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Our world, our life, our destiny, are dominated by uncertainty; this
is perhaps the only statement we may assert without uncertainty.

—BRUNO DE FINETTI



Abstract

In this dissertation, we focus on the issue of performing likelihood ratio testing inferences
in unit gamma regressions. Our interest lies in testing inferences that are accurate and reliable
in small samples. The unit gamma regression model was proposed by Mousa et al. (2016)
based on the unit gamma distribution introduced by Grassia (1977). Closed form expressions
for the score vector and for Fisher’s information matrix were obtained by Mousa et al. (2016).
The model is useful for dealing with doubly limited continuous dependent variables (DLCDV),
such as proportions, indices and rates, being an alternative to the beta regression model, which
has been widely used in the literature. We derive a small sample adjustment to the likelihood
ration ratio test statistic in the class of unit gamma regressions using the approach proposed by
Skovgaard (2001). The numerical evidence we present show that the two corrected tests we
propose outperform the standard likelihood ratio test in small samples. A real data example is
presented.

Keywords: Beta Regression. Likelihood ratio test. Unit gamma distribution. Unit gamma
regression.



Resumo

O foco da presente dissertação reside na realização de testes de hipóteses em regressões
gama unitária. O teste da razão de verossimilhanças pode ser consideravelmente impreciso
em pequenas amostras. Nosso interesse reside na obtenção de testes que sejam precisos e
confiáveis quando o tamanho da amostra é pequeno. A distribuição gama unitária foi proposta
por Grassia (1977) e serviu de base para o modelo de regressão gama unitário introduzido por
Mousa et al. (2016). O modelo sugerido é útil para modelar variáveis dependentes contínuas
duplamente limitadas (VDCDL), como proporções, índices e taxas, sendo uma alternativa ao
modelo de regressão beta, que tem sido amplamente utilizado na literatura. Nós derivamos
uma correção para a estatística da razão de verossimilhanças nessa classe de modelo utilizando
o enfoque desenvolvido por Skovgaard (2001). Com base em tal correção, apresentamos duas
estatísticas de teste corrigidas. A evidência numérica que nós apresentamos indica que os testes
corrigidos conduzem a inferências mais precisas do que aquelas obtidas com o teste da razão
de verossimilhanças padrão em pequenas amostras. Aplicamos os resultados a um conjunto
real de dados.

Palavras-chave: Distribuição gama unitária. Regressão beta. Regressão gama unitária. Teste
da razão de verossimilhanças.
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CHAPTER 1

Introduction

1.1 Introduction

In several practical situations, whether experimental or observational, there is interest in inves-
tigating how a set of variables impacts a given variable of interest which is done through regres-
sion analysis. The class of beta regression models proposed by Ferrari and Cribari-Neto (2004)
can be used to model dependent variables that assume values in the standard unit interval, i.e.,
in (0,1), such as rates, proportions, and concentration indices. Many empirical studies in dif-
ferent fields have been based on the beta regression model, such as Brehm and Gates (1993),
Hancox et al. (2010), Kieschnick and McCullough (2003), Smithson and Verkuilen (2006) and
Zucco (2008). An alternative regression model was proposed by Mousa et al. (2016) that was
based on the unit gamma distribution introduced by Grassia (1977). As the beta regression
model, the unit gamma regression model allows practitioners to model responses that assume
values in the standard unit interval.

The likelihood ratio test is the most commonly used test for making testing inferences in
regression analysis. Such a test, however, can be considerably size-distorted in small samples.
A well known correction to the likelihood test statistic is the Bartlett correction (Lawley, 1956).
A similar correction to the score test statistic was obtained by Cordeiro and Ferrari (1991).
Such corrections, however, require the use a large number of log-likelihood cumulants and
involve long and tedious algebra. An alternative correction that can be more easily obtained
was proposed by Skovgaard (2001). It only requires second-order log-likelihood derivatives.
We use such an approach to obtain two modified likelihood ratio test statistics that can be used
to perform reliable testing inferences in unit gamma regressions. The Monte Carlo evidence
that we present show that testing inferences based on the two modified test statistics can be
considerably more accurate than that based on the standard likelihood test statistic in small
samples.

1.1.1 The dissertation structure

In Chapter 2, we present the beta regression model and the unit gamma regression model, with
their respective score functions and information matrices. In Chapter 3, we derive two modi-
fied likelihood test statistics using the approach proposed by Skovgaard (2001). In Chapter 4
we present and discuss the results of a set of Monte Carlo simulations that were performed to
evaluate the finite sample behavior of the standard and modified likelihood ratio tests. In Chap-
ter 5 we present an empirical application that uses both the unit gamma and the beta regression
model. Some concluding remarks are offered in Chapter 6.

12
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1.1.2 Computational resources

The programming routines for Monte Carlo simulations were written in the OX matrix pro-
gramming language (Doornik, 2009) version 7.10 for the WINDOWS operating system. OX

is an object-oriented matrix programming language whoso syntax is similar to those of C and
C++. It is available ree of costs for academic use at http://www.doornik.com. For
more details, see Doornik (2009). All figures presented in this dissertation were produced
using the R statistical computing environment (Team, 2014) version 3.4.0 for the WINDOWS

operating system. It is freely available at http://www.R-project.org. The dissertation
was typeset using LATEX.

