer-valued first-order Autoregressive Process
(INAR(1)), e nos processos autorregressivos de primeira ordem condicionalmente
heteroscedésticos de valores inteiros, Integer-valued first-order Autoregressive Condi-
tional Heteroskedasticity Processes (INARCH(1)). O processo INAR(1) é baseado no

17



CHAPTER 1. INTRODUCTION 18

operador thinning binomial, é considerado o analogo discreto do conhecido processo
continuo autorregressivo de primeira ordem, ou processo AR(1), e pode ter diferen-
tes distribui¢des marginais, incluindo a distribui¢do Poisson, a distribui¢do Binomial
Negativa e a distribui¢do Poisson generalizada (Weifs|[2008]), sendo a distribui¢ao Pois-
son a mais usada. Neste caso o processo é conhecido como o processo Poisson INAR(1).
Na presencga de sobredispersdo, ou seja, a varidncia maior que a média, uma alternativa
ao processo Poisson INAR(1) é o processo INARCH(1) que leva em conta a sobredis-

persao.

Um assunto muito importante nestes processos é como obter previsdes coerentes, ou
seja, previsOes inteiras e ndo negativas. O propoésito desta tese é estudar previsdo nos
processos Poisson INAR(1) e INARCH(1). No capitulo 3| comparamos por simula¢do
de Monte Carlo os comportamentos das previsdes um passo a frente propostas por
Freeland [1998] para o processo INAR(1) e estudamos o poder preditivo do modelo
sob modelagem incorreta dos dados. Nossa principal contribuicdo neste trabalho é o
estudo de previsdo que fizemos para o modelo INARCH(1). Comegamos o capitulo
definindo o operador thinning Poisson. Na secdo |4.2] apresentamos uma forma al-
ternativa de definir o processo INARCH(1) baseado no operador thinning Poisson.
Na secao fornecemos uma prova da existéncia e unicidade da distribuicdo esta-
ciondria marginal do processo INARCHY(1), apresentamos expressdes analiticas para o
r—ésimo momento ordindrio, para a média e varidncia condicional h—passos a frente
e para a funcdo geradora de probabilidades condicional h—passos a frente do processo
INARCH(1). Além disso, para o caso particular 1 = 2, encontramos uma expressao
simples para a fungdo de probabilidade condicional dois passos a frente. Dado que a
distribuicdo condicional um passo a frente do processo INARCH(1) é uma distribuicdo
Poisson, nés propomos sua média e sua moda como previsdes um passo a frente na
secdo Embora a moda de uma distribui¢do Poisson tenha uma expressao analitica
simples, ndo existe uma expressdo para sua mediana. Portanto, usando estudos de
simulagdo ndo apresentados aqui, nés propomos uma aproximagao simples da medi-
ana da distribuicdo Poisson, que tem um bom desempenho em termos de
erro quadréatico médio e de erro absoluto médio. Na segdo apresentamos pro-
priedades tais como média e varidncia limites da mediana aproximada. Comegamos

provando consisténcia condicional fraca da mediana aproximada estimada e entdo
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conseguimos provar sua consisténcia condicional forte. Também, provamos consis-
téncia fraca da mediana aproximada estimada e entdo conseguimos provar sua con-
sisténcia forte. Embora ndo tenhamos uma expressao analitica vidvel para a funcdo
de probabilidade condicional h—passos a frente para i > 3, na se¢do 4.5 propomos
uma forma recursiva de obter a previsdo h—passos a frente para h > 2. Na secdo
apresentamos uma distribui¢do que nos permite obter intervalos de previsdo unilate-
rais e bilaterais. Nas se¢oes 4.7} 4.8 e 4.9 apresentamos simulagdes de Monte Carlo que

comparam os desempenhos das previsdes propostas.

Nas se¢des 3.4 e ilustramos os métodos propostos e estudados para os processos
INAR(1) e INARCH(1), usando diferentes conjuntos de dados reais que ja tém sido

considerados nestes processos.

Este trabalho est4 divido da seguinte maneira: no capitulo [2| apresentamos os proces-
sos INAR(1) e INARCH(1) junto com suas principais propriedades. Nos capitulos
e 4 apresentamos as contribui¢des na previsdo dos modelos INAR(1) e INARCH(1),
respectivamente. Finalmente, no capitulo 5| mostramos as principais contribui¢des

desta tese e os topicos de pesquisa futuros.

Initial presentation

The study of time series is one of the most important subjects in the statistical litera-
ture, the main purpose being to provide methods for modeling data sets that exhibit
correlation over time and to allow to make predictions. In the last three decades,
there has been an increasing interest in studying and proposing methods to model
and make forecasts of integer-valued time series, i.e., series taking values on the set of

non-negative integers.

Integer-valued time series occur in many contexts, often as counts of events, objects or
individuals in consecutive intervals or at consecutive points in time. McKenzie [2003]]
shows some examples: the numbers of accidents in a manufacturing plant each month,
the numbers of patients treated by a hospital’s accident and emergency unit each hour,

the numbers of fishes caught in a particular area of sea each week, the numbers of busy
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lines in a telephone network noted every thirty minutes, and the numbers of lifts in a
tall office building which are fully operational at the start of business each day. More
examples can be found in Weifs [2008] and Weifs| [2010].

Integer-valued time series with large values may still be analyzed by using continuous-
valued time series which are normally distributed. This is reasonable because many
common distributions for count data, such as binomial, Poisson and negative bino-
mial, have an approximate normal distribution when the distribution mean is large.
However, when the discrete time series have small values, the classical methodology
is not appropriate. Notice that the simple procedure of multiplying an integer-valued
random variable by a real constant not necessarily leads to an integer-valued random
variable. Then, an alternative is to replace the multiplication by a random operation
which allows to obtain an integer random variable. Such operation was introduced by

Steutel and Harn|[1979] and is called binomial thinning operation.

The Integer-valued first-order Autoregressive Process (INAR(1)) is based on the bino-
mial thinning operator and is considered the discrete analogous of the known conti-
nuous first-order autoregressive process, or AR(1) process. The INAR(1) process can
have different marginal distributions, including the Poisson, negative binomial and the
generalized Poisson distributions (Weifs| [2008]]), the Poisson marginal distribution be-
ing the most commonly used. In the presence of overdispersion, i.e., variance greater
than the mean, an alternative to the Poisson INAR(1) process is the Integer-valued first-
order Autoregressive Conditional Heteroskedasticity Process (INARCH(1)), which is
a special case of the Autoregressive Conditional Poisson (ACP) models introduced by
Heinen|[2003] and since they are closely related to classical GARCH(p, ) models, Fer-
land et al|[2006] suggested to refer to these models as INGARCH(p, q) models. Weifs
[2010] referred to the INGARCH(p, 0) models as INARCH(p) models. The INARCH(1)

process takes into account the overdispersion.

A very important subject in these processes is how to obtain coherent forecasts,
i. e., non-negative and integer forecasts. Some researchers studied forecasting for the
INAR(1) process, the baseline work being the research of Freeland|[1998]. However, to
the best of our knowledge, forecasting in INARCH(1) processes has not been studied.

The aim of this thesis is to study forecasting in INAR(1) and INARCH(1) processes. In
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Chapter3)lwe compare by Monte Carlo simulation the behaviors of the one-step ahead
forecasts proposed by Freeland [1998] for the INAR(1) process with Poisson marginal
distribution and we study the predictive power of this process modeled under mis-
specified data. However, our principal contributions are to the INARCH(1) process.
We begin Chapter 4 defining the Poisson thinning operator and then we find and prove
its properties. In section we present an alternative way to define the INARCH(1)
process, based on the Poisson thinning operator. In Section 4.3 we provide a proof
of existence and uniqueness of the marginal stationary distribution of the INARCH(1)
process, we obtain analytic expressions for the r—th marginal ordinary moment, for
the h—steps conditional mean and variance as well as for the h—steps ahead condi-
tional probability generating function. Besides, for the particular case & = 2, we find a
simple expression for the two-steps ahead conditional probability function. Given that
the INARCH(1) process has the advantage that the conditional distribution one-step
ahead is a Poisson distribution, we propose its median and mode as forecasts one-step
ahead in Section Although the mode of a Poisson distribution has an easy analytic
expression, there is no expression for the median. Hence, by simulation study, which
does not present in this work, we propose an easy approximation of the median of a
Poisson distribution which works very well in terms of mean squared error and mean
absolute error. In Section 4.3 we show properties such as mean and variance limits of
the approximate median. We begin with the proof of weakly conditional consistency
of the approximate median, and then we get to prove strongly conditional consistency.
Further, we are able to demonstrate weakly consistency of the approximate median
and then we get to prove its strongly consistency. Although we obtain an analytical ex-
pression for the h—steps ahead conditional probability generating function in Section
it does not lead to a workable procedure to obtain the h—steps ahead conditional
probability function for i > 3, so, in Section 4.5/ we propose a recursive way to find the
h—steps ahead forecast for 1 > 2. In Section |4.6| we show a distribution which allows
to obtain one-sided and two-sided predictions intervals. In sections and 4.9\we
present Monte Carlo simulation studies that compare the behaviors of the proposed

forecasts.

For the models considered here, in Section [3.4] and Section we illustrate the

proposed and studied approaches with different real data sets, which were studied
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in these processes.

The outline of this thesis is as follows: in Chapter [2| the INAR(1) and INARCH(1)
processes are defined and a review of the main properties so far obtained in the
literature is carried out. In Chapter[3land Chapter[dwe present our contribution to fore-
casting in INAR(1) and INARCH(1) processes, respectively. Finally, Chapter |5|refers to

the main contributions of the thesis and topics that require further investigation.



Chapter 2

Integer valued autoregressive processes

Resumo

Neste capitulo apresentamos o modelo INAR(1) introduzido por McKenzie| [1985],
McKenzie [1988] e |Al-Osh and Alzaid [1987], baseado no operador thinning bino-
mial proposto por Steutel and Harn| [1979], para modelar e gerar sequéncias de pro-
cessos de valores inteiros dependentes. Além disso, mostramos as propriedades do
operador thinning binomial junto com alguns métodos de estimagdo e previsdo pro-
postos por [Freeland [1998] e [Freeland and McCabe| [2004] para o processo INAR(1).
Apresentamos ainda o processo INARCH(1), que leva em conta a sobredispersdo. Este
processo é um caso especial do processo Poisson condicional autorregressivo Autore-
gressive Conditional Poisson (ACP) introduzido por Heinen| [2003] e dado que ele esta
intimamente relacionados com o classico modelo GARCH(p, ¢), Ferland et al. [2006]
sugeriu chamar este processo como processo INGARCH(p, q). Weifs| [2010] se refere
aos processos INGARCH(p, 0) como processos INARCH(p). Finalmente, apresenta-

mos alguns métodos de estimagdo de parametros.

23
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Initial presentation

In this chapter we present the INAR(1) model introduced by McKenzie [1985], McKen-
zie [1988] and |Al-Osh and Alzaid| [1987], which is based on the binomial thinning
operator provided by Steutel and Harn [1979], for modeling and generating sequences
of dependent counting processes. Also, we exhibit the binomial thinning operator
properties together with some estimation and forecasting methods proposed in
Freeland [1998] and [Freeland and McCabe|[2004] for the INAR(1) process. On the other
hand, we present the Integer-valued first-order Autoregressive Conditional
Heteroskedasticity process INARCH(1), which takes into account the overdispersion;
this process is a special case of the Autoregressive Conditional Poisson (ACP) models
introduced by Heinen/[2003]] and since they are closely related to classical GARCH(p, q)
models, Ferland et al. [2006] suggested to refer to these models as INGARCH(p, q)
models. Weifs [2010] referred to the INGARCH(p,0) models as INARCH(p) models.

Finally, we exhibit some estimation methods.

2.1 The binomial thinning operator

Definition 1. Let X be a non-negative integer-valued random variable and « € [0,1]. The

thinning operator is defined by Steutel and Harn [1979] as follows:

X
aoX g Z Ni/
i=1
where N are independent and identically distributed (i.i.d) binary random variables, indepen-
dent of X, with P(N; =1) =a =1—P(N; =0).

The notation X < Y means that X has the same distribution of Y. The sequence

N1, Ny, ... is said to be the counting series of a o X.

Note that given X, a o X has binomial distribution with parameters X and «, denoted
as
xoX|X ~ Bin(X, ).
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So, the operator ‘o’ is known as the binomial thinning operator.

Different generalizations of the binomial thinning operator have been proposed by
relaxing some of the assumptions of its definition. |Latour| [1998] defined the thin-
ning operator such that the counting series Nj, N, ... of a o X are i.i.d. and indepen-
dent of X, but, in contrast to binomial thinning, they are now allowed to be any non-
negative integer-valued random variables (with mean « and variance ). Brannads et al.
[2002] suggested to allow dependence between the random variables of the counting
series N1, N, ... of o X. Kim and Park|[2008] proposed the signed binomial thinning,
allowing negative integers for the random variable X. For more details of the genera-
lizations of the binomial thinning operator see (Weifs [2008]. The properties of the bino-

mial thinning operator are presented in the next lemma.

Lemma 1. Let X,Y be non-negative integer-valued random variables. Let a, B be real cons-
tants in [0, 1] and suppose that the counting series of a o X is independent of the counting
series of w o Y and independent of X and Y. Then

i) 00X =0
i) 1o X=X
iii) & o (B o X) 2 (ap) o X.
iv) & o (X+Y)La o X +a oY ifXandY are independent
v) Ela o X| = aE[X]
vi) Var[a o X] = a?Var[X]+a(1—a)E[X]
vii) Ea o X|X] = a X
viii) Var[a o X|X] = a(1—a)X
ix) E[(a o X)?] = a®E[X?]+a(1—a)E[X]
x) E[(0 0 X)®] = a®E[X?]+3a?(1-a)E[X?] +a(1—a)(1—2a)E[X]

xi) E[X(a« o V)] = «aE[XY]
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xii) E[X(x o Y)?] = a?B[XY?]+a(1—a)E[XY]

xiii) E[(@ o X)(B o Y)] = «aBE[XY]

xiv) E(w o X)?2(B o Y)] = a?BE[X?Y]+a(1-a)BE[XY]

xv) Cov(e o X, B oY) =aBCov(X,Y)

The proofs of properties in Lemma [I| can be derived from Definition [1, using the well
known formulae for conditional moments and probability generating functions; more

details and other properties can be found in Silva and Oliveira|[2004] and Silva) [2005].

Weifs [2008] provided the following interpretation of the binomial thinning operator:
consider a population of size X at a certain time t. If we observe the same population
at a later point of time, say t + 1, then, the population may be shrinked, because some
of the individuals died between times t and t + 1. If the individuals die independently
of each other, and if the probability of dying in between t and t + 1 is equal to 1 — & for

all individuals, then the number of survivors is given by « o X.

2.2 INAR(1) formulation model

Definition 2. A discrete non-negative integer-valued process (Xi)i=1, Xt € Ny, is said to be

an INAR(1) process if it satisfies the recursion
Xy =wnoXi_q+ € fO?’ t>1, (2.1)

where o € [0,1], Ng = {0, 1, ...}, ‘o’ represents the thinning operator given in Definition
(€t)i=1, €& € Ny, is a sequence of non-negative integer-valued i.i.d. random variables with

mean ye and variance o2 and it is assumed that the counting series of a o X;_1 is independent

of €.

From the first two properties of Lemma [I| note that for & = 1, the process in the last
definition is a random walk and for & = 0 the process is the sequence (€;);>1. Further,
Al-Osh and Alzaid|[1987] and |Du and Li [1991] proved that for « < 1 a process (X;)¢>1
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satisfying Equation [2.1|is a second-order stationary process, i.e., a process with cons-
tant mean and variance, and such that the covariance between X; and X; ., depends
only on h, these processes are also known as weakly stationary processes or simply,
stationary processes. In this thesis we assume « € (0, 1) to guarantee stationarity of the
INAR(1) process.

The INAR(1) process allows different marginal distributions, including the negative
binomial and the generalized Poisson distribution (Weifs [2008]). However, the Pois-
son marginal distribution is the most commonly used. It is easy to show that if (€¢)>1
have Poisson distribution with parameter A, denoted as e¢; ~ Po(A), and if
Xo ~ Po(A/(1 —uw)), then the process (X;);>1 satisfying the recursion equation
is a stationary Markov chain with marginal distribution Po(A/(1 — «)) and transition

probabilities 7r;; = P(X; = j| X;_1 = i) given by

min{i,j} .

i = Z (;{) oF(1—a)'=F exp(=A) (]Ai_;)|

k=0

Thus, if ¢, ~ Po(A) then the process (X¢);>1 satisfying the recursion equation is
known as Poisson INAR(1) process, the process considered in this thesis. The marginal

mean and variance of the Poisson INAR(1) model are given by

E[X;] = Var[X,] = - A - 2.2)

From Equation 2.1] and using property viii) of Lemma [I| the conditional mean and

variance of X; given X;_; for the Poisson INAR(1) process are respectively
E[X:| X;—1] =aX;1+A and Var[X¢| X;_1] = a(l—a)X; 1 + A

Al-Osh and Alzaid [1987] showed that the autocovariance and autocorrelation
functions of Poisson INAR(1) model at lag k can be expressed as
(k) = Cov(X;_k, X;) = a¥4(0), for k=0,1,2,...,

v (k) k
k)= —==4«a", for k=0,1,2,...,

respectively. Note that the autocorrelation function, p(k), decays exponentially with

lag k.
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The INAR(1) model can be interpreted in different ways. In Freeland|[1998] the model
is interpreted as a birth and death process, i.e., each individual at time ¢ — 1 has pro-
bability « of continuing to be alive at time ¢, and, at each time ¢, the number of births
follows a Poisson distribution with mean A. Alternatively, he proposed to interpret
the model as an infinite server queue for which the service time is geometric with
parameter 1 — & and the arrival process is Poisson with mean A. Moreover, the INAR(1)
is also interpreted as a branching process with immigration, i.e., the outcome X; is
composed of the surviving elements of X; 1 during the period (¢t —1,t], « o X;_1, and
the number of immigrants during this period, €;. Each element of X;_; survives with
probability « and its survival has effect neither on the survival of the other elements
nor on the number of immigrants, see Drost et al.|[2008]. Then, we can interpret the
INAR(1) model as follows
Xt = o Xp_q + €t

Population at time t  Survivors of time t—1  Immigrations

2.3 Estimation methods for the Poisson INAR(1) model

Several estimation methods have been proposed for parameter estimation of the Pois-
son INAR(1) process. Jung et al. [2005] provided an extensive comparative study of the
Yule-Walker, Generalized Method of Moments, Weighted Conditional Least Squares,
Conditional Least Squares, Conditional Maximum Likelihood and Exact Maximum
Likelihood estimators of the INAR(1) model. In this work, we considered three of
them: Yule-Walker (YW) estimators, Conditional Least Squares (CLS) estimators and
Conditional Maximum Likelihood (CML) estimators.

Let X;, X5, ..., Xr be a time series generated according to the Poisson INAR(1) model,
defined by recursion equation with €; ~ Po(A). The most simple approach to pa-
rameter estimation is the YW approach. |Al-Osh and Alzaid [1987] proposed the first
order sample autocorrelation as estimator for the parameter «, and an estimator of A is
based on the first moment of the Poisson marginal distribution (2.2), leading to

T — -

. o (Xp = X7)(Xp1 — X ~ ~ %

Ry = 2= tT r)( - 12 T), Ayw = (1 —ayw) X1, (2.3)
21 (Xt = X1)
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where X7 = %Zle X;. Note that the ayy estimator can be negative and in this case
the estimate of a is not coherent. Du and Li [1991] proved that the YW estimators
are strongly consistent and Silva and Silval [2006] showed that @y is asymptotically

normally distributed.

Klimko and Nelson [1978] and |Hall and Heyde [1980] considered CLS estimation for
stochastic processes and as a particular case they obtained the parameter estimators
of a stationary Markov process which coincide with the parameters of the Poisson

INAR(1) process. The parameter estimates are chosen to minimize the sum

T
SN Xe—E (X | Fio)]’,

t=2

where Fr denotes the o—algebra generated by {X;, 1 < t < T}. From Equation
note that given Xj, ..., X;_1 we have that

E (Xt | Ft—l) = lXXt_l + A.

The resulting estimators of « and A, the parameters of the Poisson INAR(1), can be

derived explicitly and they have the following form

. S Xe X — e S X D 5 X1 A 1 T R
Xcrs = . ) ) T 3 , Aas = T_1 <Z Xt — s Z Xt—l) .
Zt:Z Xt—l T T-1 <Zt=2 Xt—1> t=2 t=2

(2.4)
Hall and Heyde [1980] and |Al-Osh and Alzaid [1987] proved that (&cys, /A\CLS) is strongly
consistent estimator of («,A) as T — oo for all (a,A) € (0,1) x (0,90). However the
Qcrs estimator can assume values outside the parametric space. Klimko and Nelson
[1978] and Hall and Heyde [1980] showed asymptotic joint normality of (s, XCLS).
Further, using the theorem of Klimko and Nelson|[1978], Freeland and McCabe| [2005]
provided a valid expression for the asymptotic covariance matrix of the CLS estima-

tors, and it is given below

Keps — K&
\/T ACLS 3)-/\[2(012‘1}’(,)\)/
)\CLS - )L
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with
1—a2+%(1—1x)2 A1+ )
Yyp = ’
: 1
AL+ ) A+A2<1+Z)

L, denoting convergence in distribution and N, (i, £) representing the bivariate nor-

mal distribution with mean vector p and covariance matrix .