1.2 Maximum likelihood estimation

Consider a random sample y = (y1, . . . ,yn) from a population with probability density function
f which is indexed by θ ∈ Θ ⊆ IRk, Θ being the parameter space. The main interest lies in
performing inferences on the components of θ , i.e., on θ1, . . . ,θk. Such inferences are based
on statistics, i.e., on functions of the data. Let θ̂ be a statistic that is used to estimate θ , i.e.,
an estimator of θ . The most commonly used estimation method is the maximum likelihood
method. The maximum likelihood estimator, θ̂ , is the value of θ that maximizes the likelihood
function given by

L(θ)≡ L(θ ;y) = f (y;θ),θ ∈Θ,Θ⊆ IRk.

Notice that the likelihood function is the joint probability density function, but viewed as a
function of θ for a given y. That is,

θ̂ = arg max
θ ∈Θ

L(θ).

It is usually more convenient to maximize the logarithm of the likelihood function, which is
known as the log-likelihood function:

`(θ) = log(L(θ)) = `(θ ;y).

Notice that the value of θ that maximizes L(θ) also maximizes `(θ).
The score function, U(θ) = (U1(θ), . . . ,Uk(θ))

>, is the vector of log-likelihood derivatives
with respect to the unknown parameters, i.e.,

Ur(θ) = ∂`(θ)/∂θr, r = 1, . . . ,k,
U(θ) =5θ{`(θ)},

where5θ = (∂/∂θ1, . . . ,∂/∂θk)
> is the gradient operator. The score function shows how the

log-likelihood function varies with θ .
Maximum likelihood estimators enjoy several desirable properties (Lehmann and Casella,

2011). For instance, they are: (i) asymptotically unbiased, (ii) consistent, (iii) asymptotically
normally distributed, and (iv) asymptotically efficient.
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1.3 Nonlinear optimization

Many, if not most, maximum likelihood estimators cannot be expressed in closed form, i.e.,
frequently

∂`(θ)

∂θ
= 0

is a system of nonlinear equations whose solution cannot be expressed in closed form. A
commonly used approach is to use a nonlinear optimization method to numerically maximize
the log-likelihood function in order to obtain parameter estimates based on a given data set.
Commonly used optimization methods are Newton-Raphson, Fisher’s score, steepest descent,
BHHH and BFGS. The latter belongs to the class of quasi-Newton methods whereas the re-
maining methods are members of Newton class. Such methods are iterative, i.e., they start at a
given point (θ0) and iterate until convergence is reached. The iterative scheme is of the form

θt+1 = θt +λt∆t , t = 0,1,2, . . . .

Here, λt is a positive scalar known as the step length and ∆t is the directional vector. Ideally,
an optimal value for λt should be computed at each iteration, i.e., the value that solves

∂`(θt +λt∆t)

∂λt
=U(θt +λt∆t)

>
∆t = 0.

Since such approach is computational burdensome, it is often replaced by the use of an ad hoc
rule.

The most used class of methods is the gradient class, for which ∆t = Mt ×Ut , Mt being
a positive-definite matrix and Ut denoting the score function at the t-th iteration. Different
choices of Mt yield different optimizations methods.

Let J≡ J(θ) denote the Hessian matrix, i.e., the matrix of second log-likelihood derivatives.
The Newton-Raphson method uses the following updating scheme:

θt+1 = θt−λtJ−1
t Ut , t = 0,1,2, . . . .

A potential problem with this method is that the Hessian is not guaranteed to be negative-
definite when we are not close to the maximum which would case Mt not to be positive-definite.

The class of quasi-Newton method overcomes that problem by using an updating scheme
for Mt :

Mt+1 = Mt +Nt ,

where Nt is positive-definite. If M0 is positive definite, then all elements of the above sequence
will also be positive-definite. Nt must be such that Mt converges to −J−1

t as t→∞. Notice that
the methods that belong to the quasi-Newton class do not make use of the Hessian matrix, i.e.,
they do not require second order log-likelihood derivatives.

Let δt = θt+1− θt and νt = Ut+1−Ut . The BFGS method is the most commonly used
quasi-Newton method. It uses

Mt+1 = Mt +
δtδ
′
t

δ ′t νt
+

Mtνtν
′
t Mt

ν ′t Mtδt
−ν

′
t Mtνt

(
δt

δ ′t νt
− Mtνt

ν ′t Mtνt

)(
δt

δ ′t νt
− Mtνt

ν ′t Mtνt

)′
.
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In the remainder of the dissertation, we shall perform log-likelihood maximizations using
the BFGS method. It is implemented into the MaxBFGS function of the OX matrix program-
ming language (Doornik, 2009). For further details on nonlinear optimization methods, see
Nocedal and Wright (2006).



CHAPTER 2

The unit gamma regression model

2.1 Introduction

Regression analysis is commonly used to explain the behavior of doubly limited continuous
dependent variables (DBCDVs) that assume values in (a,b). It is well known that the linear
regression model not is apropriate for modeling such variables since it may yield fitted values
that are smaller than a or larger than b. In addition, it fails to account for distributional asymme-
try and heteroskedasticity (Ferrari and Cribari-Neto, 2004). There is then need for regression
models that are tailored to DBCDVs. The fixed dispersion beta regression model was proposed
by Ferrari and Cribari-Neto (2004). A variable dispersion variant of the model was used by
Smithson and Verkuilen (2006) and formally introduced by Simas et al. (2010). An alternative
model is based on the unit gamma law (Grassia, 1977). Like the beta regression model, the unit
gamma regression model has two variants, namely: fixed and variable dispersion variants.

2.1.1 Beta regression

The beta distribution is a parametric alternative to the normal distribution for modeling con-
tinuous data that are restricted to the standard unit interval. Its density can be left- or right-
skewed, symmetric, J-shaped and inverted J-shaped. Ferrari and Cribari-Neto (2004) proposed
a regression model based on the assumption that the response y follows the beta distribution.
They changed the distribution parameterization so that it becomes indexed by location (µ) and
precision (φ ) parameters, i.e., y∼ Beta(µ,φ). The reparameterized beta density is

b(y; µ,φ) =
Γ(φ)

Γ(µφ)Γ[φ(1−µ)]
yµφ−1(1− y)φ(1−µ)−1, 0 < y < 1,0 < µ < 1,φ > 0,

where Γ(·) is the gamma function. Here, IE(y) = µ and Var(y) = µ(1−µ)/(φ +1). Some beta
densities are displayed in Figure 2.1.

Let y1, . . . ,yn be independent random variables, each yi following the beta law, i.e., yi ∼
Beta(µi,φi), i = 1, . . . ,n. The location (mean) submodel is

g1(µi) = ηi =
p

∑
j=1

β jxi j

and the precision submodel is

g2(φi) = ζi =
q

∑
j=1

δ jhi j,

16
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Figure 2.1 Beta densities for different values of µ; φ = 10 (left panel) and φ = 80 (right panel).

where β = (β1, . . . ,βp)
> and δ = (δ1, . . . ,δq)

> are vectors of unknown regression parame-
ters β ∈ IRp and δ ∈ IRq, xi1 ≡ hi1 ≡ 1, xi2, . . . ,xip, hi2, . . . ,hiq are observations on p and
q covariates (p+ q < n). Finally, g1(·) and g2(·) are strictly monotonic and twice differen-
tiable that map (0,1) → IR and (0,∞) → IR, respectively. Possible choices of g1(µi) are:
logit g1(µi) = log[µi/(1− µi)], probit g1(µi) = Φ−1(µi), where Φ(·) is the standard normal
cumulative distribution function, log-log g1(µi) = − log[− log(µi)], complementary log-log
g1(µi) = log[− log(1−µi)], and Cauchy g1(µi) = tan[π(µi−0.5)]. Possible choices of g2(φi)
are: identity g2(φi) = φi, log g2(φi) = log(φi) and square root g2(φi) =

√
φi. In the fixed dis-

persion beta regression model, g2(φi) = g2(φ) = δ0.

2.2 Unit gamma regression

An alternative regression model was introduced by Mousa et al. (2016). It is based on the
unit gamma distribution proposed by Grassia (1977). As the beta regression, it is useful for
modeling DBCDVs. The unit gamma distribution is indexed by two parameters: α,φ > 0. We
shall denote it by ug(α,φ). The unit gamma density can be written as

ug(y;α,φ) =
αφ

Γ(φ)
yα−1 log

(
1
y

)φ−1

, 0 < y < 1,α > 0,φ > 0.
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Here, IE(y) = [α/(α + 1)]φ and Var(y) = [α/(α + 2)]φ − [α/(α + 1)]2φ . The density was
reparameterized by setting α = [µ1/φ/(1− µ1/φ )] so that IE(y) = µ and Var(y) = µ{[1/(2−
µ1/φ )φ ]−µ}. Notice that the variance is a function of the mean. The new density function is

ug(y; µ,φ) =

(
µ1/φ

1−µ1/φ

)φ

Γ(φ)
y

µ1/φ

1−µ1/φ
−1

log
(

1
y

)φ−1

, 0 < y < 1,0 < µ < 1,φ > 0. (2.1)

We shall denote the reparameterized unit gamma distribution by ug(µ,φ). Notice that φ can be
interpreted as a precision parameter. Some unit gamma densities are displayed in Figure 2.2.

Table 2.1 contains values of the variance of y corresponding to different values of µ and
φ for the beta and unit gamma laws. It is noteworthy that for the same values of the two
parameters the variance of y is typically smaller in the unit gamma distribution. For instance,
when µ = 0.5 and φ = 30.0, we obtain 0.0081 for the beta law and and 0.0039 for the unit
gamma law.