Besides, |[Freeland and McCabe| [2005] showed that the distribution of the CLS estima-
tors is asymptotically equivalent to that of the estimators based on the Yule-Walker

equations; thus neither is asymptotically more efficient than the other.

YW and CLS estimators are quite attractive for practice, because they have closed form
and their asymptotic distribution is known. CML estimators are obtained by maxi-
mizing the logarithm of the conditional likelihood function and they usually need to
be computed numerically using optimization methods. However |Al-Osh and Alzaid
[1987] showed that, as expected, CML estimators have less bias.

The unconditional likelihood function based on a sample x;, x,, ..., xr generated

according to the Poisson INAR(1) process can be written as

A/ = a))

X!

T
exp[—A/(1—a)] nfqut,l(xt | X150, M),
=2

L(lx,)\,‘xl, Xo, oen, xT) =

where

min{ixt_l} (Xt—l) k(1 — ) ¥ =kpxk

fxaxe (xe|xi—1;,2,A) = exp(—A) k (x: — k)!

k=0

When x, is given, the conditional likelihood can be written as

T
Lo, A x1, Xp, ooe) X7 | 20) = ant|Xt—1(xt | xt—1; 2, ).
t=2

Thus, the conditional log-likelihood function is

T
O, A;x1, Xoy ooy X | %) = Z log (fx,x,_, (x| xe—1; 2, A)).
=2

The asymptotic distribution of the CML estimators was studied by Freeland and Mc-
Cabe [2004] as well as|[Franke and Seligmann![[1992], who showed that those estimators
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are asymptotically normally distributed. Additionally, Freeland and McCabe| [2004]
provided new expressions for the score function and the observed Fisher information,
an explicit expression for the expected Fisher information of the complete time series

is not yet available.

Freeland [1998] tested his estimation methods, namely, CLS, CML and GLS (gene-
ralized least squares) estimation methods, on some misspecified data. The author
simulated 200 series of length 100 using binomial thinning with parameter « = 0.5
and misspecifiying the arrival process by letting the distribution of €; be uniform over
{0, 1, 2}. He compared the sampling distributions of & and A using his estimates and
concluded that the CML estimates for « and A are biased.

2.4 Forecasting for the Poisson INAR(1) model

Consider the problem to predict the future value xr,, based on the observed series
up to time T. A few researchers have investigated how to produce coherent forecasts
for the Poisson INAR(1) model, i.e., how to produce integer-valued predictions. Silva
et al. [2009] provided a Bayesian methodology to obtain integer-valued point predic-
tions and Jung and Tremayne| [2006] proposed a computer intensive method for gene-
rating integer predictions. On the other hand, Freeland| [1998] considered two crite-
ria for finding optimal forecasts, the minimum squared error and minimum absolute
error of the forecasts. The squared error approach results in the conditional mean as
the optimal forecast, while the absolute error approach yields the conditional median
as the optimal forecast. The author considered the conditional mode as a third type of
forecast, which is found by selecting the outcome with the largest probability. Thus,
the h—steps ahead conditional distribution can be used to provide forecasts. |Freeland
[1998]] showed the following theorem, which furnishes s—steps ahead conditional dis-
tribution for the Poisson INAR(1) model.

Theorem 2.1. For the Poisson INAR(1) model defined by recursion equation
with €; ~ Po(A), the distribution of X1y, given Xr is the convolution of the binomial distribu-

tion with parameters o and Xy and a Poisson distribution with parameter A(1 —a™) /(1 — a).
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That is, the h-step ahead conditional moment generating function is given by

My, 30 (5) = [ exp(s) + (1= )] exp {A( 1__0;h>(exp(s)—1)}, SER,

where R denotes the set of the real numbers.

From the theorem above it is easy to see that the mean, variance and probability func-

tion of X7, | Xr are given by

h 1—0Ch
E[Xri | Xi] = "Xy + A , h=12,....

1—«a (2.5)

Var[ X7y | Xq] :ah(1—ah)XT+A(11__”f>, h=1,2,
. 1—ah\] ™R8 1—a" j_k(th)k(l—(xh)i_k
fXT+h|XT(]|Z/[X’A):exp|:_)\(1_tx):| lé) (k) [A<1_“>] (j—k)! ’
(2.6)

forj =0,1,2,....

Corollary 1. Let Fx, | x, denote the distribution function of X, | Xr and let F be the dis-

tribution function of a random variable W with Poisson distribution with mean ﬁ Then
D
Xew | Xe — W as h — .

That is
lim Fx,_ x,(x) = F(x),

h—o0

for all x at which F is continuous.

From (2.5) as h goes to infinity the conditional mean and variance respectively go to

the stationary unconditional mean and variance of the process. That is

A
1—a

].lm E[XT+h|XT] — hlin;OVar[XT+h|XT] —

h—o0

It is easy to see that the forecast X\""“(1) which minimizes the mean squared error given

the sample
e[ (20
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is the conditional mean X\"(h) = E (X715 | Xr]. Its analytical expression is given in

Equation (2.5).

Freeland| [1998] proved that the forecast X{""()1) which minimizes the expected abso-

lute error given the sample
E HXT+h - X(TMH)(h)‘ ‘ XT]

is the conditional median X™(h) = min{m P xp (| xr e, A) = %}, where

1_ gt x min{xr, I} X 1 a" I—k
FXTH:IXT(XMT;“’A):exp{_)\(l—a)}Z Z (k){A(l—a)}

(“h)k(l . (Xh)xT—kl_O =0
1=k

is the conditional distribution function of X, given Xr.

X

Additionally, Freeland|[1998] considered the conditional mode X{™¥(1) as a third type
forecast. The conditional mode is the point at which the probability function of X1,
given Xy is largest, i.e.,

X(TMd)(h) = argmax{fxﬂh | xp (X[xr; tx,)\)},
X

where fx_ | x,(x|xr; &, A) is given in equation (2.6).

Although the conditional mean X{(h) is the only with analytical expression of the
three forecasts considered by |Freeland| [1998]], almost always it provides non-integer
values. On the other hand, the conditional median X{"(1) and the conditional mode

XMY(h) are always integer values.

When a count-data time series exhibits overdispersion, i.e., the variance is greater than
the mean, the marginal distribution is not able to be described by the Poisson INAR(1)
model. Thus, it is necessary a model which takes into account the overdispersion. In
the next section we present the Integer-valued first-order Autoregressive Conditional
Heteroskedasticity Process INARCH(1), which takes into account the overdispersion;
this process is a special case of the Autoregressive Conditional Poisson (ACP) models
introduced by Heinen| [2003] and since they are closely related to classical GARCH
models, Ferland et al. [2006] suggested to refer to these models as INGARCH(p, q)
models. Weifs [2010] referred to the INGARCH(p, 0) models as INARCH(p) models.
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2.5 INARCH() formulation model

The INGARCH(p, gq) process with p > 1 and g4 > 0, p and g integers values, was
defined by Ferland et al. [2006] as integer-valued analogue of the classical Generalized

Autoregressive Conditional Heteroskedasticity (GARCH(p, g)) process.

Definition 3. A discrete non-negative integer-valued process, (X¢)s=1, Xt € Ny, is called an
INGARCH(p, q) process if it satisfies that

Xi| Fio1 ~ Po(pt)

e =A+ Zf:1 a; X+ 2}721 ‘5j,ut—j

where Fr is the sigma-field generated by {X;, 1 <t < T}, A > 0,0; 2 0,i = 1,...,p,
5] ZO,j: 1,...,q.

For particular case p = 1 and g = 0 it is obtained the INGARCH(1, 0) process with
ur = a1 X1 + A.|Weifs [2010] referred to this process as the INARCH(1) process. Thus
it is possible to define the INARCH(1) process as follows:

Definition 4. A discrete non-negative integer-valued process, (X¢)i=1, X¢ € No, is said to
follow an INARCH(1) process if X; conditioned on F;_1 is Poisson distributed with parameter
pr = aXs_1 + A, where A > 0and a > 0.

From definition above, it is easy to see that the conditional distribution of X; condi-

tioned on X;_1,..., Xj is equidispersed, i. e.,
E[Xt | Ft—l] = Var[Xt | Ft—l] = “l/lt.
However the unconditional distribution shows overdispersion,

E[X;] = E[E(X¢ | Fi—1)] = Blui],
2.7)
Var[X;| = E[Var(X; | Fj_1)] + Var[E(X; | F;—1)] = E[u¢] + Var[p].
Given that y; = aX;_1 + A and using Equation it is clear that the model is

overdispersed whenever « > 0 and the amount of overdispersion is an increasing
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function of a. In this thesis we assume a € (0, 1) to guarantee stationarity and overdis-
persion of the INARCH(1) process.

Heinen! [2003] and Ferland et al. [2006] demonstrated that the INARCH(1) process is a
stationary process whenever a < 1 with unconditional mean and variance given by

E[X:] = A and Var[X;] = A

T—a (—a)(1—a?) (28)

The autocorrelation function of the INARCH(1) model at lag k is expressed as
p(k) = Corr(X;_g, Xt) = of  for k=0,1,2,....

Zhu and Wang| [2011] showed that the INARCH(1) process has a unique stationary
distribution and is uniformly ergodic. In this work, using an easy argument of Markov
chains we prove that the stationary distribution of the INARCH(1) process exists and is
unique. However, an explicit expression for the marginal distribution 77; = P(X; =)
of an INARCH(1) process (X¢)t=1, Xt € Ny, is not known. Weif3| [2010] analyzed two

approaches to approximate the marginal process distribution:

v' First approach: Markov chain approximation

Given that (X;)t>1, Xt € N, has stationary distribution, it follows that

mj= lim 7 VijeN, N={1,23...}, (2.9)

n—o Y

where the n—step transition probabilities 71?]-

T = P(Xipn =j| Xe = 1) (2.10)
follow recursively via
0
T = Z ni,nfj_l. (2.11)
r=0

Equations 2.10| and 2.11] allow to determine marginal probabilities numeri-

cally choosing M, N € IN sufficiently large, they approximate

n—1

M
n ~ .
where T Z TCir 7T,

r=0

for arbitrary i,j € IN.
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v" Second approach: Poisson-Charlier expansion The probability generating func-
tion (PGF) of X; is defined as

Ox,(z) :=E [th]

and the factorial cumulant generating function (FCGF) of X; is defined as

Kx,(z) ==1log[Gx,(1+2)] = log{E [(1 - Z)Xt] },.

. . . Y K
the coefficients «(,) of the series expansion Xx,(z) = Z %zr are referred to as

r=1
. : dr,\’
factorial cumulants, with k) = Kf;é(z)

z=0
Using the relation between the PGF and the FCGEF,

o0

Z %(z - 1)1 7

r=1

Gx,(z) = exp [%Xt(z — 1)] = exp

the author proposes to approximate the PGF of X; as

m

G, (2) ~ exp [Z 5z - 1)?] ,

r=1

where the factorial cumulants «,) are obtained in terms of cumulants x, from the
recursion equations

koy=#k1 and k, = a'K.

Weifs [2009] provided the following recursive way to obtain the cumulants of the
INARCH(1) model. Let My, (s) be the moment generating function of X;, the

cumulant generating function is defined as

kx,(s) := In(My, (s));

Q0

. . . . K
the coefficients x, of the series expansion xx,(s) = Z —:sr are referred to as
=l
. d"xx, (s
cumulants, with x, = ;(St( )
s=0

The first four cumulants for the INARCH(1) process are equal to

k1 =E[X{] =7, 1 =Var[X;], x3=E[(X;:—0)%, x4 =E[(X;—0)* —3x3.
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The author demostrated that the cumulants of the INARCH(1) process can be

determined recursively from

A L=
T kn=—(1—a") Zs(n,])Kj for n>=2, (2.12)

j=1

K1 =

where s(1, j) are the Stirling numbers of the first kind, i.e., the coefficients of x/ in

the polynomial (x), = x(x —1)--- (x —n+1),
(x)n = Z S(n/j)xj/
=0

the coefficients s(n, j) are determined recursively by
s(n,0)=0, s(n,n)=1 for n=>=1,

s(n+1,j)=s(n,j—1)—ns(n,j) for j=1,...,n and n =1

From Equation it is easy to see that

K A Ky = A
Yo P —a)(1—a?)
_ 1+242 d ~ 1+6a%+5a%+ 6a°
A T (T O I

Note that x; and x; coincide, respectively, with the unconditional mean and

variance given in Equation [2.12]

2.6 Estimation methods for the INARCH(1) model

In this section we present the same three estimation methods considered for the Pois-
son INAR(1) model. The YW and CLS estimators for the INARCH(1) process have
the same expressions than the YW and CLS estimators of the Poisson INAR(1) model;
these expressions are given in formulas and (2.4), respectively. Although the

CLS estimators of &« and A have the same expressions for the Poisson INAR(1) and
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for the INARCH(1) models, and the parameters have a joint asymptotic normal distri-
bution for both models, their asymptotic covariance matrices are different. Weifs|[2010]
showed that

Neps — &
VT | B N(0,Z00),
Acis — A
where
2L A1) + 120 ] A1) — L2
5> T—a 1+a+a? T+ata?
wA (14-2a)a® (14-2a2)
s o 4
AQl+a) = 1+a+a? (1-a%) [1 + m]

Let x1, x5, ..., xr be a sample generated according to the INARCH(1) process. The un-

conditional likelihood function can be expressed as

T
Lo, A;xy, X, -, 1) = gx,(0) | [ &, (0 [ i, A)
t=2
T
B (axi_1 + A) exp(—axi_s —A)
- gXt(xl) E xt! 7

where gx, (x;) represents the probability function of the marginal distribution of X; and
XX, 4 (x¢]x:1; 2, A) denotes the probability function of the Poisson random variable

with parameter ax; ; + A.

On the other hand, the conditional log-likelihood function is given by

T
0o, A;x1, Xpy o ony X7 | 20) = Z log(gX”XH(xt|xt_1;1x,)t))

t=2

T (2.13)

= Z [xt log(ax; 1 +A) —ax,; — A — log(xt!)}.
t=2
From Equation it is clear that the scores for & and A are, respectively,
o0, A Xy, Xay oo, X0 | X)) o XXt 4
= =X |,
o =\ axi + A
- (2.14)

ol(a, A x1, Xp, oo, X1 | X0) :Z X; 1)
oA = KX+ A
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The CML estimates of a« and A have to find by numerically maximizing
l(a,A;x1, X, ..., X7 ] x1). The observed Fisher information 7, , is obtained from Equa-
tion (2.14), J, 1 can be expressed as
xtxt 1 o XiXpo1
7 Zt =2 (ax;_1+A)?2 Zf =2 (ax, 1+A)?
/)L =
! Z R Z Xt
t=2 (ax;_1+A)2 t=2 (ax;_1+A)2
An expression for the expected Fisher information Z, , = E[J, »] is not available yet.

Zhu and Wang| [2011] found the asymptotic distribution for the CML estimators; the
authors proved that

Kem — &
T ACML 2, N;(0, I}).
ACML - )L



Chapter

Forecasting for the Poisson INAR(1)

model

Resumo

Neste capitulo estudamos as previsdes propostas por Freeland| [1998] no modelo
INAR(1) e apresentadas na secao O autor propde a média, a mediana e a moda
da distribui¢do condicional h—passos a frente como previsdes h—passos a frente. Em-
bora a média condicional seja a tinica das trés previsdes que tem expressdo analitica,
muitas vezes é um valor ndo inteiro, enquanto que a mediana e a moda condicionais
sdo sempre valores inteiros ndo negativos. Comegamos o capitulo apresentando uma
expressdo analitica para o erro quadratico médio das previsdes h—passos a frente e a
seguir concentramos nossa aten¢do nas previsdes um passo a frente. Fornecemos a
expressdo analitica do valor esperado da parte inteira da média condicional um passo
a frente e estudamos por simulacdo de Monte Carlo o comportamento de trés pre-
visdes um passo a frente: parte inteira da média condicional, mediana condicional
e moda condicional considerando pardmetros conhecidos e desconhecidos. No caso
de parametros desconhecidos usamos os métodos de estimacdo Yule-Walker, minimos
quadrados condicionais e méxima verossimilhanca condicional. Adicionalmente estu-

damos por simulagdo de Monte Carlo o poder preditivo do modelo Poisson INAR(1)

40
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sob modelagem incorreta dos dados, modelamos incorretamente o processo de chegada
como tendo distribui¢do uniforme discreta no conjunto {0, 1, 2, 3}. No final do capitulo
ilustramos as metodologias estudadas com dois conjuntos de dados reais que ja tém

sido usados neste processo.

Initial presentation

In this chapter we study the forecasts for the Poisson INAR(1) process proposed by
Freeland [1998] and presented in Section The author proposed the mean, median
and mode of the h—steps ahead conditional distribution as h—steps ahead forecasts.
Although the conditional mean is the only of the three with analytical expression, it
is most times a non-integer value while the conditional median and mode are always
non-negatives integer values. We begin the chapter presenting an expression for the
mean squared error of the forecasts h—steps ahead, after that, we focus on the one-step
ahead forecasts. We provide an analytic expression for the expected value of the integer
part of the one-step ahead conditional mean and we study by Monte Carlo simulation
the behaviors of the three one-step ahead forecasts: integer part of the conditional
mean, conditional median and conditional mode considering known and unknown
parameters, for unknown parameters we use YW, CLS and CML estimation methods.
Additionally we study by Monte Carlo simulation the predictive power of the Poisson
INAR(1) model under misspecifed data, we misspecify the arrival process by letting
its true distribution be uniform over {0, 1, 2, 3}. At the end of this chapter we illustrate
the studied approaches with two different real data sets, which were studied in these

processes.

3.1 Mean squared error of i1—steps ahead forecasts

Given Xj, X,, ..., Xr a time series generated according to the Poisson INAR(1) process,
Freeland|[1998] proposed to predict a future value Xr., by using X™(h), X™(h) and
X™MU(h), as presented in Section From Equation it is clear that the forecast
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X{(h) = E[X7.|Xr] almost always is a non-integer value. Thus, based on it we

consider the integer-valued forecast

XE(h) = | XMUI) | = | E[Xrpn] Xi] | = PhXTJFA(ll__ﬂ;h)J’

where |a| = max{m € Z : m < a} is known as the floor of a or the integer part of a.
Note that, for 1 = 1, X¥(1) = |a X7 + AJ.

(Mn)

The integer-valued forecasts X\™(i), X (h) and X™¥(h) can be compared by using
the Mean Squared Error (MSE) or the Mean Absolute Error (MAE). Since they all de-
pends on X, let g(X;) denote any of them, i. e., g(Xy) is equal to X\™(1), X (1) or
X™MY(h). The MSE of g(X7) is given by

B[ (Xrn — 2(X0)7],

and the MAE of ¢(Xr) is defined by

E|| X0 — g(Xr)]| (3.1)

The next proposition provides an expression for the MSE of the forecasts X\™(1), X™(1)
and X™MY(h).

Proposition 1. If g(Xr) denote X\™(h), X™(h) or XMU(h), forecasts of Xt then the
MSE of g(Xr) can be written as

E[(XTJrh—g(XT))z] = 1f“+ (1ﬁ“>2—2E{g(XT){D¢h<XT—1/_\“> +1i‘““

+E[g(X:)?].

Proof. Let g(X7) be a forecast of Xr., depending on Xr, g(Xr) being equal to X\™(h),
X™MV(1) or X™M(h). Then the MSE of ¢(X;) can be written as

E{E [X%H: —2Xr8(Xr) + g(X1)? ‘ XT} }
B{E[X} /%] ~ 28X )E[Xr /] + (%12
E

{Var [ X140l Xr] + B[ X7 4| Xq] * —2g(Xr)E [ X7 0] Xr]

E[(X74n — g(XT))Z}
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+38 (XT)z}

Ll
= E{th(l —och)XT—i—A<11 _0; ) +

- ZS(XT)

! ! 1-af 2h
=a"(1-a")E[X7] + A T ) te E

Ao A A2
2 E|X;—
+ 1—a { ’ 1—&}4_(1—04)

—ZE{g(XT) {th (XT - 1;) + 3 AIJ } +E|g(Xr)?]

_ 1’_\lx+ (1ia)2+—2E{g(XT)[ah(XT—1/_\a> +1ia”

+E [g(XT)Z].

The forecast X\™(1) = aX; + A satisfies that

A A A
_ y (M) - — _ —
E[XT+1 X7 (1)] T “ElaXr+A] = — —ar——+A =0,

but the same is not true for the forecast X\*(1) = |aX; + A|, since

A

el -] -

— E[|aXr +Al].

In the following proposition we present the expression to obtain E[| « X + A [].

Proposition 2. Consider the forecast X\*(1) = E[|aXr + Al] of Xri1. Then its expected

value can be expressed as

E[lax; + AJ) = p-Ut m[rﬂamﬂrﬂ) I (jan], 1)

(Tapy +17-01 " 2™ (amal - 1) (fan] - 1)1’

where ay, = (M —A)/a, u =A/(1—a), [a]| = min{m € Z : m > a} and T'(a, x) represents

the incomplete gamma function, defined by § s*~le=ds.
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Proof. The event [[(xXT +A| = m} can be written as

[[ocXT—F)LJ:m} = méaXT+A<m—|-1}

_ m—A<XT< m—)x—}—l}
| o

— -am <XT <bmi|

wherea,, = (m—A)/aand by, = (m—A+1)/a = a,, + 1/a. Depending on the values
of  and A, a,, and by, can be integers or not, so we have the following possibilities

ror-

[amJ<XT<[bmJ—1}, if aneZ, buiZ

[ | -[amjéXT<[bmJ], if a,€”Z, b,cZ
aXr+Al=m| =<

lam] +1 < Tg[bmj—l], if an¢Z, bucZ

X
:lamJ +1<Xr < [bmJ], if an¢Z, bné¢Z.
Then,

Xy + AL = m| = [Lan] = Iz (a) +1 < X; < |b] — Lz(bm) |
- [k(am) +1<Xr < k(bm)],

where k(x) = |x]| — Iz(x), i.e., k(x) is the greatest integer less than x and I4 denotes
the indicator function of A.