Table 2.1 Variance of y for different values of µ and φ .
beta distribution unit gamma distribution

φ µ 0.1 0.3 0.5 0.8 0.9 0.1 0.3 0.5 0.8 0.9
0.5 0.0600 0.1400 0.1667 0.1067 0.0600 0.0609 0.1271 0.1280 0.0460 0.0150
1.0 0.0450 0.1050 0.1250 0.0800 0.0450 0.0426 0.0865 0.0833 0.0267 0.0082
2.0 0.0300 0.0700 0.0833 0.0533 0.0300 0.0253 0.0522 0.0491 0.0145 0.0043
5.0 0.0150 0.0350 0.0417 0.0267 0.0150 0.0108 0.0238 0.0220 0.0061 0.0018

10.0 0.0082 0.0191 0.0227 0.0145 0.0082 0.0054 0.0124 0.0115 0.0031 0.0009
15.0 0.0056 0.0131 0.0156 0.0100 0.0056 0.0036 0.0084 0.0078 0.0021 0.0006
30.0 0.0029 0.0068 0.0081 0.0052 0.0029 0.0018 0.0043 0.0039 0.0011 0.0003
50.0 0.0018 0.0041 0.0049 0.0031 0.0018 0.0011 0.0026 0.0024 0.0006 0.0002
70.0 0.0013 0.0030 0.0035 0.0023 0.0013 0.0008 0.0019 0.0017 0.0005 0.0001
90.0 0.0010 0.0023 0.0027 0.0018 0.0010 0.0006 0.0014 0.0013 0.0004 0.0001

Let y1, . . . ,yn be independent random variables, where each yi ∼ ug(µi,φi), i = 1, . . . ,n,
with mean µi and precision φi. In the unit gamma regression model proposed by Mousa et al.
(2016), the ith mean response can be written as

g1(µi) = ηi =
p

∑
j=1

β jxi j, (2.2)

the ith precision being given by

g2(φi) = ζi =
q

∑
j=1

δ jhi j. (2.3)

Since Var(yi) = µi{[1/(2− µ
1/φi
i )φi]− µi}, where µi = g−1

1 (ηi), the regression model is het-
eroskedastic. The fixed dispersion unit gamma regression model is obtained by setting g2(φi) =
g2(φ) = δ0.
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Figure 2.2 Unit gamma densities for different values of µ; φ = 0.5 (left panel) and φ = 1.5
(right panel).

Consider the unit gamma regression model defined in (2.2) and (2.3) and write the model
parameter vector as θ = (β>,δ>)>. The variable dispersion unit gamma regression model
log-likelihood function is

`(θ)≡ `(β ,δ ) =
n

∑
i=1

`i(µi,φi), (2.4)

where
`i(µi,φi) = φi log(di)− logΓ(φ)+(di−1)y∗i +(φi−1)y†

i .

Here
y∗i = log(yi), y†

i = log(− log(yi)) and di = µ
1/φi
i /(1−µ

1/φi
i ). (2.5)

Let z =−y∗ =− log(y). The distribution function of z can be obtained as follows:

Fz(a) = Pr(z≤ a) = Pr(− log(y)≤ a) = Pr(y > exp(−a)) = 1−Fy(exp(−a)).

The above result implies that

fz(a) =− fy(exp(−a))× (−exp(−a)) =
dφ

Γ(φ)
a(φ−1) exp(−da).

Hence, z = −y∗ is gamma-distributed with parameters φ and d. It then follows that IE(y∗) =
IE(−z) = −φ/d. Additionally, y† = log(− logy) = log(z) is distributed as log-gamma with
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parameters φ and d. It can then be shown that

µ
∗
i = IE(y∗i ) =−

φi

di
, µ

†
i = IE(y†

i ) = ψ(φi)− log(di),

υ
∗
i = Var(y∗i ) =

φi

d2
i
, υ

†
i = Var(y†

i ) = ψ
′(φi), c∗† =− 1

di
, (2.6)

where ψ(·) and ψ ′(·) are the digamma and trigamma functions, respectively.
The log-likelihood function `(θ) can be written in matrix form as

`(θ) = {(y∗−µ
∗)>(D−I )+(y†−µ

†)>(Φ−I )+b>}ι , (2.7)

where y∗ = (y∗1, . . . ,y
∗
n)
>, µ∗ = (µ∗1 , . . . ,µ

∗
n )
>, y† = (y†

1, . . . ,y
†
n)
>, µ† = (µ†

1 , . . . ,µ
†
n )
>, D =

diag(d1, . . . ,dn), Φ = diag(φ1, . . . ,φn), I is the n× n identity matrix, ι is the n-dimensional
column vector of ones and b = (b1, . . . ,bn)

> with bi = φi log(di)− logΓ(φi) + µ∗i (di− 1) +
µ

†
i (φi−1), i = 1, . . . ,n, with di defined in (2.5).

The first and second derivatives of (2.7) are

(i)
∂`i(µi,φi)

∂ µi
=

di(1+di)(y∗i −µ∗i )

µiφi
.

(ii)

∂ 2`i

∂ µ2
i
=

di(1+di)

φiµ
2
i

(
1+2di

φi
−1
)
(y∗i −µ

∗
i )−

di(1+di)

µ2+1/φ φ
.

(iii)

∂`i(µi,φi)

∂φi
=

(
−di log(µi)(1+di)

φ 2
i

)
(y∗i −µ

∗
i )+(y†

i −µ
†
i ).