Using that X; ~ Po(u), u = A/ (1 —a), and the last equation, we obtain the following
expression for the probability distribution of |a Xy + A|.

P([aXT + A= m> = P<k(am) +1< Xr < k(bm)>

Furthermore,
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v Ifm < |A] -2, then k(by,) <0

m<|A-2<A-1 = m<A-1 = m—T)H—l<O
{m_TMJ—IZ(m_TAH)<—1 = k(by) <-1<0

v Ifm=|A| -1, thenk(b,) <0

IA]— A
©

m=|A-1 = b,= <0 = k(by)=|bm|—Iz(by) <0

If k(b)) = 0, then |by,| = Iz(by) = 0, therefore by, ¢ Z,0 < by, < 1and by, < 0;

since this is a contradiction, thence k(b,,) < 0

v If m = |A|, then k(by,) =0

m=|A = bmzmjj#>0 = |bu| =0,

so, the only case in which k(by,) = |bm| — Iz(bm) could be negative is when
|bm]| = 0 and Iz(by,) = 1 and this happens if and only if b,, = 0; this implies
A — [A] = 1 and this is impossible, thence k(b,,) = 0.

v Ifm>=|A|+1, thenk(by,) =0

m—)\+12

AM+1>A-1)+a = m=A-1)+a 1

Therefore,

0 if m<|A]-1,
P([IXXT + Al = m) = Kk(bn) {‘u]' exp(—u)

S :

} if mz=|A|
j=max{k(a;)+1,0}

It is clear that

V a1 =(m+1-A)/a = by

v Form = |A] +1wehavek(ay) +1 = [an]
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b =h () <2 () <

Hence we can express the probability function of |aX; + A| as

0 if m<|A]-1,
[a[/\J+1]_1 .
wexp(—p)] . _
P([zxXTJr/\J — m) = ];) { i } if m=|Al
[am41]-1 i
3 [“JGL,(_“W if m>|A]+1.
j=Tan] I

Then, the expected valued of |« X + A| can be expressed as

[”[AJ+1]_1 j [am+1]-1 j
EllaX, + 4] = 5 AFeREm) Z 2 —m” xp(1)
=0 J! A =[]

([alAJ + 1 X Z [ ”m+1] 7/‘) F([am],y)
([“MJ + 1] 1) m=|A|+1 ([aerl] - 1) ([am] - 1)! ,

where the last equation follows from the relation between the Poisson distribution

function and the incomplete gamma function

b exp(— rv+1,
=3 F p'( mo_ (; 2

3.2 Monte Carlo results for forecasting

In order to compare the performances of X{*(1), X¥(1) and X™¥(1) as forecasts of
Xr11, we present some results of a Monte Carlo simulation that compares the square
root of MSE, referred to as the Root Mean Square Error (RMSE), and the MAE for these
forecasts, considering known and unknown parameters. We used 10000 Monte Carlo
replications and considered different values of « and A, namely, « = 0.1, 0.5, 0.9 and
A =0.5,1,3,5. The sample sizes considered are T = 25, 50 and 100.



CHAPTER 3. FORECASTING FOR THE POISSON INAR(1) MODEL 47

In the first scenario we consider known parameters. We generate R = 10000 indepen-

dent values of X; according to Po(y) and then, given X;, we generate X, using equation

(2.1), i. .e.,
2V =Po(u) --» xV=Bin(x",a)+Po(A)

A =Po(u) --» x¥ =Bin(x{",a) +Po(A)

where p = A/ (1 —a).

Using Equation (3.1) and Proposition [l with i = 1 we obtained the simulated MAE
and the simulated RMSE of conditional median, conditional mode and integer part of
conditional mean, as forecasts of X,. The results are presented in table Note that,
for « = 0.1 and & = 0.5 the three forecasts were competitive in terms of RSME and
MAE, and for a« = 0.9 the conditional median and conditional mode were competitive
and they were a little better than the integer part of conditional mean in terms of RMSE
and MAE.

In summary, when the parameters are known, the three forecasts: conditional median,
conditional mode and integer part of the conditional mean were competitive, the in-
teger part of conditional mean being a little worse for « = 0.9, in terms of RMSE and
MAE.

In the second scenario we consider unknown parameters. We simulated Monte Carlo
samples X;, X, ..., Xr, Xr,1 and we estimated the parameters « and A for each sample
using the three estimation methods introduced in Section[2.3} For each sample, we veri-
tied if the parameter estimates are in parametric space; if it does not happen, then, we
discarded the sample and substitute it by another Monte Carlo sample; for each valid
sample we found the forecasts X\"(1), X¥(1) and X{™¥(1) using the estimates of a
and A provided by each estimation method. After that, we calculated the simulated
MAE and the simulated RMSE of the three forecasts.

Repeat until r = 10000

1. x\” ~Po(u)
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Forecast
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Table 3.1: RMSE and MAE of X{®/(1), X™(1) and X™¥(1) for different values of

known parameters « and A.
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2. xir) = Bin(xir_)l,a) +Po(A),t=2,...,T+1

() ,.(r) (r) ,.(r)
-= xl ,xz ,...,XT ,xT+1

3. x;r)/ x(f)/ R x(Tr> - (ayw/ /A\YW)/ (ECCLSI XCLS)/ (aCML/ /A\CML)

4. It (ayw/ }\\YW)/ (aCLS/ ;\\CLS) € (0; 1) X (0, OO)
- X0, XM and XMU(1)0; 7 =r 41 and return to step 1
Else

--» return to step 1 without calculating forecasts and without updating r.

Tables 3.2] and .3 show the RMSE and the MAE of these forecasts. For A = 0.5, 1,
a« = 0.1, 0.5 and for all sample sizes considered the three forecasts and the estima-
tion methods considered were competitive, the conditional median being sightly bet-
ter than the others, in terms of RMSE and MAE. For A = 0.5,1a =09and T = 25, YW
estimators were worse than CLS and CML estimators, CML being slightly better than
CLS, in terms of RMSE and MAE, while for T = 50 and T = 100 the conditional mean
and mode were competitive and a little better than integer part of conditional mean,
in terms of RMSE and MAE. On the other hand, for A = 3,5, « = 0.1, 05, T = 25 and
T = 50 the three forecasts and the estimation methods considered were competitive,
while for A = 3,5, « = 09 and T = 25, YW estimators were worse than CLS and
CML estimators, CLS being slightly better than CML, in terms of RMSE and MAE. For
A=3,5a =09and T = 100 the estimation methods and the forecasts considered

were competitive, in terms of RMSE and MAE.

In summary, for large values of « and small sample sizes YW estimators were worse
than CLS and CML estimators, CLS being slightly better than CML, in terms of RMSE
and MAE, for small and moderate sample sizes the conditional mean was slightly bet-
ter than the others. For large sample sizes the three forecasts: conditional median,
conditional mode and integer part of the conditional mean, and, the three estimation
methods considered were competitive, in terms of RMSE and MAE. Therefore, we sug-
gest to use the conditional median as forecast and CLS estimators, because they have
explicit expression while CML are calculated using numerical maximization and CML

estimators are only a little better than CLS estimators, in terms, of RMSE and MAE.
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T =25 T =50 T =100

Error Forecast | Estimator 14 14 14
01 05 0901 05 09|01 05 09|
”””” xM1) ] YW 089 096 131|090 095 1.14 090 096 091
XM(1)| CML |0.89 095 123|089 095 1.10|0.90 096 0.90
XM(1)| CLS |0.89 096 127|090 095 1.12]090 096 0.90
CXMI1) | YW 091 1.00 132092 098 1.14[092 097 091 |
RMSE | X™(1) | CML |091 098 123|092 096 1.10|0.92 096 0.90
XMY(1) | CLS 092 1.00 127|092 098 112|092 097 0.90
P X)) | YW 092 1.07 141092 1.06 127[093 1.07 1.07
XP¥(1) | CML 092 1.05 137|092 1.05 125|093 1.07 1.06
X¥(1) | CLS 092 1.06 138|092 1.06 125|093 1.07 1.06
A=05pmmmor xM1) ] YW 059 067 078|056 067 072|056 0.64 0.70
XMY(1) | CML | 059 0.66 068|056 0.66 0.68|056 0.64 0.67
XM(1) | CLS |059 0.66 072|056 067 0.69|0.56 0.64 0.68
XMU1) | YW | 057 068 078|055 0.68 071|055 0.64 0.69 |
MAE | X™U(1) | CML | 057 0.66 0.68|0.55 0.67 067|055 0.63 0.67
XMY(1)| CLS |057 0.68 073|055 0.68 0.69 | 0.55 0.64 0.68
CX¥(1) | YW 057 073 088055 0.74 084055 071 0.82 |
X¥(1) | CML |057 072 085|055 073 0.83|055 071 0.82
X¥(1) | CLS |057 072 086|055 073 0.83|055 071 0.82
XM™Y(1) | YW | 111 131 1.80|1.07 1.30 1.59 | 1.06 128 1.36
XM1)| CML | 112 130 1.68|1.08 1.29 154|106 127 1.34
xM)1)| cLs |112 131 174|108 130 157|106 128 1.35
[ xMI1) | YW | 122 135 180|120 134 159|117 132 136
RMSE | XM)(1) | CML |122 134 168|120 133 154|118 1.31 1.34
XxM)1)| CLS [1.23 135 174|120 134 157|118 132 1.35
X)) | YW 123 139 187|121 139 168|118 137 145
X¥1) | CML |124 138 179|122 138 163|119 137 1.44
X¥1) | CLS |124 1.38 1.81 121 138 164|118 137 1.44
Aslip==-- xM1) | YW |080 098 1.18|079 095 1.09|078 094 1.06
XM(1)| CML |0.81 098 1.06|079 095 1.04|0.78 094 1.04
XM(1)| CLS 081 099 1.12[079 095 1.07|0.78 094 1.05
XMy | YW | 085 1.00 1.18|0.86 097 1.09|0.84 096 1.05
MAE | XM)(1) | CML [0.86 099 1.06|0.86 097 1.04|0.84 095 1.04
XMY1)| CLS |0.86 1.00 1.12|0.86 098 1.06|0.84 096 1.05
CXF(1) | YW 086 1.03 125|087 099 116|084 099 1.12 |
X¥1) | CML |087 1.02 117|087 099 112|085 099 1.12
X¥(1) | CLS |0.87 1.03 119|087 099 1.13|085 1.00 1.12

50

Table 3.2: RMSE and MAE of X{(1), X™¥(1) and X{"(1) for different values of « and
A =0.5, 1, using three estimation methods, YW, CML and CLS, for sample sizes T = 25,

50 and 100.
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T =25 T=50 T =100

Error Forecast | Estimator o 114 ®
01 05 09|01 05 09|01 05 09|
7777777 xM1) | YW |1.89 219 3.00|1.87 223 379|185 209 2.13
XM)1) | CML |1.90 218 2.82|1.87 221 374|185 208 210
XMY(1) | CLS |190 220 289 |1.87 223 376|185 209 212
CXM1) | YW 194 222 300|192 225 379|189 211 213
RMSE | X™(1) | CML |195 220 282|192 224 374|189 211 210
XMU1) | CLS | 195 223 290 |1.92 225 376|189 211 212
D XE(1) | YW | 194 225 304|192 228 382[1.89 214 219
X¥(1) | CML | 196 223 288|193 227 377|189 214 215
X¥(1) | CLS |195 225 294|192 228 379|189 214 217
A=Spooooor XM | YW | 147 174 209|142 172 196|143 169 192 |
XMY1) | CML | 149 174 193|142 170 190|144 1.69 1.90
XM1)| CLS |148 175 200|142 1.72 193|143 169 1.90
(XMY1)| YW | 149 175 2110|144 172 196|145 1.70 191 |
MAE | XMU(1) | CML | 150 1.75 1.93|145 171 190 | 146 1.70 1.90
XM1) | CLS |1.50 1.77 2.00 145 1.72 193|145 170 190
D X®(1) | YW | 149 176 213|144 174 200|146 172 1.95 |
X¥(1) | CML | 150 176 199|145 173 193|146 171 1.92
X¥(1) | CLS |150 1.77 2.04|145 174 195|146 172 1.93
XMU1) | YW | 244 292 416|240 2.80 3.80|239 272 228
XM)1) | CML |246 290 393|241 279 371|239 271 223
XM(1) | CLS | 246 292 403|240 2.80 3.75|239 272 226
 XMY1) | YW | 248 294 416|244 282 380|242 274 228
RMSE | X™M(1) | CML |[250 292 393|244 281 371|242 273 223
XM1) | CLS |250 294 4.03|244 282 375|242 274 226
X)) | YW 248 296 419|244 285 383|242 276 234
X¥(1) | CML |250 293 397|245 283 374|242 275 228
X¥(1) | CLS |250 296 4.06|244 284 378|242 276 231
AsSpooooor XMy YW [ 1.92 228 269|189 219 260|187 213 248
XMY1) | CML |1.94 225 246|189 218 250|187 213 245
XM(1) | CLS |193 228 255|1.89 218 255|187 213 247
CXMY1) | YW | 194 229 269|190 219 2.60|1.87 214 248
MAE | XMU(1) | CML | 196 227 246|190 218 250|187 214 245
XMU1) | CLS |195 230 256 |1.89 219 255|187 214 247
X)) | YW 194 230 271190 221 262|187 216 252
X¥(1) | CML |1.96 228 250|190 219 252|188 215 248
X¥(1) | CLS |195 231 258|190 220 257|188 216 250

Table 3.3: RMSE and MAE of X{™(1), X™¥(1) and X{"(1) for different values of « and
A =3, 5, using three estimation methods, YW, CML and CLS, for sample sizes T = 20,
50 and 100.
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3.3 Monte Carlo results for perturbation study

In order to study the predictive power of Poisson INAR(1) model under misspecified
data, we simulated 10000 series of lengths T = 25, 50, 100, 200, 300 and 500 using
binomial thinning with parameters & = 0.1, 0.5 and 0.9 and misspecifying the arrival
process (€¢)s>1 by letting its distribution be uniform over {0, 1, 2, 3}. So, the distribu-
tion of €; does not depend on unknown parameters. Freeland|[1998] states that for the
misspecified model, the parameter A can viewed as the mean parameter of €;, however
it is not used to specify the distribution of €;, thus, estimates of A are estimates of the

mean of ¢;, this is 3/2.

We calculated the RMSE and the MAE of conditional median using the true model and
the misspecified model. The true model corresponds to the case when we estimate
the parameter « taking into account that €; has uniform distribution over {0, 1, 2, 3},
in this case, the CLS and CML estimators of « are different of the CLS and CML es-
timators of & given in Section while the YW estimator of « does not change. For
the true model we found X{""(1), the conditional median of the distribution given by
the convolution of a binomial distribution with parameters « and Xr with the uniform
distribution over {0, 1, 2, 3}. The misspecified model corresponds to the case when we

estimate « and A assuming that the series satisfies the Poisson INAR(1) model.

Table 3.4 shows the RMSE and the MAE of conditional median for the true and mis-
specified models. PMy,, denotes the misspecified model with conditional distribution
given by the convolution of the binomial distribution with parameters &y and X; with
the Poisson distribution with parameter /A\YW, and UMy, denotes the true model with
conditional distribution given by the convolution of the binomial distribution with pa-
rameters ayy and X; with the uniform distribution over {0, 1, 2, 3}. Similarly, PMc;
denotes the misspecified model with conditional distribution given by the convolution
of the binomial distribution with parameters &c;s and X; with a Poisson distribution
with parameter XCLS, and UM, s denotes the true model with conditional distribution
given by the convolution of the binomial distribution with parameters ey and X
with the uniform distribution over {0, 1, 2, 3}. Analogously, PMc,,; denotes the mis-

specified model with conditional distribution given by the convolution of the binomial
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distribution with parameters &y, and X; with the Poisson distribution with parame-
ter /A\CML, and UMc,,; denotes the true model with conditional distribution given by the
convolution of the binomial distribution with parameters &y and Xr with the uni-
form distribution over {0, 1, 2, 3}. Here &yw, &cs, Xcumr are the estimates of a obtained
from YW, CLS and CML methods, respectively, and /A\YW, /A\CLS, XCML are the estimates of
A using YW, CLS and CML methods.

Note that for CLS and CML estimators, the RMSE and the MAE of true model are very
close to RMSE and MAE of the misspecified model, respectively. The same happens
for YW estimators when a« = 0.1, while for &« = 0.5 and &« = 0.9 the RMSE and the MAE
of the misspecified model are smaller than the RMSE and MAE of the true model for
small values of T and the RMSE and MAE are close as T increases. This means that the

predictive power does not deteriorate even when the misspecified model is used.
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3.4 Applications

We apply the presented methodology to two data sets, both of which having been ob-
tained from the Workers Compensation Board (WCB) of British Columbia, Canada.
The WCB provides disability insurance for more than 130,000 employers in British
Columbia. Every year the WCB receives about 200,000 new claims. These data sets
were already investigated by [Freeland|[1998]]. Each of the two series here studied con-
tains 120 monthly counts of claimants collecting Short Term Wage Loss Benetfits from
the WCB from January 1985 to December 1994. All the claimants are male, between
the ages of 35 and 54, work in the logging industry and reported their claim to the
Richmond service delivery location. The distinguishing difference between the two
series is the nature of the injury. The first data set relates to claimants who have had
soft tissue injures, such as contusions and bruises, while the second data set relates
to claimants with dislocations. We refer to the two data sets as SOFT INJURES and
DISLOCATIONS respectively.

Clearly these data may be considered as INAR(1) processes. That is, at any month
t, the observed number of claimants, X;, can be viewed as the sum of the number of
claimants from the previous period surviving in the claims queue, « o X;_1, and the

number of newly injured workers €;.

Data Minimum Count | Maximum Count | Median | Mean | Variance
SOFT INJURES 4 17 9 9.825 9.478
DISLOCATIONS 0 4 1 0.917 0.760

Table 3.5: Summary Statistics for SOFT INJURES and DISLOCATIONS data

Figure and Figure provide the time series plots of SOFT INJURES and
DISLOCATIONS data as well as their corresponding sample autocorrelation and sam-
ple partial autocorrelation functions. A summary of their simple descriptive statis-
tics is reported in Table Note that both data sets have mean near variance; for
the SOFT INJURES data the sample partial autocorrelation function is consistent with
the INAR(1) model and, for the DISLOCATIONS data, from the sample correlation

and partial autocorrelation functions, it becomes clear that a first order autoregressive
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model seems to be reasonable.

In order to compare the different forecasts, we found the one step ahead point predic-
tion of monthly claims count from May 1993 to December 1994. Table 3.6/ and Table
B.7 present the point forecasts based on the mean, median and mode of the conditional
distribution of Xr,; given Xr as well as the CLS and CML estimates for « and A for
SOFT INJURES and DISLOCATIONS data, respectively. For SOFT INJURES data, note
that the MSE and MAE of the integer part of conditional mean x{"(1) are a little less
than the MSE and MAE of conditional median and conditional mode, i. e., the integer
part of conditional mean is a little better than the other forecasts. For DISLOCATIONS
data, note that, using CLS estimates, the conditional median is better than conditional
mode and integer part of conditional mean, while using CML estimates the conditional
median and mode are competitive and they are better than the integer part of condi-

tional mean.
Furthermore, note that for the SOFT INJURES data

MSE of x{*)(1) / MSE of x™%(1) = 4.85/5.2 ~ 0.93
and for the DISLOCATIONS data
MSE of x¥(1) / MSE of x"(1) = 0.4/0.75 ~ 0.53,

so, in the data set where the conditional median and mode are better they produce
a reduction of 46% of the MSE, while in the data set where the integer part of the
conditional mean is better it produces only a reduction of 7% of the MSE. Then, it can

be concluded that the conditional median is better than the other two forecasts.
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Figure 3.1: Monthly counts of SOFT INJURES data, January 1985-December 1994 and

sample autocorrelation and partial autocorrelation functions.
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Figure 3.2: Monthly counts of DISLOCATIONS data, January 1985-December 1994 and

sample autocorrelation and partial autocorrelation functions.
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Chapter

Forecasting for INARCH(1)

Resumo

Comecamos este capitulo apresentando o operador thinning Poisson junto com suas
propriedades. Na secdo apresentamos uma forma alternativa de definir o pro-
cesso INARCH(1), baseado no operador thinning Poisson. Na sec¢do 4.3 fornecemos
uma prova da existéncia e unicidade da distribui¢do estacionaria marginal do processo
INARCH(1), apresentamos expressdes analiticas para o r—ésimo momento ordindrio
marginal, para a média e a varidncia condicional e para a fungdo geradora de probabi-
lidades h—passos a frente. Além disso, para o caso particular 1 = 2, encontramos uma
expressdo simples para a fungdo de probabilidade condicional dois passos a frente.
Dado que a distribuig¢do condicional um passo a frente do processo INARCH(1) é uma
distribuigdo Poisson, nés propomos sua média e sua moda como previsdes um passo a
frente na segdo Embora a moda de uma distribui¢do Poisson tenha uma expressao
analitica simples, ndo existe uma expressdo para sua mediana. Portanto, usando es-
tudos de simulacdo nado apresentados aqui, nés propomos uma aproximacao simples
da mediana da distribui¢do Poisson, que tem um bom desempenho, em termos de
erro quadréatico médio e de erro absoluto médio. Na segdo apresentamos pro-
priedades tais como média e varidncia limites da mediana aproximada. Comegamos

provando consisténcia condicional fraca da mediana aproximada estimada e entdo

60
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conseguimos provar sua consisténcia condicional forte. Também, provamos consisténcia
fraca da mediana aproximada estimada e entdo conseguimos provar sua consisténcia
forte. Embora ndo tenhamos uma expressao analitica vidvel para a fun¢do de proba-
bilidade condicional h—passos a frente para & > 3, na se¢do 4.5/ propomos uma forma
recursiva de obter a previsdo h—passos a frente para h > 2. Na secdo 4.6|apresentamos
uma distribui¢do que nos permite obter intervalos de previsdo unilaterais e bilaterais.
Nas secoes [£.7] 4.8 e [£.9 apresentamos simulagdes de Monte Carlo que comparam os
desempenhos das previsdes propostas. No final do capitulo ilustramos as metodolo-
gias propostas usando dois conjuntos de dados reais que ja tém sido considerados

neste processo.