(iv)

∂ 2`i

∂φ 2
i
=

[
di

φ 3
i

(
log(µi)

φi
+

di log(µi)

φi
+2
)

log(µi)(1+di)+
d2

i (log(µi))
2

φ 4
i

(1+di)

]
(y∗i −µ

∗
i )

− di

φ 2
i

log(µi)(1+di)

(
1
di
+

log(µi)

φi
+

log(µi)

diφi

)
−ψ

′(φi)−
log(µi)(1+di)

φ 2
i

.

(v)

∂ 2`i

∂ µi∂φi
=

[
−di(1+di) log(µi)

µiφi

(
1+2di

φ 2
i

)
− di(1+di)

µiφ
2
i

]
(y∗i −µ

∗
i )

+
di(1+di)

µiφi

(
1
di
+

log(µi)

φi
+

log(µi)

φidi

)
.
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Under the regularity conditions listed in Sen et al. (2010), the expected value of ∂`i(µi,φi)/∂ µi
equals zero. Hence,

IE
[

∂`i(µi,φi)

∂ µi

]
= 0⇐⇒ IE

[
di(1+di)(y∗i −µ∗i )

µiφi

]
= 0⇐⇒ IE[y∗i ] = µ

∗
i

Using (2.2) and (2.3), we obtain

∂ 2µi

∂ηi∂ µi
=−

g′′1(µi)

g′1(µi)2 and
∂ 2φi

∂ζi∂φi
=−

g′′2(φi)

g′2(φi)2 .

It follows from (2.2) and (2.7), j = 1, . . . , p, that

∂`(β ,φ)

∂β j
=

n

∑
i=1

{
∂`i(µi,φi)

∂ µi

∂ µi

∂ηi

∂ηi

∂β j

}
=

n

∑
i=1

{
di

µiφi
(1+di)(y∗i −µ

∗
i )

1
g′1(µi)

xi j

}
. (2.8)

In similar fashion,

∂`(β ,φ)

∂δ j
=

n

∑
i=1

{
∂`i(µi,φi)

∂φ j

∂φ j

∂ζ j

∂ζ j

∂δ j

}
=

n

∑
i=1

{[(
−di log(µi)(1+di)

φ 2
i

)
(y∗i −µ

∗
i )+(y†

i −µ
†
i )

]
1

g′2(φi)
hi j

}
, (2.9)

j = 1, . . . , p.
In what follows we shall write (2.8) and (2.9) in matrix form. The score function, obtained

by differentiating the log-likelihood function with respect to the unknown parameters, is given
by U = (Uβ (β ,δ )

>,Uδ (β ,δ )
>)>, where

Uβ (β ,δ ) = X>T1Φ
−1M−1D(I +D)(y∗−µ

∗) (2.10)

and
Uδ (β ,δ ) = H>T2[P(y∗−µ

∗)+(y†−µ
†)], (2.11)

where T1 = diag(1/g′1(µ1), . . . ,1/g′1(µn)), T2 = diag(1/g′2(φ1), . . . ,1/g′2(φn)), M = diag(µ1,
. . . ,µn), D = diag(d1, . . . ,dn), P = diag(−d1(1+d1) log(µ1)/φ 2

1 , . . . ,−dn(1+dn) log(µn)/φ 2
n ),

X is an n× p matrix whose ith row is x>i and H is n×q matrix whose ith row is h>i . The max-
imum likelihood estimators of β and δ solve Uβ (β ,δ ) =Uδ (β ,δ ) = 0. Maximum likelihood
estimates are typically obtained by numerically maximizing the log-likelihood function using
a Newton or quasi-Newton algorithm such as Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-
gorithm; see Nocedal and Wright (2006).

We shall now obtain Fisher’s information matrix for (β ,δ ). For t, j = 1, . . . , p,

∂ 2`(β ,φ)

∂βt∂β j
=

n

∑
i=1

{[
∂ 2`i(µi,φi)

∂ µ2
i

∂ µi

∂ηi
+

∂`i(µi,φi)

∂ µi

∂ 2µi

∂ηi∂ µi

]
∂ µi

∂ηi

∂ηi

∂β j
xit

}
=

n

∑
i=1

{[(
di(1+di)

φiµ
2
i

(
1+2di

φi
−1
)
(y∗i −µ

∗
i )−

di(1+di)

µ2+1/φ φ

)
1

g′1(µi)
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+
di

µiφi
(1+di)(y∗i −µ

∗
i )

(
−

g′′1(µi)

g′1(µi)2

)]
1

g′1(µi)
xi jxit

}
.

Also, for t = 1, . . . , p, l = 1, . . . ,q,

∂ 2`(β ,φ)

∂βt∂δl
=

n

∑
i=1

{[
∂ 2`i(µi,φi)

∂ µi∂φi

∂φi

∂ζi

∂ζi

∂δl

]
1

g′1(µi)
xit

}
=

n

∑
i=1

{[(
−di(1+di) log(µi)

µiφi

(
1+2di

φ 2
i

)
− di(1+di)

µiφ
2
i

)
(y∗i −µ

∗
i )

+
di(1+di)

µiφi

(
1
di
+

log(µi)

φi
+

log(µi)

φidi

)]
1

g′1(µi)

1
g′2(φi)

xithit

}
.