Initial presentation

We begin this chapter defining the Poisson thinning operator and then we find and
prove its properties. In Section we present an alternative way to define the
INARCH(1)process, based on the Poisson thinning operator. In Section 4.3| we pro-
vide a proof of existence and uniqueness of the marginal stationary distribution of the
INARCH(1) process, we obtain analytic expressions for the r—th marginal ordinary
moment, for the h—steps conditional mean and variance as well as for the h—steps
ahead conditional probability generating function. Besides, for the particular case
h = 2, we find a simple expression for the two-steps ahead conditional probability
function. Given that the INARCH(1) process has the advantage that the conditional
distribution one-step ahead is a Poisson distribution, we propose its median and mode
as forecasts one-step ahead in Section[4.4] Although the mode of a Poisson distribution
has an easy analytic expression, there is no expression for the median. Hence, by simu-
lation study, which does not present in this work, we propose an easy approximation of
the median of a Poisson distribution which works very well in terms of mean squared
error and mean absolute error. In Section (4.3| we show properties such as mean and
variance limits of the approximate median. We begin with the proof of weakly con-
ditional consistency of the approximate median, and then we get to prove strongly

conditional consistency. Further, we are able to demonstrate weakly consistency of the
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approximate median and then we get to prove its strongly consistency.Although we
obtain an analytical expression for the h—steps ahead conditional probability gener-
ating function in Section it does not lead to a workable procedure to obtain the
h—steps ahead conditional probability function for /1 > 3, so, in Section[4.5 we propose
a recursive way to find the h—steps ahead forecast for & > 2. In Section 4.6 we show a
distribution which allows to obtain one-sided and two-sided predictions intervals. In
Sections and 4.9 we present Monte Carlo simulation studies that compare the
behaviors of the proposed forecasts. At the end of this chapter we illustrate the pro-

posed approaches with two different real data sets, which were studied in this process.

4.1 The Poisson thinning operator

Definition 5. Let X be a non-negative integer-valued random variable and o = 0. We define

the Poisson thinning operator as

X
as XL NN, (4.1)
i=1

where the Nj are i.i.d. Poisson random variables, independent of X, with parameter «, and the

notation X 4 Y means that X has the same distribution as Y.

The sequence Nj, Ny, ... is said to be the counting series of a * X. From definition above
it is clear that
axX|X ~ Po(aX).

The difference between this definition and Definition [1|is the probability distribution
of the counting series. In Definition [I| the counting series is Bernoulli distributed, thus
its parameter belongs to interval [0, 1], however in Definition the counting series

has Poisson distribution, so its parameter belongs to interval (0, o).

So, we call the “+” operator the Poisson thinning operator and it can be interpreted as
follows: consider a population of size X at a certain time ¢t. Suppose that in this

population each individual dies or produces independently offsprings according to the
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Poisson distribution with parameter a. Let N; defined as

0, if the individual i died,
N; =<1, if the individual i had no offsprings,

m, if the individual i had m — 1 offsprings, for m > 2;

then, if we observe the same population in the later time ¢ + 1, the population size in

time t + 1is given by a  X.
The properties of the Poisson thinning operator are presented in the next lemma.

Lemma 2. Let X; (i = 1,...,m) be a sequence of non-negative integer-valued identically
distributed random variables, a; (i = 1,...,m) a sequence of non-negative real constants and
suppose that the counting series of w; = X; are mutually independent, identically distributed

according to Po(w;), and independent of X;. Then,

i) 0+X;=0
i) aq s (X1 + Xo) Lay + Xy +aq Xy if Xy and X, are independent
iii) Elay + X1 | = mE[ Xy ]

iv) Var[ay+ X1 | = afVar [ Xy ] + a1 E[ X ]

0) Elag« X1 | X1] = ;1 Xy
vi) Var[ag « X1 | X1 ] = m X3
vii) Cov(aq + X1, ap+ X)) = aja,Cov (X3, Xo)

vii) B[ (a1+ X1)%] = ; E[X1] + 2 E[X?]

ix) B[ (a1 X1)"] = Yh_; S(r, k) ak E[ XK], where S(r,k) = 1/k' S5_o(~1)/(¥) (k — i)’
is the Stirling number of the second kind, i.e., the number of ways to partition a set of r

objects into k non-empty subsets.
x) E [(061 * Xl)Xz} = leE [X1X2}

xi) E[(a1 +X1)* Xo | = ;E[X1X0] 4+ a? E[X? X;]
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xii) E[(a1+X1)" X2 ] = Yhq S(r,k) ek B[ XF X5 ]

xiii) E[(aq = X1) [ 1L, Xi] = a1 B[] [i%4 X ]

xiv) Bl(a« X1)" [T Xi] = iy S(r k) of E[XT [T, Xi ]

xv) E[(a1+ X1 )(a2+ Xo)] = a1 a2 E[ X3 Xp]

xvi) E[TTLq (ai+ Xi) | = (ITL i) E [TT72 Xi]

xvii) E[(a1+ X1 )* (a2 X2)] = 3 E[ X2 Xp] + a3 0 E [ X1 X; |
xviii) E[(ay+ X1 ) (a2 X2 )] = ap Dy S(r, k) lk E[ X5 X5 ]

xix) Efaq = (a1« Xq) | = a3E[ X ]

xx) Elag s (g = (a1 X1)) | = 2] E[ X ]

'

r a's

T
xxi) Var[ag s« (ag# (a1 X)) | = af Var[X; | + (1 Zl>0¢§E[Xl]
- v —_— 1

~
r a's

xXii) E[ecl*---(ocl*(al*Xl)z 1 X1] = a1 Xy

ng

r aq's

1_ r
xxiii) Var|aq «-- (aq (a1 X1)) [ X1 ] = a§X1<1 zl) forr =2
(. ~ —_— 1

r ;crl’s
The proofs of properties in Lemma [2| are given in Appendix. The properties iv), v), vi),
ix), xii), xviii), xix), xx), xxi), xxii) and xxiii) are true for counting series with Poisson
distribution and can be not true for counting series distributed with another discrete

distribution.

4.2 INARCH(1) formulation model

Now we present the formulation of the INARCH(1) process presented in Section

based on the Poisson thinning operator defined above.
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Definition 6. A discrete non-negative integer-valued process (X¢)s=1, X¢ € No, is said to be
an INARCH(1) process if it satisfies the recursion

Xe=a+Xy_1+e fort=1, 4.2)

where & = 0, ‘" represents the Poisson thinning operator given in Definition [5} (et)i1,
€ € INy, is a sequence of of i.i.d. Poisson random variables with parameter A and it is assumed

that the counting series of o + X;_1 is independent of ;.

From property i) of Lemma [2| note that for « = 0 the process is the sequence (€¢)s>1
and in this case the model is not overdispersed. On the other hand, in Section
was stated that the INARCH(1) process is a stationary processes whenever & < 1.
So, we should assume « € (0,1) to guarantee stationarity and overdispersion of the
INARCH(1) process as it was assumed in Section

The conditional probability distribution of X; given X;_; is Poisson with parameter

aX;_1 + A and the model can be interpreted as follow

Xt = K Xt_1 + €t
S~—— — S~——
Population at time ¢ Population of time t—1 Immigrations

The following proposition asserts the existence and uniqueness of the marginal distri-
bution of the INARCH(1) process.

Proposition 3. Let (X¢)s>1, Xt € Ny, be the INARCH(1) process defined by recursion Equa-
tion (4.2). Then, the marginal stationary distribution of Xy exists and it is unique.

Proof. The INARCH(1) process can be seen as a Markov chain with transition proba-

bilities 77;; given by

(i + A) exp(—ai— A)
J! '

Our aim is to use [Ross [1983], Theorem 4.3.3 on p. 109] to prove the existence and

i =P(Xs =j| X4 =1) = (4.3)

uniqueness of the marginal stationary distribution of the INARCH(1) process.
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We begin remembering that a Markov chain is said to be irreducible if all states com-

municate with each other; state i communicates with state j if and only if

nflj>0 and n}’]>0 for some n,m >0,

where 775 = P(Xy = j| Xo = 7). Also, state i has period d if d = gcd{n : 7/} > 0}, where
gcd denotes the greatest common divisor. For d = 1, the Markov chain is said to be

aperiodic.

Equation (4.3) shows that 77;; > 0 for all i, j, so 7r;; > 0, which implies d = 1. Then, we

have proved that (X¢),, is an irreducible aperiodic Markov chain.

=1
Using [Ross [1983]], Theorem 4.3.3 on p. 109] if we get to prove that some state j is posi-
tive recurrent, then we can conclude that a stationary distribution for the INARCH(1)

process exists and it is unique.

Now we will focus on proving that state 0 is a positive recurrent state; first we show

that 0 is a recurrent state, this is equivalent to prove
Q0
Z 7T0t0 = o0, where ni]t. = P(Xt+1 =j|Xi= i).
t=1

We will prove by induction that the (1 + 1)—steps transition probability 75" can be
expressed as

n+1

Mo = exp(ant1 + buyik),

where 4,11 = a, + Alexp(bn) — 1], b1 = afexp(by) —1],40 = —A and by = —a.
* For n = 0, we have from equation o = exp(—A —ak), thus a; = —A and
b1 = —K.
* Suppose that 1]}, = exp(a, + bpk)

x We can write the (1 + 1)—steps transition probability 7/, as

')

n+l __ n

Tho = Z T TTig
i=0

_ i exp[—(ak + A)](ak + 1)’

1!

exp(an + bni)
i=0
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= explan — (ak + A)] Z [(ak + )‘)if"xp(bn)]l
i=0 )
= exp{a, + Al(exp(by) — 1] + ka[exp(b,) — 1]}

= exp(ay1+kbpy1)

Therefore,
Ty = exp(an).
So, to prove that >,” ,exp(a,) = oo, we will show that exp(a,) — 0. Consider the

function g(x) = a[exp(x) — 1]; note that
b = g(bn) and by = g"M(by) = g7 (-a),

where ¢["l(.) represents the composition of the function g with itself n times and

¢ll(x) = ¢(x). Using the recursive formula for a, ., we obtain

A A
Any1 —n = Ebn+1 = Eg[n}(_‘x)'
Therefore,

n—1

A n—1 ' A n—1 )
Z (aiy1—a;) = X Z 8[4(—“) I Z 8{1](—“)
i=1 i=1 i=1

n—1

A .
= ay = A+ 3 gl(—a).
i=1

Since ¢'(x) = wexp(x) > 0 we have that ¢(x) is an increasing function, thus
by =—a<0 = bp=g(b)<g(0)=0 = b1 =80, <0 = b, <0Vn,
and it implies that
Api1—ap = anﬂ <0 = a1 <ap.

Since a1 = —a < 0, we can conclude that (a,) _. is a negative decreasing sequence.

n=1

On the other hand, from the known inequality exp(x) > x + 1 Vx # 0 we have

exp(x) —1>x = alexp(x)—1] >ax = g(x) >ax, Vx=#0.
p P 8
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It is easy to prove by mathematical induction that
g (x) > a"x ¥n=1and Vx 0.

Therefore, if x = —a # 0 then gl"/(—a) > —a"*! and

lim a, = lim
n—0o0 n—0o0

/\n—l []
—A+E1§g (—0‘)]
A& |
— - [i(_
A+w§g (—a)

A
=0

L M
a(l—a)

A
1—a

0

Thus, lim, . exp(a,) = exp[-A/(1 —a)] # 0, ie., Z exp(an) diverges. Notice that
n=1

we proved that state 0 is a recurrent state; now to complete the proof we show that

state 0 is a positive recurrent state. Using [Ross| [1983], Theorem 4.3.1 (iii) on p. 108]
we have
my = lim 77}
n—oo

= lim 7"
n—00 00

= T}ggo exp(an) > 0.

n
ij’
exists and defines the unique stationary distribution. O

Hence 0 is a positive recurrent state and so {77;,j = 0,1, ... } defined by T = im0 7T

The next proposition presents a recursive way to find the ordinary moments of the
marginal distribution of the INARCH(1) model.
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Proposition 4. Let (X¢);>1, Xt € Ny, be an INARCH(1) process according to equation (4.2).
Then the r—th ordinary moment of the marginal distribution of (X;)s>1, is given by

ZZSM ()M] E[X{],

j=0i=0

where S(k, j) represents the Stirling number of the second class defined before.

Proof. First, note that if Z is a random variable such that Z ~ Poisson(v), then using

Dobiriski’s formula the r—th ordinary moment of Z can be expressed as

® k r
E[Z"] = kZ_Ok’ —eXp(I;”)U = I;JS(r,k)uk, (44)
where S(r, k) = 1/k! Zi-;o(—l)i(’;) (k—1)" is the Stirling number of the second kind, i.e.,
the number of ways to partition a set of r objects into k non-empty subsets. A quick
proof of Dobinski’s formula can be found in Pitman| [1997].

Then, since X; | X;_1 ~ Po(aX;_1 + A) we can express the r—th ordinary moment of X;

as

E{E Xi | X }

.
E [Z S(r,j) (X1 + A)
j=0

= 3 5 E[(@Xis + Y]
=0

DI (]>0c7/\] BX/].
O

The first and second ordinary moments of the INARCH(1) process can be obtained
from proposition [ taking r = 1 and r = 2, respectively, and using that S(0,0) =
S(1,1) =5(2,1) =5(2,2) =1,and 5(0,j) = S(j,0) = 0Vj # 0, then

A

E[X;] =A+aE[X] = E[X{]= 1—a
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/\+A2+o¢/\

E[X?] = A + aE[X{] + A2 + 20AE[X;] + «’E[X?] = E[X?] = -

In Section we present three estimation methods in the INARCH(1) model. Albeit
the CML estimators have no closed form, we can express the A estimator in terms of

the a estimator, so, it is only necessary to estimate numerically «.

Proposition 5. If &CML,XCML represent the CML estimators of the «, A parameters in
INARCH(1) model, then

Zthz(xt — Newm xt—l)
T .

/\CML =

Proof. By solving the system

55(06,7\;951, Xoy oooy X7 | xl) _

on =0
85(0@)\}?(1/ xZI-"IxT|x1) =0
oA B

from equations (2.14) we obtain

T
Xt
— = | =T-1, 4.5
t:zlz(txx,l—k)t) (4:5)

T
XeXt_1
;(M 1+A) th . (4.6)

Notice that the general term in equation (4.6) can be written as

XXX (ax, 1+ A)—A
Xxeq + A N o axe .+ A

_ XA
== (1 prn A) (4.7)

_n A xm
x  a\ax,._,+A/)

Therefore, by equations (4.7) and {#.5), we have

(4.8)
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Then using equation and (4.6) we obtain

T T
Ext+A(T—1) = ocExH,
t=2 t=2

thus

/A\ _ ZtT:z(&CMth—l - xt)
CML T_1

This result was also proved by Weifs| [2010].

4.3 Forecasting for the INARCH(1) process

To the best of our knowledge, forecasting for INARCH(1) processes has not been
studied. In this section we propose one two and h—steps ahead forecasts for the

INARCH(1) process and we find and prove its properties.

The one-step ahead conditional distribution of the INARCH(1) process is a Poisson
distribution. Thus, considering the minimum mean squared error and the minimum
mean absolute error as optimization criteria to obtain forecasts one-step ahead, we
propose the conditional mean and the conditional median as forecasts one-step ahead.
The mean of a Poisson distribution can be a non-integer value; then, we have to use
its integer part as forecast. Further, if Z is a random variable with Poisson distribution

with parameter v then

lv], if velN,
mode (Z) =
v—1and v, if vé¢IN.
In fact, note that
P(Z=k+1) exp(-v)of*1/(k+1)! v
P(Z=k exp(—v)vk/k! k+1

thus,
P(Z=k)=zP(Z=k+1) forevery k+1=>v, and,
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P(Z=k)=P(Z=k—1) forevery k<uv,

then P(Z = k) > P(Z =k+1)and P(Z = k) = P(Z = k—1) for every k such as

v —1 < k < v. Therefore, if k, denotes the mode of Z we have

i. Ifv<1lthenk,=0
ii. Ifv>1andv¢ N thenk, = |v]

iii. If ve N then k, = v—1and k, = v are both modes.

Hence, when the parameter of a Poisson distribution is non-integer, the integer part of

the mean is equal to the mode.

Our purpose is to provide a coherent forecast of a future value xr;, i. e., integer-
valued forecast, given that we have observed the series up to time T, i.e., x1,x,,..., X7
are known. It is natural to use the h—steps ahead conditional distribution to provide
forecasts. We know the conditional distribution of X, | Xr, but we do not know the
conditional distribution of X;,, | Xr for h = 2. However, we obtained a closed ex-
pression for the conditional probability generating function (PGF) of Xr., | Xr, which
allows to find the probabilities. Also, we got expressions for the conditional mean and

variance of Xr,, given Xr, respectively.

Proposition 6. In the INARCH(1) model the h—steps conditional mean is given by

h 1-— lxh
E[XT+h|XTi|:‘X XT+ /\.
1-«a
Proof. We prove the proposition by mathematical induction.

* For k = 1 we have

E[Xr | Xr] = E[(a* Xr+€741)|Xr ]| =aXr + A

_ah
*« Suppose for k = h that E[ Xr., | X7 | — X, + (11 _i))\
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x Fork = h 4+ 1 we have

E[ X7 | Xr] = Ela = Xoyp + €74 p41] X1
= Elo  Xr.4| Xr] 4 E[er 41| X7]
— B{E[w+ Xr|Xra] | Xr} + Elersni]
=E[aXr | Xr]+A

ok
:a[thXT—{— <1 4 )A] + A
1—«

_ h+1
:ah“XTJr(—“ & +1>A

73

]

Although proposition above and Equation provide the same expression for the
h—step conditional mean for the Poisson INAR(1) and the INARCH(1) processes, the

proof presented by [Freeland [1998] use an argument which is not true for the

INARCH(1) process.

Proposition 7. In the INARCH(1) model the h—steps conditional variance is given by

h 1—ah 1 — a2h-1
Var[XT+h|XT} =K XT 1—x +A ﬁ +)\Ph(0€),

where

and P1(a) = Py(a) = 0.
Proof. We prove the proposition by mathematical induction.

x For k = 1 we have

Var| Xr. | Xr | = Var|[a « X; + €741 | Xr ]



CHAPTER 4. FORECASTING FOR INARCH(1) 74

= Var|a» X¢| Xr | + Var|ery1 | X7 ]
=aXr+ A, Pi(a) =0.

* For k = 2 we have
Var[XT+2 | XT] = Var[lX * XT+1 +€T+2 | XT:|
= Var [E (lx * XT+1‘XT+1) ‘XTj| + E [Var((x * XT+1‘XT+1) ‘XT] + A
— Var [OCXT+1 ‘XT:| + E I:‘XXT+1‘XT] + A
= a?(aXr +A) +a(aXr +A) + A

1—a? 1—ad
— 42 —
=u XT(l—oc>+A(l—zx)' P(a) = 0.

* Suppose for k = h that
—al _ 21
Var [ Xri | Xr | = 2 X; (1 & > +A<11+a> + AP, (a).

1—u«
x Fork = h+ 1 we have

Var| Xryp1 | Xr ] = Var[a s Xy + €741 | X7 ]
= Var [E(a # X74p| Xrin) | Xr] + E[Var(a « Xrip| Xr) [ Xr] + A

1—al 1 — 21
h -
ocXT(l_lx)wLA( - >+APh(oc)]

. h—1 _ A2h+1
_ ah+1XT 1 [44 4 A 1 1
1- 1—ua
1— h—1
+o¢2)\( T ) + a®A Py, ()
1— Déh_l 1— 0(2h+1
—_ 0Ch+1XT( 1_ ) —+ <ﬁ) —+ )LPh+1 (Dé)

]

Proposition 8. As h goes to infinity, the conditional mean and variance of the INARCH(1)
model converge to the unconditional mean and variance, respectively. We have

A
11—«

4

llm E [XT+}1 | XT] -
h—o0
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lim Var [ X, | Xr]| =

h—>00 (1—a)(1—a?)
Proof. Itis easy to see that lim E [ Xr,, | X7 ] = A and lim Py (a) = @
' Y i LTl AL = T and ) = AR (1 — )

hence,

A
lim Var[Xr,,|X;] = =t Ahh% Py (a)

h—o0
A o?
TSIl g T~y
- A
C(T—w)(1-a?)