Finally, for δl e δl′ , l, l′ = 1, . . . ,q,

∂ 2`(β ,φ)

∂δl∂δl′
=

n

∑
i=1

{[
∂ 2`i(µiφi)

∂φ 2
∂φi

∂ζi
+

∂`i(µi,φi)

∂φi

∂ 2φi

∂ζi∂φi

]
1

g′2(φi)
hilhil′

}
=

n

∑
i=1

{[[(
di

φ 3
i

(
log(µi)

φi
+

di log(µi)

φi
+2
)

log(µi)(1+di)+
d2

i (log(µi))
2

φ 4
i

(1+di)

)
× (y∗i −µ

∗
i )−

di

φ 2
i

log(µi)(1+di)

(
1
di
+

log(µi)

φi
+

log(µi)

diφi

)
−ψ

′(φi)

− log(µi)(1+di)

φ 2
i

]
1

g′2(φi)
+

[(
−di log(µi)(1+di)

φ 2
i

)
(y∗i −µ

∗
i )+(y†

i −µ
†
i )

]
×
(
−

g′′2(φi)

g′2(φi)2

)]
1

g′2(φi)
hilhil′

}
.

In order to simplify the notation, we define the following matrices:

K1 = diag
(

di(1+di)

φiµ
2
i

(
1+2di

φi
−1
))

,

K2 = diag
(

di(1+di)

µ2+1/φ φ

)
, K3 = diag

(
di

µiφi
(1+di)

)
,

Z1 = diag
(
−di(1+di) log(µi)

µiφi

(
1+2di

φ 2
i

)
− di(1+di)

µiφ
2
i

)
,

Z2 = diag
(

di(1+di)

µiφi

(
1
di
+

log(µi)

φi
+

log(µi)

φidi

))
,

L1 = diag
(

di

φ 3
i

(
log(µi)

φi
+

di log(µi)

φi
+2
)

log(µi)(1+di)+
d2

i (log(µi))
2

φ 4
i

(1+di)

)
,
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L2 = diag
(

di

φ 2
i

log(µi)(1+di)

(
1
di
+

log(µi)

φi
+

log(µi)

diφi

)
−ψ

′(φi)−
log(µi)(1+di)

φ 2
i

)
,

and

L3 = diag
(
−di log(µi)(1+di)

φ 2
i

)
,

i = 1, . . . ,n.
The Hessian matrix, i.e., the matrix of second derivatives is

J =

[
Jββ Jβδ

Jδβ Jδδ

]
,

where

Jββ =
∂ 2`(β ,δ )

∂β∂β>
= X>[(K1(Y ∗−M∗)−K2)T1−S1T 2

1 K3(Y ∗−M∗)]T1X ,

Jβδ =
∂ 2`(β ,δ )

∂β∂δ>
= J>

δβ
= X>[Z1(Y ∗−M∗)+Z2]T1T2H,

and

Jδδ =
∂ 2`(β ,δ )

∂δ∂δ>
= H>[T2(L1(Y ∗−M∗)+L2)− (L3(Y ∗−M∗)+(Y †−M†))S2T 2

2 ]T2H.

Here, Y ∗= diag(y∗1, . . . ,y
∗
n), Y † = diag(y†

1, . . . ,y
†
n), M∗= diag(µ∗1 , . . . ,µ

∗
n ), M† = diag(µ†

1 , . . . ,µ
†
n ),

S1 = diag(g′′1(µ1), . . . ,g′′1(µn)) and S2 = diag(g′′2(φi), . . . ,g′′2(φi)).
We can write (2.1) as

ug(y;α,φ) = exp

(
φ log

(
µ1/φ

1−µ1/φ

)
− logΓ(φ)−

(
µ1/φ

1−µ1/φ

)
y∗

+φy†

)
1

−y log(y)
. (2.12)

Such a density can be also written as

p(y|ϑ) = exp

(
2

∑
i=1

ϑiTi(y)−A(ϑ)

)
h(y),

where (ϑ1,ϑ2) =
(

µ1/φ

1−µ1/φ
,φ
)

, (T1(y),T2(y)) = (y∗,y†) and

A(ϑ1,ϑ2) =−φ log

(
µ1/φ

1−µ1/φ

)
+ logΓ(φ).
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It is thus clear that the unit gamma density belongs to the two-dimensional exponential family.
As a consequence, the standard regularity conditions (e.g. 6.3, Lehmann and Casella (2011))
hold and it follows that Fisher’s information matrix equals IE(−J), where −J is the observed
information matrix. Fisher’s information matrix is thus given by

I = I(β ,δ ) =
[

Iββ Iβδ

Iδβ Iδδ

]
,

where
Iββ = X>K2T 2

1 X , Iβδ = I>
δβ

=−X>Z2T1T2H and Iδδ =−H>L2T 2
2 H.