]

Proposition 9. For the INARCH(1) model, the h—steps ahead conditional moment generating
function (MGF) is given by

h—1
My, 1%, (8) = exp{% [A Z gll(s) + (aXr 4+ A)g!" (S)] } (4.9)
i=1

where g(s) = alexp(s) — 1], gl1(-) represents the composition of the function g with itself i
times and gl (s) = g(s).

Proof. We prove the proposition by mathematical induction.
*» Fork =1

M, 1%, (5) = Eexp(a  Xr + er41)| X7]
= exp[(aXr + A)(exp(s) —1)]

— exp| 1 (aXr + 1)g(6)

* For k = h, suppose

h—1
MXT+h|XT(S) = exp{— [A Z g[i] (s) + (a X7 + A)g[h] (s)] }’-
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* then, for k = h + 1 we have

MXT+;1+1|XT(S) =E [exp(a # Xrop + €T4n41) |XT]
= E{E[exp(a * Xru + €1 yp1) | Xrn] | Xr}
= E{exp[(aXrs, + A)(exp(s) — 1)]|Xr}

= exp [%g(S)l M, 1x:(8(5))
2 ] exp{ [A > &M (g(s)) + (aXr +A)g" (g(S))] }

- s
- exp{% { ) + Athg () + (aXr + A)gHH (s)] }
i=1
{

1[ £ (aXr +A>g[k+”<s>]}.
]

Note that we can obtain the conditional PGF from the conditional MGF; we have
Gxra1xr(8) = Mx,, 1x, (log(s)), therefore using equation (4.9), we obtain

h—1

Gxrolxr(s) = exp{ : [7\ > & (log(s)) + (aXr +A)g" (108(5))] } (4.10)

i=1

4.4 Forecasting one-step ahead

Now, we focus on the forecast one-step ahead. Although we know the conditional
distribution of X1, | X7, there is no expression for the median of a Poisson distribution.
However, there are some results on its bounds.

Let Z be a random variable, Z ~ Po (v). [Chen and Rubin| [1986] conjectured the ine-
quality

v —log(2) < median(Z) < v+ % (4.11)
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After that, (Choi| [1994] proved it and |Adell and Jodra|[2005] proved that the bounds in
(4.11) are the best possible absolute bounds. Notice that in the interval

{v —log(2), v+ %)

there can be no more than two integers, namely, [v —log(2)] and [v + %J, thus, if

[v—1log(2)] # {U + %J we have that

median(Z) = [v —1og(2)] or median(Z) = {U + %J :

Assuming known parameters and using equation (4.11) we obtain the inequality

aXr 4+ A —1log(2) < XM(1) < aXr + A+ %

where X™(1) represents the median of the Poisson distribution with mean a X7 4 A.

Initially, based on the above result, we have approximated X;""(1) as below

0, if aXr+A<log(2),
XP(1) ~ <1, i log(2) <aXp+A<3,

m, if m—%<ocXT+)L<m—|—%, form =2

0, if aXr+ A <log(2),
=11, if log(2) <aXr+A<3,
[aXr +A—2|, if aXr+A>3
then, we observed that we can approximate the median by a more compact expression
obtaining almost the same results. This can be confirmed by the simulation study

which we are presenting in the next session. So, we propose to approximate the exact
median X™(1) of Xr., | X7 by X{V*(1)

2
XM(1) ~ XMP(1) = [zxXT +A- 5} ,

and, for unknown parameters, we propose to approximate the exact median X""(1)
by X7"P(1)

XMP)(1) = [&XT +A- ﬂ ) (4.12)
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where @ and A represent estimators of « and A respectively.

For the follow propositions: Proposition (10), Proposition (1I), Proposition (12) and
Proposition we suppose that for large T if & and A represent estimators of a and
A respectively, the conditional distribution of (&, A | X1 ) is also the distribution of

(&, 7).

Proposition 10. Let a and A be estimators of w and A such that

VT [ 27%) 25 Ao, ).
A=A

Then

lim E [X§Map>(1)‘XT} = [axT FA- q .

T—oo

Proof. We have that

wsl
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For large T we have approximately

. A o?
OCXT+/\‘XT NN(V/ ,;-/./\)/

where v = a X; + A and 0’3/ , depends on « and A. Thus,
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0 VT(k—1_vy
-2 (=)

where Z is a random variable with standard normal distribution and ®(-) denotes the

cumulative distribution function of Z. The approximation is true from the Central
Limit Theorem. Considering h(x) = log [Lj?)} and using the Taylor series expan-
sion of h(x) at 0, Tocher| [1963] found an approximation for P(Z > z); the author

obtained .

1-P(z) T exp(ca)’

where ¢ = 2+/2/ 71, therefore

E [X;Maf’)(l) ‘XT]

MS
IT|
|
&
VRN

=
=
S
\> W=
|
=
N———

T
—_

1%
s
—_

11+ exp[c(VT (k=3 —v)/0u,)]
1
expl—cVT(v+1/3)/a,,] |

~ 1
,; exp[cvV/T(v+1/3)/0,,] + [exp(cVT/o,0)]*

Ifb= exp(C\/T /o,,) and a = b'11/3 we can write the last expression as

1 & 1
(Map) ~
E [XT (1) ‘ XT} ~ g k:§ ] P T (4.13)
Notice that
00 1 N-1 1 [0'e) 1

> P > (4.14)

k=1 k=1
where we choose N = [v+1/3], so, k > v 4 1/3 for each k in the second sum of right

a+bk+k§\]a+bk'

we obtain

1
side. Using Taylor expansion again to approximate /1 (x) = Y

m PAY _\m+1
hi(a) =) b(k(iﬂ) T (€(+a[9)k)m+2’

i=0

where 0 < ¢ < a. Then,

N-1 m i ( )m+1

Q0 0
ga—i—bk Za+bk+k;\l Zbk1+1 (§+bk)m+2
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N-1 1 m . © 1 k
- #0' % ()
k 1
ettt 5 i NPT
N-1 m o :
1 —1)i pilv+1/3) pi+l
- + bk + Z (bN()H—l) pitl _1
k=1 a i=0 ( - )
N-1 m i 1.1
1 —1)i pilv+1/3)
- T T
a + bk 4d pN(i+1) _ p(N-1)(i+1)
k=1 i=0
where
(_a)m—H

lim

e N (4.15)

In fact, if d = exp(c/0,,) thend > 1,b = dVT and g = dVT(v+1/3), So, we have

(—a)m+1 . (_1)m+1d\/T(v+1/3)(m+1)

Ilglgo (& + bk)ym+2 ~ T (& 4 dVTkym+2

gVT+1/3)\ " 1
&+ dvTk E+dVTk
VT(w+1/3—k)\ "1
= (=1)"*( lim A lim —
T—w F4—VTk 4] T—w & 4 JVTk

= (=1)"*" lim

= 0.

The first limit is equal zero because k > N = [v+1/3] 2 v+1/3,thusv+1/3 -k < 0.
For m = 1 we can approximate the right side of equation (4.14) as
© 1 N-1 1 pv+1/3

,;ku ~ k; AtV BN N1 N ()

then, equation (4.13)) can be expressed as

1 N-1 1 1 bv+1/3
(Map) ~ —
E |:XT (1) ‘XT] ~ b_(v_,_l/g,) LZ; a—+ bk + pN — pN-1 2N _ bZ(N—l)
N-1 1 1 1

- kZl 1+ pk—v—1/3 T N1/ _pN—v—4/3 p2(N—v=1/3) _ p2(N—v—4/3)"

(4.16)
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Replacing b = dvT Equation (4.16) becomes

N-1 VT(v+1/3—N) 2v/T(v+1/3-N)
. 1 d d
B[ X ~ Y + T Vi
= 14+d T(k—v—1/3) . 1—4-VvT 1—4-2vT .
\k<N:[v+1/3]vé k7v71/3<0J N=1/3]204+1/3 = 141/3-N<0
Therefore,
N—1 1
i =N-1
Th—r}c}o [k;l 1+ dﬁ(k—v—l/S)]
and
_ AVT(v+1/3-N)  2VT(v+1/3-N)
AT 14T  1_42vT |
Then
lim E [X;Maf’)(l) ‘ XT] = [v+1/3] -1
T—o0
=[v-2/34+1]-1
=[v—2/3]
2

Proposition 11. Let a and A be estimators of « and A such that

~

VT (;:i) L, A4(0,5).

Then
lim Var [X;Map>(1)‘XT} = 0.

T—o0

Proof. By the variance definition and the last proposition it is sufficient to prove that

Jim E [X;Map>(1)2 ‘ XT] - anT FA- %DZ

This demonstration is very similar to the demonstration of proposition |10, It is known
that 37, (2k—1) = 2, then

E [X(TMap)(l)Z ‘ XT] _ ijzp (X(TMap)(l) = ‘ XT>
j=1
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j

P(X;Map>(1) = ‘ XT) M (2k-1)
k=1

I
18

]&.
—_

:iZk 1) 3P (X(1) = j| Xy )
k=1 j=k

:i P (X MP)( k‘XT>
k=1

I
MS

T
(X

~

2
- 2eke)x)

2k — 1) (
(2k —1) P([«xXT—i—A——W /k‘XT>
2k—1 P(

NgER MS

(2k —1)P (&XT—|—3\>k—%‘XT>.

B
I
[y

Thus, by the normality hypothesis and the normal approximation of Tocher|[1963]], we

have
(Map) 4y 2 — < _ aX; P\ _1 T

E[XT (1) ‘XT] é(zk 1)P(X+A>k 3‘X>
~ i(Zk—l)P (Z > ﬁ(ka_%_v) XT>
=1 wA
< VT(k—3-v)
_k;(zk—l)[l—cb< %3 )}
%i (2k —1)

S 1l+exple(WT(k—3-v)/oua)]

where Z is a random variable with standard normal distribution, ®(-) denotes the
cumulative distribution function of Z and ¢ = 22/m. If b = exp(C\/T /0,,) and

a = b'*1/3, we can write the last expression as

. [X;Maw(l)Z‘xT] ~ Z iibi (4.17)
Also o

Z2k—1 2k—-1 & 2k—1

Za+bk:Za+bk+Zm' (4.18)
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where we choose N = [v + 1/3]. Using Taylor expansion to approximate
hi(x) = Zk-1 we obtain
k - x+ bk/
m i 1
(=)' (2k=1)  (=a)""™(2k—1)
hy(a) = Z P (& +bRymiz

where 0 < ¢ < a, then,

O2k—1 NFlok—1 & [ (—a)i2k—1 —a)" 1 (2k — 1
ZH—M:Z_+Z Z( )'( )+( )" )

= St S S v @+ by
N-1 m
2k — 1 2k —1
~ -+ (_a)l
ké:l a+ bk i;) k;\] (bitT)k
B N-1 4 N i (_1)1'(3 _ 2N)b(v—N+4/3)i_(N_1)
- k +1_1)2
Pl +b = (b1 —1)
" (—1)i(2N — 1)p(V—N+7/3)i=(N-2)
e (a1 (2k - 1) o
. —a 1) mtigy o
T e S R L S TR

from Equation (4.15).

For m = 1 we can approximate the right side of equation (4.18) as

22k—1 NS2k—1 (3-2N)b=(N=D 4 (2N —1)p-(N-2)
) ~ ), +
Satbt o Hat bk (b—1)2

(3 _ ZN)bv—2N+7/3 4+ (2N _ 1)bv—2N+13/3

- 0717 '
Then, equation can be expressed as
N-1 _(N—
2k —1 (3 —2N)plv+1/3)=(N—1)
(Map) 1 2 ~
E|XP0)% | %] ~ k; T pwrim T (b-1)
(2N — 125<V+11)/23>—<N—2> (4.19)

(3 — 2N)b2(v=N+4/3) | (2N — 1)p2(v—N+7/3)
-1y -
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Since we chose N = [v 4+ 1/3], we have
N-1<v+4+1/3<N = 0<v+1/3—(N-1) <1

If we considers = v+1/3— (N —1) and d = exp(c/0,,), then using the last inequality
0<s<1 b=d'Tand equation (4.19) becomes

N-l _ _ VT N\ AGH)VT
E |:X;Map)(1)2 ‘ XT:| ~ Z 2k 1 + (3 ZN)EZ —|— (2N 1)d
&1+ dvVTh=(v+1/3)] (dVT —1)2

k<N:[v+1/3]: k—(v+1/3)<0
(3—2N)d2sVT 4 (2N —1)d2(+VT
(d2\/T —1)2 '

It is easy to see that

i [B=2N)@VT 4 N - 1)dCHIVT (3 -2N)a2 VT 4 N - 1)a2CHVT
T—o0 (b—l)z (dzﬁ_l)Z —

and

lim
T—

[N‘l 2k —1

> = (N-1)
Pl +dﬁ[k—(u+1/3)]]

Therefore

lim E [X§M3p>(1)2 ‘ XT]

T—o0

[v+1/3]—1)°

(
([v—2/3+1]-1)
(Jv—2/3])*

(or 2y

Proposition 12. Let & and A be estimators of « and A such that

VT (; ) i) D, Ny(0,3).
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Then, given Xr, the sequence of estimators (X(TM‘”‘F)(l))T> | s weakly conditionally consistent
for §, this is, for each € > 0

lim P(|X{(1) - 6| = €|Xr) =0,

T—C

where § = [a X+ A —2/3].

Proof. Note that Chebyshev’s Inequality is also true for a random variable conditioned
to a random event, i. e., if Y is a random variable, A is an event, then, for each € > 0,

we have
E[Y?|A]

P(Y=zelA) < ~

. (4.20)

In fact,

E[Y|A] = E[Iyys)Y?|A] +E[Liy<q Y?[ A]

=0

> E[liyzeY* | A]
> E[ Lyysey | A
:GZP(YZGS‘A),

where Ip represents the indicator function of the event B.
Then if we consider Y = ‘X(TMap)(l) — 6| and the event A = [X; = x;], from Equation

(4.20) we obtain

2
P([XM7(1) - 8] > €| Xr ) < E| (x7(1) —6)"| X |

= ) (4.21)

then, using Proposition[10|and Proposition [I1|we obtain

i P(|XP7(1) 8] > ¢ X; ) < lim - P2 X ] 208X X5

TS TS €2

E [(52 ‘ XT}

.

|V X)) + {B[x07(1) %] }

T e2

+
2
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—20B[XP7(1) X | + 02
+

&2
_0+6%-28%447
= =
= 0.
Considering € < 1, we have Tlirr} P(X@Map)(l) =0 XT) =1 O

Proposition 13. Let & and A be estimators of « and A such that
a—u
VT |« L5 N3(0,%).
A=A

Then the sequence of estimators (X\""(1)).__is weakly consistent for 6, this is, for each € > 0

T=1

lim P(|X{"™(1) - 46| =€) =0, (4.22)

T—0

where 6 = [a X+ A —2/3|.

Proof. Note that we can write P(‘X(TMap)(l) — 6| = €) as follows

P(|X"P(1) — o] =€)

=t {E{I[P(\X;Map’u)—é\%ﬂ ‘XH

= B[P ([xM™(1)-d[>e| X ) .

Then, given that the sequence of random variables (P ( ‘X(TMap (1) - o = €2 ‘ XT> >

T=1

is dominated by the constant random variable 1, i. e., P < I XPP(1) — 6| = € ‘ XT) <1,
we can use the dominated convergence theorem and from the last proposition we
obtain

i, P(IX*7(1) ~0] > €) = Jim B[P (]X7(1) = 0] > €| X )]

T— T—x

e[, P (=] )]

T—s

= 0.
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Given that X™*(1) and § = [aX;+ A —2/3] are non-negative integer random
variables and Equation (4.22) is true for all € > 0, if we consider € < 1 we will have

P(|X1P(1) — 6] = €) = P(XT*™(1) # 9).

Therefore, Equation (4.22)) of Proposition [13|can be expressed as

lim P (X;Mal’)(l) # [zxXT +A— %D = 0.
T—ao0 3

Proposition 14. Let & and A be estimators of « and A such that
VT [ 275 25 As(0, ).
A—A

Then given Xy, the sequence of estimators (X§Map )(1)) 1~ 18 strongly conditionally consistent
for 6, this is
P( lim XM*(1) =&

T— w0

X ) =1,
where § = [a X+ A —2/3].

Proof. From Equation (4.21) we have

E||X*(1) - o] | X1

7

P([XP(1) ~ ¢ > €| Xr ) <

€
then,
o0 1 o0 o0
X P(IXP o] > e Xr) <2 3 X 17 -olP(X(1) =] X0)
T=1 T=1 j=1
1[& 6—1 ' Map)
= | 2 2 O=DP(X™(1) =j| Xq)
T=1 j=1
0 0] 0 0]
+ >, D (=) P(X™(1) = j| Xr)
T=1 j= (4.23)
—1é4w nfiMXMWU—MX)
= - — = T
= =1 )
By
o0 o0
+ 07 >0 P(X™(1) = j + 6] Xr)
j=1 T=1
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Our aim is to prove that

i P<‘X<TMap>(1) —(5‘ > e‘XT) < o0,
T=1

and use the Borel-Cantelli lemma, so, we need to prove that By < oo and
B, < o0. Note that,

P(XMP(1) = j| Xr) = P( [&Xﬁ?\— ﬂ :j‘XT)
(

=& <Cj+1\/T) - (Cjﬁ)
[1-@ (~¢VT)] = [1-® (~1VT)] (4.24)

I
O

where Z is a random variable with standard normal distribution, ®(-) denotes the cu-
mulative distribution function of Z and cj = (j—1/3—v)/0,, and j is a fixed integer,

suchas1 <j<d—-1.

Note that ¢; < 0 if j < J. In fact,
j<é =— j—-1/3-v<dé-1/3-v,
given that § = [v —2/3]| we have
j—1/3—v<|v=2/3|-(v-2/3) -1,

where [[v-2/8] - (v=2/3)| € (0,1) — ¢j=(j~1/3-v)/; <0.

On the other hand,
ci=0 <= j=1/3+v
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— 5:[]'—1/3—2/3]:]'—1 — j=0+1
Therefore ¢; is not zero for j < 4.

By Zelen and Severo [1964] if x > 0 we can approximate P(Z > x) by

3 .
—1)l+1m4 .
1-®(x) ~ —x2/2 § D i i

(x) mlexp( * )i—l (1+m5.'Xf)l

7

where m; = +/1/2m, m, = 04361836, m; = 0.1201676, m, = 0.9372980 and
ms = 0.33267.

Therefore we approximate P(Z > —c;+/T) in Equation (#24) by

X 3 . © exp(—c?T/2)
Z . ~ 1 i+1 . J .
z_] > —Cj ) m1§( ) m+1;1 (1—m5c]~\/T)l

(4.25)

Notice that for each i (i = 1, 2, 3), from the Ratio Test, we have

i exp(—c]Z T/2)
= (14 mscj\/T)i

<< 00.

exp(—c ]ZT/Z)
(1— mscjv/T)!

1
Ariv,i 1- m5c]-\/T 2
— = 1i —c5/2) <1
im (1_m5c]¢ﬁ exp(=¢;/2)

, then

In fact, if ar; =

T—o dar,; T—0

The last expression is true if we suppose 1/3 + v # j, in other words, 1/3 +a X + A # j

withl1<j<d—-1

Also, Equation (4.25) holds if we replace c; by cjy1, thus we have proved that
= Y7 P(XMP(1) =j|Xr) <ooforl <j<d—1.

Besides for fixed j, j > 1, we can approximate P( X;"**(1) = j+ 6| X;) b
P(XM(1) = j+6|Xr) ~ P(Z2 > ¢jsVT) —=P(Z > cjrs1VT).
Notice that if v — 2/3 is not an integer, then, ¢;; s > 0,Vj > 1. In fact,

Ua,ch+5:j+5_V_1/3
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=0—(v-2/3)+j-1
=[v-2/3]-(v-2/3)+j—1.

ng

>0if (v—2/3)¢Z

Thus,
1

- <1
(14 mscjsV'T)’

and using the Zelen and Severo|[1964] normal approximation again we have

0 0 3 0 0
Z]ZPZ>CJ+(5\F ~mZ Z“mlHZ]Z
i=1 j=1 T=1

(4.26)

exp(— J+5 T/2)

(1+ msC;+5\F)

j=1 T=1
3 . 0 W .
<M Z (_1)1+1m1’+1 Z] Z [eXp(—CJZJrg/Z)} (4.27)
i=1 j=1 T=1
3

:mlz(—l)i+1mi+1i ( J (4.28)

2
P ia exp c].+5/2)—1

<o (4.29)

Equation (4.27) is obtained by using Equation (4.26). Equation (4.28) is true since
exp(—c]z+5/2) <land

i [exp /2 ]T = 1
=1 s exp(cf, 5/2) -
] :
Equation (4.29) holds since | converges. In fact, if
Z + exp( ]+5/2)
j
d, —
I exp(c +5/2)
then
dit1 _ (j+1) < exp( +6/2) — )
dj j exp(c? ito+1 /2) -
We have

exp( ]2+5/2) —1 exp( 12+5/2)Cj+5(1/‘7m ] (4.30)

im = lim
j00 [exp( +5+1/2) ] j— LXP( +5+1 /2)C]+5+1(1/UaA)
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= lim

j—®

[ Cit+s } { exp(cjz+5/2) }
Civor1]) Lexp(cF 5,1/2)

=0,

Equation (4.30) is obtained by applaying L'Hopital rule with respect to ;.
Given that

lim
j—

[ Cjts } i (j+6—3-v)/ow
Civss1] o (j+04+35—v) /0w

=1.

and

2

exp(c;, 5/2) } . { 1,
=1 —|(j+(6-1/3-v
]il}';o |:exp(cjz+5+1 /2) jglwexp 20_‘3,)\ [(] ( ))

~ (j+(E+2/3-v))’] }
— lim exp [jz +2j(6—1/3—v)+ (6 —1/3—v)?
J—7/®

2 2j(6+2/3—v)— (6+2/3— V)Z] /2(73,A

o PR b o)

=0,

Therefore by using the Ratio Test we obtain

din j+ exp(cd,5/2) -1
lim L= = lim {—} lim { 2] }
j—s0 d]' j—o | ] j—0 eXp(C]-_HH_l/Z) -1
=1-0=0<1.
We have proved that
o0 [0¢]
By=>1j > P(Z > cjys:aVT) < 0. (4.31)

j=1 T=1

Thus from Equation (4.23) and using (4.29) and Equation (4.31) we have proved

0
> P(1XMP(1) 5] > €| Xr ) < on.
T=1
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Therefore from Borel-Cantelli lemma we have that

P([[XM™(1) 4> € io|X:]) =0,
and, this is equivalent to

<11m XMP(1) =5

T—x

XT):l.