It is noteworthy that, unlike what happens in the class of generalized linear models (McCullagh
and Nelder, 1989), the parameters β and δ are not orthogonal. We also note that as shown by
Lehmann and Casella (2011)), for densities that can be written as in (2.12),

IEϑ (Tj) =
∂A(ϑ)

∂ϑ j
and Covϑ (Tj,Tk) =

∂ 2A(ϑ)

∂ϑ j∂ϑk

which provides an alternative way for obtaining the quantities in (2.6).
Under standard regularity conditions and when the sample size is large,(

β̂

φ̂

)
∼ Np+1

((
β

φ

)
, I−1

)
.

It is then possible to obtain standard errors for the maximum likelihood estimates by computing
the square roots of the diagonal elements of I−1 after replacing the unknown parameters by the
corresponding estimates. The asymptotic normality of (β̂>, φ̂) is also useful for interval esti-
mation and hypothesis testing inference. In the following chapters we shall focus on hypothesis
testing inference on the parameters that index the unit gamma regression model.



CHAPTER 3

Modified likelihood ratio testing inference in unit
gamma regressions

Our interest lies in performing testing inferences on the parameter that index a given model.
Oftentimes no exact test is available, and it is necessary to use a test based on an approximation,
more especifically, a test whose null distribution of the associated test statistic is approximated
by a parameter-free distribution. Commonly used tests are the likelihood ratio, score and Wald
tests. When the sample size is small such tests tend to be size distorted, i.e., they typically
display poor control of the type I error frequency. Different approachs have been proposed in
the literature to circumvent such a shortcoming.

Ferrari and Cribari-Neto (2004) discussed likelihood ratio, score and Wald testing inference
in the class of beta regression models. In order to achieve more accurate inferences in small
samples, Ferrari and Pinheiro (2011) derived the adjustment introduced by Skovgaard (2001)
to the likelihood ratio test statistic. A similar adjustment was derived by Pereira and Cribari-
Neto (2014) for the class of inflated beta regressions. The authors obtained adjustments to the
likelihood ratio and signed likelihood ratio test statistics and showed that the modified tests are
typically considerably more accurate than the corresponding unmodified tests.

In this chapter we shall present the likelihood ratio test and obtain two corrected likeli-
hood ratio test statistics in the class of unit gamma regression models. The modified tests are
expected to be more accurate than the standard likelihood ratio test in small samples.

3.1 The likelihood ratio test

Consider the unit gamma regression model in Equations (2.2)–(2.3) and the corresponding
log-likelihood function presented in (2.4), where θ = (β>,δ>)> is the model k-dimensional
parameter vector, β being a p-vector and δ being a q-vector such that p+q = k.

In what follows, κ =(κ1, . . . ,κl)
> represents the parameter of interest and ψ =(ψ1, . . . ,ψs)

>

is the nuisance parameter. (Note that l + s = p+q). Our interest, thus, shall lie in testing l re-
strictions. In particular, we wish to test H0 : κ = κ0 versus H0 : κ 6= κ0, where κ0 is a fixed
l-vector. The likelihood ratio test statistic can be written as

w = 2[`(κ̂, ψ̂)− `(κ0, ψ̃)],

where (κ0>, ψ̃>) and (κ̂>, ψ̂>) are, respectively, the restricted and unrestricted maximum like-
lihood estimators of (κ>,ψ>). Under the null hypothesis, w is asymptotically distributed as
χ2

l . The null hypothesis is rejected at the α significance level (0 < α < 1) if w > χ2
1−α,l , where

χ2
1−α,l is the 1−α upper χ2

l quantile.

25
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When n is small, the approximation used in the likelihood ratio test may not be accurate, and
as a result size distortions may take place. It is thus desirable to apply a finite sample correction
to the test statistic when performing inferences with samples of small sizes. As noted earlier, a
useful small sample correction was obtained by Skovgaard (2001). Our chief goal is to obtain
adjusted likelihood ratio test statistics whose distributions under H0 are well approximated by
the χ2 reference distribution even in small samples.

3.2 Adjusted test statistics

As explained in the previous section, likelihood ratio testing inference relies on an asymptotic
approximation: the test statistic null distribution is approximated by its limiting counterpart,
the χ2

l distribution, where l is the number of restrictions under test. The critical value used in
the test is obtained from the test statistic asymptotic null distribution. In small samples, such
an approximation may be poor and, as a result, considerably size distortions may take place.
Several strategies have been developed in the literature to overcome such a shortcoming. One
of such approaches involve multiplying the test statistic by a Bartlett correction factor (Lawley,
1956) which typically results in more accurate inferences. The derivation of such a correction
factor is oftentimes, however, quite cumbersome. For details on the Bartlett correction, see
Cribari-Neto and Cordeiro (1996) and the references therein.

When the interest lies in making inferences on a subset of the parameter vector, i.e., when
there are nuisance parameteres, one can use marginal or conditional likelihood functions. In
some models, it is possible to obtain a profile likelihood function, but such a function does
not enjoy the same properties as the usual likelihood ratio function. Several corrections were
proposed in the literature aiming at reducing the impact of the nuisance parameters on the infer-
ence made on the parameters of interest; see, e.g., Barndorff-Nielsen (1983), Barndorff-Nielsen
(1994), Cox and Reid (1987),Cox and Reid (1992), McCullagh and Tibshirani (1990) and Stern
(1997). Such corrections tend reduce the curvature of the log-likelihood of the function.