Proposition 15. Let & and A be estimators of w and A such that
H—u

VT | - 2, Ny(0,%).
A=A

Then given X, the sequence of estimators (X{"*"(1)) 1, 18 strongly consistent for 6, this is
P( lim X™P(1) = 5) ~1,

T—c

where § = [a X+ A —2/3].

Proof. Note that we can write P( lim XM*(1) =6 ) as follows

T—w

P(lim XP7(1) =) = {1[ e(lim X071 )5)]}
St
[

—E P(thMaP ):5‘XT)] (4.32)

Equation (4.32) is true from Proposition [T4| O
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4.5 Forecasting two and hi—steps ahead

Now we focus on the forecast two-steps ahead. Note that we can obtain the probability
function of Xr,, | Xr using the PGF; thus from equation (4.10) for # = 2, we have

A g(log(s)) +Vg(g(log(s)))}

o

Gxr.0lxr(8) = exp {

— exp{/\(s —1)+v [exp(a(s —1)) — 1] },

(4.33)

where v = X7 + A. Remember that from the PGF we can obtain the probability func-

},
s=0

denotes the k—th derivative of function /(x). The conditional proba-

tion using the relation

P<XT+2 =k ‘ XT)

1 d®) [gXT+2|XT(S)}
k! dsk

where

d® [n(x)]
dx
bility function of Xr,, given Xr is also given in the following proposition.

Proposition 16. The probability function of Xr,, | Xr is

ko ig(ii i
o wY/S(i) [v exp(—n)
P(Xr =k|Xr) = A Cv,m];) %(;) itk—j)! ’

where v = aXr + A, Cyop = exp|v(exp(—a) — 1) — A| and S(j, i) represents the Stirling

number of the second kind.

Proof.

18

P(XT+2 =k ‘ Xr = xT) = P(XT+2 =k ‘ Xrp=n,Xr = xT)P<XT+1 =n ‘ Xr = xT)

i
o

I
M8

P(XT+2 =k ‘ X = n)P<XT+1 =n ‘ Xr = XT)

i
(e

exp[—(an + A)](an + A)*
k!

Il
18

n!

[exp[—(och + A)|(axr + A)"

n=0

Q0

n k o
_ eXP(—k;/—A) Z [eXP(n—‘“)V] Z (k> (an )/ AR

n=0 ) j=0 J
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;jexp[ v—A+vexp(— i()()

i Jjlexp(=vexp(—a))][vexp(—a)]"

e !
f: exp[—v — A + vexp(—a)] ]Z; (’;) <%)]E W] (4.34)
= Ak Cyan Z Z( ) Vkexljjg Wl (4.35)

j=0i=0

where W ~ Po(vexp(—a)) in equation (4.34) and equation (£35) is obtained from

the expression for the j—th ordinary moment of Poisson distribution given in equation

(4.4). O

In particular, note that P(XTH =0 ‘ Xr) = Cy 4 1 can be obtained from the last proposi-
tion using that S(0,0) = 1 or from PGF two-steps ahead given in equation taking
s = 0. Note that Proposition 4.33| provides an explicit expression for the distribution of
X142 | Xr. Then we can use the conditional median and conditional mode to predict

Xr1,. Therefore, given that X;, X,, ..., Xr are known we can predict Xr,, by using
X(TM“)(2), the conditional median of X1, | X
XMY2), the conditional mode of Xz, | Xr (4.36)
X™(2), the integer part of E (X1 | Xr],
where X*(2) is obtained from Proposition@replacing h = 2, the explicit expression of
X¥(2) is
X{(2) = |@%Xr + (1+R)A],
where & and A represent estimators of « and A, respectively.
Since we have not gotten an explicit expression for P(XT+;, =k ‘ Xr) for h = 2 yet, we

propose to use recursively the forecast h — 1 steps ahead to find the forecast h steps

ahead as follows: given that X, X,, ..., X; are known, we propose

~ ~ 2
to predict Xr; by using X{"*(1) = Lx Xr+A— 5],

to predict Xz, by using X\"*(h) = [&X;Map)(h —1)4+A- 31 forh >

(4.37)
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where @ and A represent estimators of « and A respectively.

Finally since we provide an analytic expression for E [XT+;, | XT} in Proposition @ we

_oh\
m+<1 ff)A‘.
1—w

Note that if @X7 4 A is non integer then X{"(1) = XM¥(1) = [aXy + A|.

also propose to predict Xr,, by using

Xy(h) =

4.6 One-step ahead prediction interval

Given that X, X,, ..., X; are known, we can construct the one-sided or the two-sided
100(1 — )% prediction intervals for X;,,. First, consider the construction of the two-

sided 100(1 — )% prediction interval for X,

1. Find & and )A\, so the estimated distribution of X, | X7 is the Poisson distribution

with mean jir., = aXr + A

2. Find the greatest integer value Ir,; such that

4
2 7
where Wﬁﬂ , represent a random variable Poisson distributed with mean jir,

P(W;

e < ZT‘H) <

3. Find the lowest integer value ur; such that

P( Wy, <tira) >1- 2.
Then,
P (lry < Wyy, < ttrr) =P (Wpy, < tirr) =P (Wi, < 1rr)
S1-1-1
=1-7,

therefore, [ZT+1, uT+1] is a prediction interval for Xr,; with confidence of least

100(1 — 7v)%. Besides, notice that the length ur,; — I, is minimal.

Now consider the construction of the upper 100(1 — )% prediction interval for X1,
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1. Find @ and )A\, then given X7, the estimated distribution of Xr,, | Xr is the Poisson

distribution with mean jir,, = aXr + A

2. Find the lowest integer value ur; such that

P(Wg,, Surn)=1-17.
Then,
P(0< Wiy, <tria) =P (Wap,, Sttra) =P (Wyp,, <0)
=>1—9-0
— ]_ — ’)/,

therefore, [0, Uriq } is a smaller upper 100(1 — )% prediction interval for X ;.

Finally, the lower 100(1 — y)% prediction interval for X, is found similarly to the
construction of the upper prediction interval

1. Find & and ?\, then given X7, the estimated distribution of Xr,, | Xr is the Poisson
distribution with mean jir,, = aXr + A

2. Find the greatest integer value /7, such that
P(Wﬁ”l < ZT+1) <7
Then,

P (lT-H < W’\

Hr+1 ) =1-P (Wﬁﬂ—l < ZTH)

=>1-—7,

therefore, [lr+1, o0 ) is a smaller lower 100(1 — )% prediction interval for Xr,;.

4.7 Monte Carlo results for forecasting one-step ahead

In this section we present a Monte Carlo study that investigates and compares the

performances of the forecasts proposed in the last section: exact median, approximate
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median and mode of the conditional distribution. Using the RMSE and the MAE we
compared them in two scenarios, considering known and unknown parameters. For
the simulation study, we used 10000 Monte Carlo samples, and we considered different
values of « and A, namely, « = 0.1, 0.5, 0.9 and A = 0.5, 1, 3, 5. Finally, we considered
the sample sizes T = 25, 50 and 100.

In the first scenario we consider known parameters. Since we do not know the marginal
stationary distribution, we generate N additional values to generate x,. Forr =1,...,
10000 and N = 1500 we generate

2.y =Po(ay, +A), t=2,...,N+1 -y’ 90 .y,

Table 4.1{shows the RMSE and MAE for the proposed forecasts: exact conditional me-
dian X{""(1), approximate median X\"*’(1) and conditional mode X\"(1) considering
known parameters. Notice that in all cases the RMSE and the MAE of the exact condi-
tional median and its approximation are equal, and they are slightly smaller than the

RMSE and MAE of conditional mode, respectively.

Therefore, for known parameters, the approximate median X{***(1) provides the same
results of the conditional median X{""(1), and they are slightly better that the condi-
tional mode X™¥(1), in terms of RMSE and MAE.

In the second scenario we consider unknown parameters. We simulate Monte Carlo
samples of size N + T + 1 and use the last T 4 1 elements of each sample; this is per-
formed to guarantee that the sample of size T + 1 starts approximately in the marginal
stationary distribution. After that, we estimate the parameters a and A for each sam-
ple using YW, CLS and CML estimation methods. For each sample, we verify if the
parameter estimates are in parametric space; if it does not happen, then, we discard
the sample and substitute it by another Monte Carlo sample; for each valid sample we
find the forecasts X{"™(1), X™*(1) and X{M(1).
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Repeat until » = 10000 and for N = 1500
LyW=0
2.y =Polay”, + 1), t=2,.. , N+T+1

r r) r
- yg), ceey ]/5\]/ ygil/ sy yg\]lrr+1
s D0 i1 T+1
i =Yyy for 1=1,..., 1T+

S U

3. xY), xér), ces x<Tr> -2 (ayw/ XYW)/ (&CLS/ ;\CLS), (aCML/ XCML)

4, If (ayw, wa), (aCLs, ;\\CLS) € (O, 1) X (0, OO)
——» XMD)O, XMP(1)0 and XM(1)?); = r 41 and return to step 1
Else

--» return to step 1 without calculating forecasts and without updating r.

Tables and show the results for unknown parameters. For « = 0.1, 0.5, T = 25,
50 and for all A considered the conditional median and its approximation were compe-
titive and slightly better than the conditional mode, while for & = 0.9 the three forecasts
were competitive and YW estimators were a little worse than the others, CML estima-
tors being slightly better than CLS, in terms of RMSE and MAE. For T = 100 the three
estimation methods and the three forecasts were competitive, respectively, in terms of
RMSE and MAE.

In summary, for unknown parameters, the conditional median XMY(1) and its approxi-
mation X"*?(1) provided almost the same results, and they were slightly better that
the conditional mode X{%(1) for small and moderated sample sizes, in terms of RMSE
and MAE. YW estimators were a little worse than the others for small and moderated
sample sizes, in terms of RSME and MAE. For large T the estimation methods and the

forecasts considered provided almost the same results, in terms of RMSE and MAE.

Therefore we suggest to use the approximated conditional median and CLS estimators

because, the approximated conditional median has an easy analytical expression and
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CLS and CML estimators produce almost the same results but CLS estimators have the
advantage of being found more easily than CML estimators, they have explicit formu-

las while CML estimators are found by numerical maximization.

Error Forecast - - - - ---------14

Table 4.1: RMSE and MAE of X(1), X™®(1) and X™¥(1), for different values of

known parameters « and A.
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T =25 T =50 T =100

Error Forecast | Estimator e 14 ©
01 05 0901 05 09|01 05 09|
7777777 XM)1) | YW | 0.89 1.08 244 (090 1.07 236|092 1.08 231 |
XM)1) | CML |089 1.09 231|090 1.07 229|092 1.07 2.28
XM)1) | CLS |089 1.09 233|090 1.07 230|092 1.08 2.29
XMyl YW [089 1.08 244|090 1.07 236|091 1.08 231 |
RMSE | X{™?(1) | CML |0.89 1.08 231|090 1.06 229|091 1.07 228
XMP(1) | CLS |0.89 1.08 233|090 1.07 230|091 1.08 229
XM | YW [092 117 248092 117 241(094 1.16 236 |
XM1) | CML 092 116 234|092 116 233|093 1.16 231
XMU1) | CLS 092 1.6 236|092 116 235|094 1.16 2.33
A=05 o XMy | YW | 057 074 175|057 073 168|056 072 1.62 |
XM)1) | CML |057 074 1.64|057 073 1.60 | 056 0.72 1.59
XM(1) | CLS |057 074 1.66|0.57 073 163|056 0.73 1.60
xMP1) ] YW [058 074 175|057 073 168|057 073 1.62 |
MAE | X™*(1) | CML |0.58 074 1.64|057 072 1.60 | 057 072 1.59
XMP(1) | CLS |058 074 1.66 | 057 0.73 163|057 073 1.60
XMy | YW [055 078 176|056 078 168|055 077 1.62 |
XM(1) | CML | 055 077 1.65|055 0.77 1.62|055 0.77 159
XMU1) | CLS |055 077 1.67 056 078 164|055 077 1.61
XM1) | YW |110 152 351|108 148 3.31|1.06 146 3.30
XM)(1) | CML | 111 152 334|109 148 324|106 146 3.26
XM)1) | CLS |111 153 335|1.09 148 3.25|1.06 146 3.26
(xMP1) ] YW [110 152 351[1.08 147 331|105 146 3.30 |
RMSE | X™®(1) | CML |1.11 152 334|108 147 324|105 146 3.6
XMP(1) | CLS |1.11 152 3.35|1.08 148 325|1.06 146 326
CXM1)y | YW [1.23 159 354|122 156 335|117 154 333
XM1) | CML | 124 158 336|123 155 326 |1.17 154 3.29
XM1) | CLS |124 159 337|123 155 327|117 154 3.30
Aslipmmmor XM1) | YW | 0.80 1.13 264|079 1.09 249|076 1.08 2.46 |
XM)1) | CML | 081 1.13 250|079 1.09 243|076 1.08 244
XM)1) | CLS |081 1.14 251|079 1.09 244|076 1.07 244
(xMP1) ] YW [080 113 264|079 1.09 249|076 1.07 2.46 |
MAE | X™¥®(1) | CML |081 1.13 250|079 1.09 243|076 1.08 2.44
XMP(1) | CLS [081 1.13 251|079 1.09 244|076 1.07 2.44
CX™Y1) | YW 088 1.16 265|087 1.12 250|083 1.12 247 |
XM1) | CML | 089 1.6 250|088 1.13 244|083 112 245
XM)1) | CLS |088 1.6 251|088 1.12 245|083 112 245

100

Table 4.2: RMSE and MAE of X(1), X™®(1) and X™¥(1) for different values of «
and A = 0.5, 1, using three estimation methods, YW, CML and CLS, for sample sizes T

= 25,50 and 100.
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T =25 T=50 T =100

Error Forecast | Estimator o o ®
01 05 09|01 05 09|01 05 09|
******* XMU1) | YW [ 1.89 262 607|189 257 574|189 248 556 |
XMY(1) | CML |1.90 262 578|189 257 560|190 249 551
XMY1) | CLS |1.90 262 578|189 257 560|190 249 552
XMl YW [1.89 262 607 | 1.89 257 574|189 248 556 |
RMSE | X™?(1) | CML |1.90 262 578|1.89 257 560|190 249 551
XMP(1) | CLS | 190 262 578|1.89 257 560|190 248 552
CXM1) [ YW [ 194 265 607|195 261 576|193 252 557 |
XMU1) | CML | 1.96 265 579|195 260 562|193 252 553
XMU1) | CLS |1.96 265 579|195 260 562|193 253 553
A=3 ooy XMU1) | YW [ 147 204 475|146 199 450 | 145 193 435 |
XMU1) | CML | 148 2.04 453|146 199 438|145 194 431
XM(1) | CLS | 148 204 453|146 1.99 438|145 193 4.32
LXMWY [ YW [ 147 204 475|146 200 450|145 193 435 |
MAE | XM®(1) | CML | 148 204 453|146 199 438|145 194 431
XMP(1) | CLS | 148 204 453|146 199 438|145 193 432
CXM1) | YW [ 149 204 474|148 201 451|146 195 435
XMU1) | CML | 1.50 2.05 4.53 | 148 201 440|146 195 4.32
XMU1) | CLS |1.50 2.05 4.53|1.48 200 439|146 195 4.32
XMU(1) | YW | 244 329 790|240 323 733|240 3.17 7.19
XM(1) | CML | 245 329 751|241 323 719|241 3.17 7.14
XM(1) | CLS |245 330 751|241 323 719|241 3.17 7.14
XMy [ YW [245 329 7.90 | 240 323 7.33 (240 317 7.19|
RMSE | X™P(1) | CML |245 329 751|241 323 719|241 317 7.14
XMP(1) | CLS |[245 330 752|241 323 7.19|241 317 7.14
CXMI1) | YW [248 333 792|245 327 734|244 321 7.20|
XM1) | CML | 249 333 752|245 327 720|244 320 7.15
XM1) | CLS |249 3.33 753|245 327 720|244 320 7.15
A=Spommmr XMU1) | YW [190 260 619|188 254 580 |1.88 251 5.66 |
XM(1) | CML | 191 259 589|189 255 568|188 251 5.63
XM(1) | CLS | 191 260 589|189 255 568|188 251 5.63
XMy [ YW [ 1.90 260 619|188 254 580|188 251 5.66 |
MAE | X™P(1) | CML |191 259 589|189 255 568 |1.88 251 5.63
XMP(1) | CLS | 191 260 589 |1.89 255 568|188 251 563
CXMI1) | YW [1.91 261 619]190 256 580|189 253 565 |
XM(1) | CML | 192 261 590|190 256 5.69 | 1.89 252 5.63
XMU1) | CLS | 1.92 262 591|190 256 569|189 252 563

101

Table 4.3: RMSE and MAE of X(1), X™®(1) and X™¥(1) for different values of «
and A = 3, 5, using three estimation methods, YW, CML and CLS, for sample sizes T =

25,50 and 100.
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4.8 Monte Carlo results for forecasting two-steps ahead

In this section we present a Monte Carlo study that compares the behavior of the
following forecasts: the conditional median X{"V(2), the conditional mode X{™¥(2),
the forecast XM*(2) = [&X§Map)(l) +A- %] proposed in equation with h = 2
as well as the integer part of conditional mean two-steps ahead, X|"(2), proposed in
equation (4.36). We use CLS and CML estimation methods.

We simulate R = 10000 valid Monte Carlo samples X;, X,, ..., X, Xr.1, X7,, using the
procedure explained in Section and, then, we estimate the parameters « and A; for
each sample we find the forecasts X{"™(2), X™¥(2), X**®(2) and X{*(2) using the es-
timates of « and A provided by each estimation method. Finally we find the simulated
MAE and the simulated RMSE of the four forecasts. Table 4.4 and Table 4.5 show these

results.

In general CLS and CML estimators provided almost the same results, CML estima-
tors being slightly better than CLS estimators, and the conditional mode X(TMd)(2) was
worse than the other forecasts, in terms of RMSE and MAE.

For A = 1,2 =0.1,0.5,0.9, T = 25 and T = 50 the recursive expression X(TMap )(2) and
the conditional median X{"(2) were competitive and they were slightly better than the
integer part of the conditional mean X{™(2), while for T = 100 the forecasts X{"""(2),
XMP(2) and X{™(2) provided almost the same results, in terms of RMSE and MAE.
For A = 3,a = 0.1,0.5, T = 25 and T = 50 the forecasts X\"(2) and X*(2) were
competitive and they were slightly better than the forecast X{*(2), while for « = 0.9
the forecasts X{"*(2) and X{"(2) were competitive and they were slightly better than
X{MY(2), in terms of RMSE and MAE. For T = 100 the forecasts X™(2), X{"*(2) and
X{™(2) provided almost the same results, in terms of RMSE and MAE. For A = 5,
« = 0.1, T =25and T = 50 the forecasts X"(2) and X*(2) were competitive and
they were slightly better than the forecast X{"(2), for & = 0.5, T = 25 and T = 50 the
forecasts X{™™(2), XM*)(2) and X™¥(2) were competitive, while for a = 0.9, T = 25,
50 and T = 100 the forecasts X\"*’(2) and X\"(2) were competitive and they were
slightly better than the forecast X{"(2).

In summary, the conditional mode X\"¥(2) was the worst forecast, the forecasts X{"'*(2)
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and XMV(2) provided almost the same results and for large T the forecasts X"*(2),
X™MV(2) and X\"™(2) were competitive, in terms of RMSE and MAE. CLS and CML
estimators provided almost the same results, CML estimators being slightly better than
CLS estimators, in terms of RMSE and MAE.

Therefore, we suggest to use X\"*(2) and CLS estimators, because in general X{"*(2)
was slightly better than the others forecasts and CLS estimators have an easy closed
form, while the CML estimators are found by using complicated maximization

methods and they produce almost the same results than the CLS estimators.

4.9 Monte Carlo results for forecasting /1—steps ahead

In this section we show a Monte Carlo simulation that studies the behavior of

[aCLS Xr + /A\CLS - %] if h=1
Xr*(h) =
s XD h—1) + A= 3| i n=2,
and
(ki) 1-a¢s )+
Xr(h) = D‘CLSXT + | ——=— | Aas
1—acs

as forecasts of Xr,,, where acs and XCLS represent the CLS estimators of « and A
respectlvely Notice that, for 1 = 1, X*¥)(1) is the forecast of Xr,; proposed in Equa-
tion4.12

For the simulation study, we generate 10000 valid Monte Carlo samples as explained
in Section considering different values of « and A, namely, « = 0.1, 0.5, 0.9 and
A =0.5,1,3,5and we considered the forecasts h =1, 2, ..., 10 steps ahead. Finally, we
took the sample sizes as T = 25, 50 and 100.

Tables . . . . n and |4.11|show the RMSE and MAE of X™®(1) and X!"(h)
forh = 1,2,...,10 and for the different values of « and A considered. Note that for
« = 0.1 and for each A the RMSE of the forecasts X(TMap)(h) and X(TEi)(h) forh=1,2,...,10
are very close for all sample sizes considered; the same happens for the MAE.
For « = 0.5 and for each A the RMSE of the forecasts X\*(h) and X\"(h) for
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RMSE

MAE

Estimator

Forecast

RMSE

MAE

Table 4.4: RMSE and MAE of X{™(2),

(Ma

(Md
X M) g

T

(2), X

p)

(2) and X*(2) for different values

of x and A = 0.5, 1, using CLS and CML estimation methods, for sample sizes T = 25,

50 and 100.
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RMSE

MAE

Estimator

Forecast

RMSE

MAE

Table 4.5: RMSE and MAE of X{™(2),

X(TMd)

(2), X0MeP)

(2) and X*(2) for different values

of « and A = 3, 5, using CLS and CML estimation methods, for sample sizes T = 25, 50

and 100.



CHAPTER 4. FORECASTING FOR INARCH(1) 106

h = 1,2,...,10 increases a little, as the number of steps ahead, /, increases from 1
to 10; a similar effect happens with the MAE. For « = 0.9 and for each A the RMSE
of the forecasts X*(h) and X\"™(h) for h = 1,2,...,10 increases considerably as / in-
creases from 1 to 10; the same is true for the MAE.

Furthermore, in terms of RMSE, for « = 0.1 and & = 0.5 and for all values of A, either
XM®)(1) is better than X{™)() or they are competitive, the same happens for &« = 0.9
and the sample sizes T = 25 and T = 50. However for T = 100 and for large values
of i, X{¥)(h) is a little better than X\™®(1). On the other hand, in terms of MAE, for
a = 0.1 and for A =1, 2, 3, the forecasts X\"(h) and X"**(I) are competitive, XM*(h)
being a little better; for A = 0.5, X\™(h) is a little better than X{""**(h). For & = 0.5 and
sample sizes T = 50 and T = 100, the forecasts X\"(1) and X™*(1) are competitive,
X™M®)(h) being a little better, for A = 1, 3, T = 25 and for large values of k, X\™(h) is

a little better than X{"*?(11). Finally, for & = 0.9, the forecasts X\"/(h) and X"*(h) are
competitive, Xy (Map) (h) being a little better, except for the cases A =0.5, 1, T = 100 and
for large values of k; in these cases X|"() is a little better than X\"*"(h).

Therefore the predictors X; Me)(11) and X{™(h) have similar behavior and we are not able
to conclude that none is better than the other. Finally, we find that for small « the RMSE
and the MAE of the forecast one-step ahead are not much smaller than of the forecasts
h =2,...,10 steps ahead, while for large « the RMSE and the MAE increase conside-
rably from one-step ahead to two-steps ahead and then increases more slowly, for both
predictors. For X{"*/(11), this can be explained from the fact that the forecasts one-step
ahead use the conditional distribution, but the forecasts i > 2 steps ahead only use a

recursive expression without using the conditional distribution & steps ahead.

4.10 Applications
In this section two data sets are used to illustrate and compare X™(1), X(h) and
X™M®(h) for h = 1 and h = 2 in the INARCH(1) process.

The first application considered is the monthly number of Polio cases in the United
States between January 1970 until December 1983, a total of 168 observations. Several

authors have used this data set. Zeger| [1988] considers a model with a latent pro-
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Forecast A it i ittt

01[090 092 092 093 091 092 092 091 091 091
XMPy | 05113 127 133 135 136 135 135 137 139 137
09233 319 379 417 451 475 498 520 544 558
A=05 - 01093 094 094 093 093 094 093 092 093 093 |
X®(m) |05]120 134 139 140 140 138 138 139 141 139
09236 321 383 422 458 482 506 528 552 565
01111 111 113 112 112 111 113 112 111 112 |
XMPy | 05152 174 181 182 186 1.8 185 185 184 1.85

09334 457 536 602 651 686 715 749 773 798

A=lpmmm 01(124 123 125 123 124 123 125 125 124 125 |
X¥(n) 05158 178 182 183 185 1.82 183 1.83 1.83 184

09 (336 457 537 604 655 692 724 758 7.82 8.8

R 01[193 191 191 191 190 192 191 190 192 193 |
XMy {05259 293 3.01 305 304 308 313 310 312 3.10

09 578 794 944 1061 1150 1224 1281 1329 1371 13.98

A=3 oo 01199 196 19 196 194 197 195 195 196 198 |
X(n) |05|263 296 304 306 3.05 308 312 308 310 3.07
09579 795 944 10.62 11.52 1227 12.86 1336 1379 14.07

R 01246 244 243 249 248 244 249 244 245 246 |
XMP(h) {05331 376 381 384 391 38 391 392 398 397

s 09 | 755 1036 1215 1357 14.77 15.66 1625 16.89 17.52 17.84

01]250 248 246 252 251 247 253 247 249 250
X®(h) |05|335 378 383 385 390 386 389 392 397 39
09 |756 1037 1215 1359 1479 1569 1631 1697 17.61 17.93

Table 4.6: RMSE of X)) and X\"(h) for different values of # and A considering CLS

estimators for h = 1,2,...,10 and sample size T = 25.
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o

0.1
XM®(h) | 0.5
0.9
A=05f------1 F= =
0.1
X¥(h) |05
0.9
0.1
XMP(h) | 0.5
0.9
A — 1 ’’’’’’ N 617
X™(h) |05
0.9
0.1
XMP(r) 0.5
0.9
/\ = 3 ’’’’’’ N (7)717
X¥(h) | 05
0.9
0.1
XMP(h) | 0.5
0.9
A=5 t------] 011
X (n) 105
0.9

Table 4.7: MAE of X™®)(h) and X{"(h) for different values of  and A considering CLS

estimators forh =1,2,..

., 10 and sample size T = 25.
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h

A T S T 4 5 6 7 8 9 10 |

] (01]090 092 091 092 092 093 091 093 092 093

XM™P(p)y 105112 126 130 133 133 133 133 133 133 133
P 09231 316 372 418 449 478 500 520 535 547
01093 094 092 093 093 094 093 094 093 093

Xy 05121 134 137 139 138 138 138 138 137 136
09234 317 371 416 448 478 500 519 533 544

I 01]1.08 107 108 109 108 107 108 108 107 1.06 |
XMP(p)y | 05149 170 174 174 176 182 178 180 177 176

09 (328 449 528 591 634 674 700 722 744 7.64
A=l (01]122 120 120 121 119 119 120 119 118 1.18 |
Xy |05|157 175 178 177 178 18 178 181 178 1.75
09331 449 527 58 632 673 700 722 745 7.65

I 01[187 189 1.8 190 187 190 189 189 1.89 1.90 |
XMP(h) | 05]251 282 289 292 294 298 296 297 297 298
09564 768 912 1017 1094 11.62 12.13 1252 12.82 13.11

A=3 oot 01[192 192 192 193 189 193 192 192 192 193 |
X™(h) |05 |257 2.85 292 294 295 299 296 297 297 298

09 (566 7.69 911 10.16 1092 11.60 1210 1249 12.80 13.09

I 0.1]242 243 247 243 248 244 243 241 244 244 |
XMP(r) | 05324 366 376 378 376 377 378 384 382 380

P 09731 986 1180 13.17 1413 1493 1566 1609 1659 1690
01246 246 250 246 250 246 245 244 248 247

X¥(n) | 05327 368 378 379 376 376 377 383 382 379
091|733 987 1179 13.16 14.14 14.93 1567 16.10 16.61 16.93

Table 4.8: RMSE of X"**() and X\"(h) for different values of # and A considering CLS

estimators for h = 1,2,...,10 and sample size T = 50.
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h
A R S S A N R
] 101]057 059 058 058 058 059 058 060 059 060 |
XMP(r) | 05076 087 090 092 093 094 093 094 093 093
09 |1.63 226 265 297 319 337 353 368 378 387
A=05pmmmmm 01]055 056 055 056 056 056 056 057 056 056 |
X™(h) 105079 089 092 093 094 093 094 094 092 092
09 |1.64 225 264 296 318 339 355 369 377 3.85
N 01[079 078 079 079 078 078 078 079 078 076 |
XMP(r) |05 111 126 128 129 130 136 133 134 131 1.30
09 |246 337 396 442 474 503 522 539 558 571
A=lipom 101]087 086 086 086 085 085 085 086 084 084 |
X¥(h) | 05114 128 129 128 129 133 131 131 130 127
09 |247 337 395 440 472 501 524 540 558 571
N 0.1[145 146 145 146 144 147 145 145 145 146 |
XMP(h) | 05]196 218 224 228 229 233 231 232 230 231
P 09442 605 717 799 856 911 952 977 1005 1025]
01147 147 146 146 145 148 146 147 146 147
X¥(h) | 051199 220 225 228 229 232 230 231 229 230
09 |443 605 716 797 853 910 949 976 10.05 10.25
N 01[190 190 194 190 193 191 190 189 191 189 |
XMP(h) | 05| 255 288 295 297 297 296 299 3.03 3.00 299
S 09577777 932 1034 1115 1179 1235 1267 1310 1333,
01191 191 194 191 193 191 190 189 193 1.89
X¥(n) 05256 287 295 297 296 295 297 3.00 299 297
09 |578 777 932 1033 11.16 11.80 1240 12.69 13.12 13.37

Table 4.9: MAE of X™*(h) and X{"(h) for different values of # and A considering CLS

estimators for h = 1,2,...,10 and sample size T = 50.
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h

S T T S 4 5 6 7 8 9 10 |

] 01]091 092 091 093 092 091 093 092 092 092

XMP(py 105110 126 1.31 130 130 1.32 132 134 131 134

NP . 091228 309 365 413 443 461 484 498 511525
01[094 093 092 093 093 092 094 093 093 093

X¥ () 05120 1.34 139 136 136 137 137 138 136 137

09 (231 311 364 410 439 455 477 489 500 5.14

I 01[1.08 105 107 106 106 108 107 106 105 1.07 |
XMP(p)y 105|147 167 173 173 177 175 178 176 173 1.73

09 (323 441 524 580 620 656 685 712 732 752

A=l 01]121 115 115 115 115 116 116 116 114 117 |
X™ () (05155 171 177 177 179 178 180 179 176 175

09 (327 442 523 577 615 651 678 703 722 742

I 01[18 186 189 188 189 189 187 185 187 1.88 |
XMP(h) | 05]250 2.80 2.84 290 293 292 292 290 290 290

AP 09556 746 883 980 1059 1113 1155 1193 1237 1263
01[190 1.88 191 189 190 190 188 1.86 188 1.90

X¥(n) |05 |254 283 287 291 294 292 291 290 288 288

09 [558 746 883 9.80 1059 11.12 11.53 11.91 1235 12.60

I 0.1[241 242 243 243 240 242 240 244 241 245 |
XMP(h) | 05]319 3.62 368 371 374 372 375 378 374 373

N 091720 987 1146 1270 1359 1440 1500 1547 1595 1615
0.1 (244 243 244 243 241 243 242 245 242 246

X (n) | 05323 364 369 372 374 371 375 378 374 372

09722 986 1146 12.69 1358 1438 1498 1544 1591 16.11

Table 4.10: RMSE of X{™*(h) and X{"(h) for different values of « and A considering
CLS estimators for h = 1,2,...,10 and sample size T = 100.
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h

A R S S A N R

] 101]057 057 057 058 057 057 058 057 058 057 |

XMP(r) | 05074 086 090 090 090 091 091 093 092 093
09161 219 261 294 315 329 344 353 362 374
A=05pmmmmm 101]056 055 055 056 055 055 056 055 056 056 |
X™(h) 105079 089 093 092 092 093 092 094 092 094

09 |1.60 219 259 291 312 325 341 349 356 3.66
N 01[078 076 077 077 078 078 078 078 076 078 |
XMP(r) |05 1.08 123 127 128 130 130 131 130 130 1.29

pet b ] 091242 330 391 434 464 491 512 533 548 561 |
01086 082 082 083 084 084 083 084 082 084

X™(n) | 05113 124 128 128 129 130 132 130 130 128

09 |244 329 3.88 431 462 489 509 528 543 556
N 0.1[144 143 145 143 145 145 143 143 144 144 |
XMP(h) | 05]194 217 221 227 227 228 227 226 225 226

09 |434 585 692 764 826 865 9.00 926 962 9.82

A=3 ooy 101|145 143 146 144 146 145 143 143 144 145 |
X¥(h) | 05196 218 223 226 226 226 225 224 222 223

09 |435 585 693 764 827 865 9.00 926 963 9.83
N 01[190 1.88 191 189 18 189 188 191 188 192 |
XMP(h) | 05]251 285 289 291 296 294 295 297 295 294

09 |567 7.80 9.02 10.02 1073 11.33 11.81 1218 12.60 12.76

A=S et 01/190 187 191 187 188 188 18 190 1.87 191 |
X¥(n) 05252 2.86 2.89 290 294 292 294 296 293 292

09568 779 9.02 10.01 1071 11.31 1179 1217 12.58 12.74

Table 4.11: MAE of X™?(h) and X*)(h) for different values of # and A considering
CLS estimators for h = 1,2,...,10 and sample size T = 100.
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cess that generates overdispersion and autocorrelation. Brannds and Johansson| [1994]
study properties of different estimators for the parameters related to the latent variable
in the model proposed by |Zeger|[1988]. Jorgensen et al.|[1999] propose a nonstationary
state space model. Davis et al.|[2000] propose a approach to diagnosing the existence of
a latent stochastic process in the mean of a Poisson regression model and provide for-
mulae for the effect of autocovariance on standard errors of the regression coefficients.
Heinen! [2003]] proposed the ACP model and Silva [2005] studied different estimation
methods and a criterion for order selection in INAR model. All these researchers used
the data Polio as an application of their investigations. Since the data Polio is overdis-
persed, Heinen/ [2003] and [Silva| [2005] remark that it is not correct to assume the Pois-
son marginal distribution, but it is more appropriate to think of an INARCH(1) model

taking into account the overdispersion.

The second application considered the monthly strike data published by the U.S.
Bureau of Labor Statistics for the period between January 1994 until December 2002, a
total of 108 observations. The counts describe the number of work stoppages leading
to 1,000 workers or more being idle in effect in the period. This data set was used ini-
tially by Jung et al.|[2005] who fitted a Poisson INAR(1) model to the data, but since
the estimates obtained with different methods deviated heavily from each other, they
concluded that such a model is not appropriate. In fact the data set exhibits overdis-
persion, making the Poisson marginal distribution an unreasonable choice. Weifs|[2010]
showed that the data set is modeled very well by an INARCH(1) model.

We refer to the two data sets as POLIO and STRIKE respectively. Clearly the number
of new polio cases at month ¢, X;, can be viewed as the sum of the number of cases
generated (by contagious) from infected people at month t — 1, & » X;_1, and the immi-
gration cases, i.e., infected people that arrived to U.S. between months t — 1 and ¢, €;.
On the other hand, the observed number of work stoppages leading to 1,000 workers
or more being idle in effect at any month ¢, X;, can be viewed as the sum of the number
of work stoppages leading to 1,000 workers or more being idle in effect at month t — 1
and continue on work stoppage, « * X;_1, and the number of newly work stoppages
leading to 1,000 workers or more being idle in effect that were started between the

months f — 1 and ¢, €;.
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Figure 4.1: Monthly counts of POLIO data, January 1970-December 1983 and sample

autocorrelation and partial autocorrelation functions.
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Figure 4.2: Monthly counts of STRIKE data, January 1994-December 2002 and sample

autocorrelation and partial autocorrelation functions.
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Data Minimum Count | Maximum Count | Median | Mean | Variance

STRIKE 0 14 4 4.944 7.849

Table 4.12: Summary Statistics for POLIO and STRIKE data

A summary of their simple descriptive statistics is reported in Table Note that for
both data sets the variance is greater than the mean, i. e., the data sets shows overdis-

persion. Then, the Poisson INAR(1) process is an unreasonable selection.

The sample autocorrelation and sample partial autocorrelation functions of the
polio data are shown in Figure The analysis of these figures suggests a first order
autoregressive process and this process should take into account the overdispersion.
Then, it is reasonable to think of an INARCH(1) process for the POLIO data. Figure
provides the time series plots of STRIKE data as well as their corresponding sample
autocorrelation and sample partial autocorrelation functions. From the partial auto-
correlation function, it becomes clear that a first order autoregressive process seems
to be reasonable, and given that the data set presents overdispersion the INARCH(1)
model is a good choice to fit the STRIKE data.
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In order to compare the different forecasts one-step ahead, we found the one-step
ahead point prediction of the monthly number of Polio cases in United States from
May 1982 to December 1983 as well as of the monthly number of strikes from May
2001 to December 2002. Table and Table present the point forecasts based
on the exact median, approximate median and mode of the Poisson distribution with
parameter a Xr + A as well as the CLS and CML estimates for « and A for POLIO and
STRIKE data, respectively.

For POLIO data, the conditional median X{™¥(1) and its approximation X*(1) pro-
duce the same MSE and MAE, and they are lower than the MSE and MAE of the con-

ditional mode; also, the CLS and CML estimation methods produce the same results.

For STRIKE data, the MSE and MAE of the conditional mode X{""¥(1) is slightly lower
than the MSE and MAE of X™¥(1) and its approximation X{"**(1). Besides, the CLS

and CML produce almost the same results.

Furthermore, note that for the POLIO data

MSE of X¥(1) / MSE of X¥(1) = 1.6/2.3 ~ 0.70
and for the STRIKE data

MSE of X¥(1) / MSE of X{(1) =2.4/2.8 ~ 0.86,

so, in the data set where the conditional median and its approximation are better, they
produce a reduction of 30% of the MSE while in the data set where the conditional

mode is better, the conditional mode produces only a reduction of 14% of the MSE.

In order to compare the different forecasts two-steps ahead, we found the two-steps
ahead point prediction of the monthly number of strikes from May 2001 to December
2002. Table presents the point forecasts based on the exact median X{""(2), the
integer part of the mean X{"(2), and on the mode X{"(2) of the distribution of Xz,
given X as well as the recursive forecast X\"*(2) proposed in equation [@#37) with
h = 2. The CLS and CML estimates for « and A are also included.

Note that, CML estimators are slightly better than CLS estimators in terms of MSE
and MAE. Also, using CLS estimates X{"*(2) is better than the others forecast, being
XM®)(2) the second best and X{™(2) the worst, in terms of MSE and MAE. Using CML
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estimates X{"'(2) is better than the other forecasts, and they are competitive in terms
of MSE and MAE.

In Figure[4.3land Figure[4.4, we present the one-step ahead forecasts using a 95% upper
prediction interval for POLIO and STRIKE data sets. Notice that for POLIO data, seven
observations fell outside of the interval, while for STRIKE data only two observations
fell outside of the interval. This fact may possibly be explained by interventions, i. e.,
some unusual fact that happened in June/96 and May /97 for STRIKE data and in the
months of Dec/71, Oct/72, Nov /72, Aug/76, May /79, Jun/79 and Dec/83 for POLIO
data.



120

CHAPTER 4. FORECASTING FOR INARCH(1)

"eYeP ITALLS 10 Z00Z I9qUuIadd(] 03 T00Z ABIA UNod ATyuow jo peaye sdajs-omj uonorpard jutoJ 61§ d[qel.

91 €1 91 S7Al L'l a1 91 a8l HVIN - - - - -
YA € 14 q6'c q6'c e 9°¢ acy HSIN - - - - -
i € 14 14 i ¥ 14 14 1 €le’l €290 | G4T'C 1450 | 901 2002/22d
i4 € 14 14 14 ¥ 14 14 [4 8¢6'T ¢¢90 | S6l'C 6950 | SOT 200¢/A0N
i4 € 14 14 14 ¥ 14 14 € Sv6e’'l  ¢90 | STCC L9590 | 701 2002/P0
4 ¥ 14 14 14 ¥ 14 q € 196'T ¢90 | ¥¢C 9950 | €01 2002 /39S
i4 € 14 14 14 ¥ 14 ¥ € £96'T  ¢9°0 | 8eC¢’C 9950 | ¢01 200z/8ny
q ¥ q q q ¥ q q i4 996'T ¢¢9°0 | 9¢¢ 9990 | 10T 200/
14 € 14 14 14 14 14 14 € I¥6'T G290 | e€¢C £99°0 | 00T 200z /un(
€ € 4 € € € € 14 q 916'T 6¢9°0 | 8CCC 6990 | 66 200T/ AeN
€ € € ¥ ¥ € € ¥ € 8661 L19°0 | €0€'C 6950 | 86 z00z/1dy
€ € [4 € € € € 14 1 9¢0'C ¢19°0 | Le€C P850 | L6 2002/ TeIN
i4 € € 14 14 ¥ € 14 [4 LCT'C 6650 | ¢¥'C €¥S90 | 96 2002/ 924
€ € € 14 14 € € 14 T QLT°C 1690 | 9¥'C LES0 | 96 2002/ ue(
i4 ¥ 14 q q ¥ 14 q [4 1€C°C 88490 | ge4°C 1€90 | ¥6 1002/22a
i4 ¥ 14 14 14 ¥ 14 14 1 1€C°C 88490 | 8e4'C €90 | €6 100C/AON
i4 ¥ 14 q q ¥ q q i4 8GC°C 989°0 | €£49°C /LTS0 | ¢6 1002/P0
i ¥ ¥ 14 i 14 ¥ q € 8GC°C 989°0 | 849°C £LIS0 | 16 100C/3°S
9 q q q q q q q i4 9/2C /890 | 19C G¢s'0| 06 100T/3nvy
9 9 L 9 9 q V4 9 € ¥GC'C G690 | ¥6SC €S0 | 68 100T/Mmf
9 ¥ q q q q q q q e’ 1690 | ¥99°C ¥ES0 | 88 100Z/unf
i4 ¥ 14 q q ¥ q q 8 G¢l’'C ¥69°0 | 8YSC P90 | L8 1002/ &e]N
ANVE%R ANVGEEVR ANVA%EBVR ANVEEEVR Amvaux ANVQEEVR ANVA%EHVR ANVQEEVR “hx z<\ v z<\ g L | TeR/WUON
TNO SO TND S1O




CHAPTER 4. FORECASTING FOR INARCH(1) 121

—— POLIO serie
—————— 95% upper prediction interval
—6— Outside the interval

Figure 4.3: Monthly counts of POLIO data, January 1970-December 1983 and one-step

ahead forecasts confidence limits.

—— STRIKE serie
————— 95% upper prediction interval
—6— Outside the interval
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Figure 4.4: Monthly counts of STRIKE data, January 1994-December 2002 and one-step

ahead forecasts confidence limits.



Chapter 5

Main contributions and future work

Resumo

Neste capitulo apresentamos as principais contribui¢des para a previsao dos proces-
sos autorregressivos de primeira ordem Poisson INAR(1), estudado no capitulo 3| e
INARCH(1) estudado no capitulo@d Além disso, apresentamos os topicos de pesquisa

futura.

5.1 Main contributions

The aim of this thesis is to provide some contributions to the forecasting for the Poisson
INAR(1) and the INARCH(1) processes. A literature review is given with the purpose
of presenting the existing methodologies and to provide a solid base for the construc-
tion of new methodologies. For these processes the predictors of a future value must
be an integer value. Some researchers have studied how to produce coherent fore-
casts for the INAR(1) process, i.e., integer-valued forecasts, however to the best of our

knowledge forecasting in the INARCH(1) process has not been studied.

Chapter 3 studied forecasting in INAR(1) processes. The main contributions of this

chapter can be summarized as follows:

122
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v' It were provided the analytical expression for the expected value of the integer

part of the one-step ahead conditional mean.

v' It was studied by Monte Carlo simulation the behavior of three forecasts: the
integer part of the conditional mean, the conditional median and the conditional
mode. For known parameters it can be concluded that the three forecasts were

competitive, the integer part of conditional mean being a little worse for a = 0.9.

v For unknown parameters it was used YW, CLS and CML estimation methods, in
this case it can be concluded that for large values of « and small sample sizes YW
estimators were worse than CLS and CML estimators, CLS being slightly better
than CML, in terms of RMSE and MAE. For small and moderate sample sizes
the conditional mean was slightly better than the others. For large sample sizes
the three forecasts: conditional median, conditional mode and integer part of the
conditional mean, and, the three estimation methods considered were competi-
tive, in terms of RMSE and MAE.

v It was suggested to use the conditional median as forecast and CLS estimators,
because they have explicit expression while CML are calculated using numerical
maximization and CML estimators are only a little better than CLS estimators, in
terms, of RMSE and MAE.

v' It was studied the predictive power of Poisson INAR(1) model under misspeci-
tied data. The arrival process was misspecified by letting its distribution be uni-
form over {0,1,2,3}. From the Monte Carlo simulation study it can be deduced
that the predictive power does not deteriorate even when this misspecified model

is used.

v' It was compared the one-step ahead forecasts in two data sets. The first data
set relates to claimants who have had soft tissue injures, such as contusions and
bruises, while the second data set relates to claimants with dislocations. The first
and second data sets are referred as SOFT INJURES and DISLOCATIONS res-
pectively. For SOFT INJURES data the integer part of conditional mean is a little
better than the other forecasts in terms of MSE and MAE. For DISLOCATIONS

data using CLS estimates, the conditional median is better than the conditional
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mode and the integer part of the conditional mean, while using CML estimates
the conditional median and mode are competitive and they are better than the
integer part of conditional mean in terms of MSE and MAE. However, in the data
set where the conditional median and mode are better they produce a reduction
of 46% of the MSE, while in the data set where the integer part of the conditional
mean is better it produces only a reduction of 7% of the MSE. Then, it can be
concluded that the conditional median is in general preferable to the other two

forecasts.

In Chapter 4 it was presented a different way to define the INARCH(1) process based
on the Poisson thinning operator and it was studied the forecasting in this process. The

main contributions of this chapter can be summarized as follows.

v" The INARCH(1) process was defined based on the Poisson thinning operator.

Also, several properties of the Poisson thinning operator were found and proved

v By using an easy argument of Markov chain, it was demonstrated that the mar-

ginal stationary distribution of the INARCH(1) process exists and it is unique.

v' It were found analytic expressions for the r—th marginal ordinary moment and
for the h—steps conditional mean and variance. Also, it was provided an ex-
pression for the h—steps ahead conditional probability generating function. For

h = 2, it was found a simple expression for the conditional probability function.

v" Given that the one-step ahead distribution is a Poisson distribution, its median
and mode were proposed as one-step ahead forecasts; however, given that there
is no closed expression for the median of a Poisson distribution, it was provided
a coherent approximation and its mean and variance limits were found. Also, it

was proposed a recursive expression for the h—steps ahead forecast, for h > 2.

v' For the proposed approximate median it was demonstrated weakly conditional
consistency and then it was demonstrated strongly conditional consistency. More-
over, it was proved weakly consistency and then it was demonstrated strongly

consistency.
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v' It was studied by Monte Carlo simulation the behavior of the one-step ahead
proposed forecasts: conditional mode, conditional median and its approxima-
tion. For known and unknown parameters it can be concluded that the condi-
tional median and its approximation provide almost the same results and they are
slightly better than the conditional mode both in terms of RMSE and in terms of
MAE. Additionally, for unknown parameters YW estimators were a little worse
than the others for small and moderated sample sizes, in terms of RSME and
MAE. For large T the estimation methods and the forecasts considered provided
almost the same results, in terms of RMSE and MAE. Therefore we suggest to
use the approximated conditional median because it has an easy analytical ex-

pression and was slightly better in terms of RMSE and MAE.

v’ Also, by Monte Carlo simulation it was studied the behavior of the two-steps
ahead forecasts: exact conditional mean, conditional mode, the recursive forecast
proposed considering i = 2 and the integer part of the two-steps ahead condi-
tional mean. It can be concluded that the conditional mode was the worst fore-
cast, the conditional median and the recursive forecast provided almost the same
results and for large T the conditional median, the recursive forecast and the in-
teger part of the conditional mean were competitive, in terms of RMSE and MAE.
CLS and CML estimators provided almost the same results, CML estimators be-
ing slightly better than CLS estimators, in terms of RMSE and MAE. Therefore,
we suggest to use the recursive forecast because in general it was slightly better

than the others forecasts.

v For one and two-steps ahead forecasts we suggest to use CLS estimators. The
reason for this is that they produce almost the same results than CML estimators,
CML being slightly better than CLS, in terms of RMSE and MAE, but CLS estima-
tors have the advantage of being found more easily from explicit formulas while

CML estimators are found by complicated numerical maximization.

v' It was studied by Monte Carlo simulation the behavior of the proposed recursive
forecast and the integer part of conditional mean for h = 1,2,...,10. The pre-
dictors have similar behavior in terms of RMSE and MAE and we were not able

to conclude that none is better than the other. Further, we found that for small
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« the RMSE and the MAE of the forecast one-step ahead are not much smaller
than those of the forecasts h = 2,...,10 steps ahead, while for large « the RMSE
and the MAE increase considerably from one-step ahead to two-steps ahead and
then increases more slowly, for both predictors. For the proposed recursive fore-
cast, this can be explained from the fact that the forecasts one-step ahead use the
conditional distribution, but the forecasts h > 2 steps ahead only use a recursive

expression without using the conditional distribution / steps ahead.

v' It were used two data sets to illustrate and compare the one and two-steps ahead
forecasts. The first application considers the monthly number of Polio cases in
the United States, referred as POLIO, while the second application considers the
monthly strike data published by the U.S. Bureau of Labor Statistics, referred as
STRIKE. For POLIO data the one-step ahead conditional median and its approxi-
mation are better than the one-step ahead conditional mode, in terms of MSE and
MAE, while for STRIKE data the one-step ahead conditional mode is slightly bet-
ter than the one-step ahead conditional median and its approximation, in terms
of MSE and MAE. However, in the data set where the conditional median and its
approximation are better, they produce a reduction of 30% of the MSE while in
the data set where the conditional mode is better, the conditional mode produces
only a reduction of 14% of the MSE. On the other hand, for STRIKE data and
using the CLS estimates, the two-steps ahead recursive forecast and the two-steps
ahead conditional mode are competitive and better than the two-steps ahead con-
ditional median, in terms of MSE and MAE. However, using CML estimates, the
two-steps ahead recursive forecast and the two-steps ahead conditional median
are competitive and better than the two-steps ahead conditional mode. Therefore,
we suggest to use the two-steps ahead recursive forecast as two-steps ahead pre-
dictor. Finally using the 95% upper prediction interval proposed, it was found
that for POLIO data seven observations fell outside of the interval, while for
STRIKE data only two observations fell outside of the interval. This fact may
possibly be explained by interventions, i. e., some unusual fact that happened
in June/96 and May/97 for STRIKE data and in the months of Dec/71, Oct/72,
Nov /72, Aug/76, May /79, Jun/79 and Dec/83 for POLIO data.
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5.2 Future work

5.2.1 Additional properties of proposed forecasts

An immediate extension of this work is to study additional properties of

A 2
X(TMap)(l) = [&XT + A - 5}

as predictor of Xr.; given Xr. It could be interesting to study properties for the mo-

ments of

a A g 1 2
X(TM p)(h) = [“ Xrp1 +A — §—|,

the h—steps aheadestimator as predictor of Xr,,, given Xy, for h > 2. So, maybe it could

be possible to prove consistency of the h—steps aheadproposed predictors.

5.2.2 Forecasting for p order processes

An immediate extension of this research could be to consider the forecasting on INAR(p)
or INARCH(p) processes. A discrete non-negative integer-valued process (X;)>1,

Xt € INy, is called an INAR(p) process if it satisfies the recursive equation
Xt=woXp1+apoXy o+ ---+apoXy p+e fort=1,

where {acl,...,ap} < (01), a1 +---+ap < 1, "0’ represents the binomial thinning
operator introduced in Definition (1, (&:);>1 is a sequence of non-negative integer-
valued i.i.d. random variables with mean pe and variance ¢?. It is assumed that all
counting seriesof w; 0 Xy, 1 = 1,2, ..., p are independent of each other and independent
of €. Thus, w10 X;_4,...,ap 0 X;_p given X;_q,..., X;—p are binomial independent ran-
dom variables. On the other hand, we can consider the INARCH(p) process. A discrete
non-negative integer-valued process (X;)>1, Xt € Ny, is called an INARCH(p) process

if it satisfies the recursive equation
Xt:Dél*Xt_l—l—"'—f—tXp*Xt_p—i—Gt for t >1,

where {ay,...,ap} < (0,1), a1 +--- +a, < 1, ‘0’ represents the Poisson thinning

operator given in Definition (€t)¢>1 is a sequence of non-negative integer-valued
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ii.d. random variables with mean y. and variance ¢?2. It is assumed that the all coun-
ting series of a; 0 X, i = 1,2,..., p are independent of each other and independent of
€r. Thus, ay + Xy q,...,ap 0 Xi—p given X;_1q,..., X;—p are Poisson independent random

variables.

The INAR(p) process has an interesting interpretation: consider a cell population in
which each cell can survive until time p, i. e., they can survive up to p generations.
Thus, if the probability of surviving during exactly k generations is &y, then aj o X;_
represents the number of individuals in the population in time t — k that will survive
up to time . Therefore, the population size X; at time t is S + --- + S, + €;, where Sy
is the number of individuals surviving during exactly k generations, this is a; o X;_,
plus the total number of immigrants €;. Note that at each time the fraction of the total
population surviving at least to the next generation is o X;, where f = a1 + -+ + .
Also, if €; has Poisson distribution with mean A is easy to prove that the stationary

distribution of X; is Poisson with mean A/ (1 — B).

The INARCH(p) process can be interpreted similarly if we consider that each cell can
divide up to the p—th generation. Although, in this process the stationary distribution
is not trivial, the conditional distribution is simple; if €; has Poisson distribution with
mean A, then the conditional distribution of X; given all the past of the series is Poisson
with mean a1 X;_1 + - +apXip + A

Therefore, an interesting future work could be to develop a study investigating the per-
formance of the proposed estimators and predictors for higher order processes analo-
gous to the study that was done here for the first-order processes. Another possible
research topic is the behavior of the forecasts when p = a1 +--- +a, = 1, 1. e, when
there is a root of the autoregressive polynomial at the boundary of the unit circle. Also,

it could be studied how forecasts can be affected if the process order is misspecified.

5.2.3 Forecasting for signed processes

The topic that has been attracted much attention among researchers is the study of the

signed integer-value processes. If X is a integer-value random variable, not necessarily
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with positive values, and if & € (0,1), it can be defined a 0 X = (sgn X)(a o |X]). This
is, for X < 0 is defined w o X = —[ax o (—X)]. Notice that & o X can be interpreted as

thinning operator, in the sense of |a o X| < | X].

Thus, it can be defined the signed INAR(1) process by the recursion
Xi=waoXy1+e€ parat=1,

where it is assumed that the support of the €; distribution is the positive and negative
integers. For example, a signed Poisson distribution can be considered as €; distri-
bution. This is, is supposed that €; has symmetry distribution around zero and the

distribution of |e;| is a Poisson distribution.

It could be studied what properties the stationary distribution must be have. Also it
can be investigated the properties of the estimators for unknown parameters and how

to use them to predict future values.



Appendix

In this Appendix we present the proofs of properties of Poisson thinning operation

exhibited in lemma[2|

X1 X1
i) 0+X; = Y Nj, where N; ~ Poisson(0), thus P(N; =0) =1and 0+ X; = >.0=0.
i=0 i=0
ii) Let Gz(s) be the probability generated function (PGF) of random variable Z de-
fined by Gz(s) = E[s%], we have

Gy (X, + %) (8) = B [s"‘l*(Xl +X2)}

ZXlJrXZ N / .. . .

= E[s=i=1 "], where the N; s are i.i.d withN; ~ Poisson(a;)
X1+X

2ie NiJFZj:lXﬁzl Nj}

[
[
X

[525(:11 Ni XA N |, where Nis are independent of Njs
[

[

SZ,'X:ll Ni} E [Szfzzl Nf}

Then, using the uniqueness of PFG we have proved the result.

11i) For the next demonstrations we use the fact

a1 = Z |Z ~ Poisson(a1Z).
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Thus, we have
E[(Xl * Xl] = E{E[Dél * X1 |X1]} = E{E[POiSSOI’I(OClxl)]} = E[leXl] = DélE[Xl].

iv)
Var|ay = Xq ] = E[Var(aq + Xy |Xq)] 4+ Var[E(aq = X3 | X4)]
= E[Var(Poisson(a1X;))] + Var [E(Poisson (a1 X1))]

=E [leXl] + Var [ochl]
= aE[X;] + afVar [X;].

Properties v) and vi) follow from the definition.
vii)
Cov(ag + X1, ap+ X ) = E[Cov(ag + X7, ap * Xo|0(X3, X2)) ]
+ Cov [E(D(l ® X1|0'(X1, Xz)) , E(D{z ® X2|0'(X1, Xz))]
= E[E(ocl * Xl © KD X2|0'(X1, Xz))

— E(D{l * X1|0'(X1, Xz))E(D{z * X2|0'(X1, Xz))]
+ COV(DCl * Xl,()éz * Xz)

e

o (X1, X2 ) — a1 X1 -2 Xp
+E [061X1 . DQXQ} —E [alXﬂ E [062X2]
[ ( o(X1, X2 ) (

o(X1, X2 >
—E[a1X1] B[22 X5 ]
—E[E (a1 + X1 |0(X1, X)) E (a2 % Xp | (X1, X2))]
—E[a1X1] B[22 X5 ]
=E[m Xy -00Xo | —E[a1X1]E[a2X5]
=waayCov( Xy, Xz),

where 0 (X7, X;) denotes the sigma algebra generated for X; and X5, and for the
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hypothesis the counting series N;’s of a1 * X; are independent of counting series
M]"S of Ky * Xz.

viii) B[(aq * X1)?] = E{B[(a1+X1)?|X1] } = E[a1 X1 + (a1 X1)?] = a1 E[X1] +af E[XF].
ix) From equation we have

E[ (a1 + X1)"] = E{E[ (a1 + X1)"| X1]}
= E{E [ (Poisson(x1X7))"]}

= >1S(r,k) af E[X] .
k=1

x)

E[(O&l # Xl)Xz] = E{E [(061 # Xl)Xz | U'(Xl,Xz)] }
:E{XzE[(le*Xl)|0'(X1,X2)]}
= E[Xz c X1 Xl] = 061E[X1X2].

xi)

E[(a1+X1)? X2] = E{E[(a1+ X1)* X2 | 0(X1, X2) ] }
=E{XE[(n+X1)*|0(X1, X2)] }
=E[X (v Xy +0a1X7) ]
= mE[X1Xp] + a3 E[X? X3).

xii)
E[(a1+X1)" Xo] = E{E[ (a1« X1)" Xp | 0(X1,X2) ] }
:E{XzE[(DCl*Xl)r|O'(X1,X2)]}

,
=E|X; ) S(r,k)af X}

k=1

7

= > S(r,k) kE[XF X, .
k=1
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Xiii)

E[(wl*Xl)n :E{E[al*Xl o(X1, X2, ..., Xm) }
=2

m

:E{HXZ E[(a1+X1)]0(X1, Xa, Xm)}}
=2
m

—E ]_[X a1 Xq
:1n

=mE|[]]X
i=1

where 0 (X3, Xy, ..., X;) denotes the sigma algebra generated by X3, X, ..., Xp.

Xiv)
m m
E[((xl*Xl)ran :E{E[(le*Xl)rnXZ o (X1, Xa, .., Xm) }
i=2 i=2
m
ZE{ an E[ (v +Xy) |o(Xq,Xo, ,Xm)}}
=2
m r
=E| [[Xi- D] S(r,k) ol Xf
=2 k=1
r m
= > Sk E| XF [ X
k=1 i=1
x0)

E[(a1 + Xy ) (a2 X5)] = E{E [ (13 *Xl)(zxz*Xz |o(X1,X2) ] }

:E{E iN ZM (X1, Xa) }
i=1
:E{E ZN (X1, X2) ZM (X1, Xa2) }

—E{B[a+ X |0(X1,X2) | E [az*xz\a(xl,xz)] }
=a 0 E[X] X5,



CHAPTER 5. MAIN CONTRIBUTIONS AND FUTURE WORK 134

where the N;’s and the M;’s are the counting series of a7 * X; and a; * X, respec-

tively, and they are independent for the hypothesis.

Property xvi) follow by a similar argument.
xvii)

E[(a+ X1 )* (a2 # X2 )] = E{E [ (a1 = X1)* (a2 + X2) | 0(X1, X2) | }

E{E_(iNl)Z%M (X1, X2) }
:E{E (ZN) o (X1, X2) ZM (X1, X2) }

:E{E[(M*Xl) ‘O'(Xl,XZ)}E[0(2*X2‘0'(X11X2)}}
=E[(a1 X1 +0a]X7) (a2 X2)]
= a1 E[X; Xo] +a?adE[ X3 X, ).

Property xviii) follow by a similar argument.
xix)

E[Dél*(lxl*Xl)] :E{E [0(1* (0(1*X1)|X1] }
= E{E [ » Poisson(a; X1)] }
= E {a1 E [Poisson (a1 X1) | }
= ofE[X1].

xx) Proof by mathematical induction
» For k=1 we have that E[a; » X;] = a1E[X1] by property iii)
* Suppose for k = r —1 that

E[ecl e (g (o # Xl)Z] = o) VE[ X1 ]

'

r—1 aq’s

*x For k = r we have

Elag « - (@ + (w1 + X1)) ] = Elag # - (g (a1 +Y)) |

n'g g

r aq’s r—1 aq's
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= 0(5_1 E[Y]
= “71’—1 E[(Xl * X1 ]
= o] E[ X1 ],
where Y = a7 = Xj.
xxi) Proof by mathematical induction
= For k=1 we have that Var[a; = X1] = a2 Var[Xj] + a1 E[X;] by property (iv.)

* Suppose for k = r — 1 that

_1 1—al! -~
Varlay =+ (a1 = (a1 + X1)) ] = o7 )Var[X1]+( 1_;1 VE[ X ]

v~

r—1 aq's

* For k = r we have

Var[(icl * oo (061 * (0(1 * Xl)z] = Var[ecl LI (061 * (0(1 * Y)z]

Y Y
r aq's r—1 wq’s

= o2V var[ Y] + (

= a%(r_l) (oc% Var[X;] 4+ a1 E[X1])

1 _ 0‘1‘—1
+ (—11)045—1 mE[ X ]

1—a
1 _ “1’—1
— o Var{Xa )+~ B[+ L ) of E[

r

‘Xl r
E [X;],
_M)“l [X1]

= a¥ Var[X;] + (1
where Y = aq * X3.

Properties xxii) and xxiii) follow from properties xx) and xxi) respectively.
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