When the parameter of interest is scalar, the null hypothesis can be tested using the signed
likelihood ratio test statistic:

ws = sinal(κ̂−κ)[2{`(κ̂, ψ̂)− `(κ, ψ̃)}]1/2,

where κ is the l-vector of parameters of interest and ψ is the s-vector of nuisance parameters.
Under the null hypothesis, ws is standard normally distributed with error of order n−1/2. Such
an approximation may be, nonetheless, inaccurate in small sample sizes.

Barndorff-Nielsen (1986) and Barndorff-Nielsen (1991) introduced the following modified
signed likelihood ratio test statistic:

w∗s = ws +w−1
s logε, (3.1)

where
ε = |Ĵ|1/2|Ũ ′|−1|J̃ψψ |1/2 ws

[( ˆ̀′− ˜̀′)>(Ũ ′)−1]κ
, (3.2)

U being the score function and J being the matrix of second-order log-likelihood derivatives.
Notice that −J is the observed information matrix. Here, Ũ ′ and ˜̀′ are, respectively, the score
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vector and log-likelihood derivatives with respect to θ̂ , both evaluated at θ̃ . Similarly, ˆ̀′ denotes
the log-likelihood derivative with respect to θ̂ evaluated at θ̂ . Additionally, Jψψ denotes the
s× s matrix of second derivatives with respect to ψ and [( ˆ̀′− ˜̀′)>(Ũ ′)−1]κ is the element
of vector ( ˆ̀′− ˜̀′)>(Ũ ′)−1 corresponding to the parameter κ , which in this case is scalar. It is
noteworthy that the derivation of such quantities is oftentimes quite cumbersome. The proposed
test statistic is standard normally distributed under the null hypothesis with error of order n−3/2.

Skovgaard (1996) obtained approximations to the sample space derivatives required to com-
pute the test statistic given in (3.1) for when the parameter of interest is scalar. His results were
generalized for vector-valued parameter of interest in Skovgaard (2001). Several authors have
recently obtained such an adjustment for different classes of models; see, e.g., Ferrari and Cys-
neiros (2008), Melo et al. (2009) and Pereira (2010). In particular, we note that the Skovgaard
adjustment was derived by Ferrari and Pinheiro (2011) for performing testing inferences in the
beta regression model. In what follows, we shall derive a similar adjustment for likelihood ratio
testing inference in the unit gamma regression model.

By approximating Ũ ′, ˜̀′ and ˆ̀′, Skovgaard (2001) obtained the following adjusted likeli-
hood ratio statistic:

w∗ = w−2logξ , (3.3)

where

ξ =
{|Ĩ||Î||J̃ψψ |}1/2

|ϒ̄||{Ĩϒ̄−1ĴÎ−1ϒ̄}ψψ |1/2

{Ũ>ϒ̄−1ÎĴ−1ϒ̄Ĩ−1Ũ}l/2

wl/2−1Ũ>ϒ̄−1q̄
, (3.4)

Jψψ being the s× s matrix of second derivatives with respect to ψ . As noted earlier, when
the relevant regularity conditions are satisfied, the negative Hessian, −Jψψ , is the observed
information matrix relative to ψ . Note that q̄ is a vector of dimension l+ s and ϒ̄ is a matrix of
dimension (l+ s) × (l+ s). Under H0, w∗ is asymptotically distributed as χ2

l . The quantities q̄
and ϒ̄ come from

q = IE[U(θ1)(`(θ1)− `(θ))]

and
ϒ = IE[U(θ1)U>(θ)],

by replacing θ1 with θ̂ and θ with θ̃ after the expected values are computed. Here, θ̂ and θ̃

denote, respectively, the unrestricted and restricted maximum likelihood estimators of θ .
A test statistic which is asymptotically equivalent to w∗ is

w∗∗ = w
(

1− 1
w

logξ

)2

. (3.5)

A clear advantage of w∗∗ is that it is always non-negative. The numerical evidence in Skovgaard
(2001) shows that w∗ may slightly outperform w∗∗ in some cases. Under H0 both test statistics
are χ2

l distributed with high degree of accuracy. The adjusted statistics are invariant under
reparametrizations of the form (κ,ψ) −→ (κ,ϕ(κ,ψ)). For further details, see Skovgaard
(2001).
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In what follows, we shall obtain closed form expressions for the quantities q̄ and ϒ̄ in the
class of unit gamma regression models. Note that q̄ is obtained from

q =

[
IE[Uβ (θ1)`(θ1)]− IE[Uβ (θ1)`(θ)]
IE[Uδ (θ1)`(θ1)]− IE[Uδ (θ1)`(θ)]

]
,

where θ = (β>,δ>)>.
By using Equations (2.7) and (2.10) we obtain

IE[Uβ (θ)`(θ)] = IEθ [X>T1Φ
−1M−1D(I +D)(y∗−µ

∗)

×{(y∗−µ
∗)>(D−I )+(y†−µ

†)>(Φ−I )+b>}ι ]
= X>T1Φ

−1M−1D(I +D){IEθ [(y∗−µ
∗)(y∗−µ

∗)>](D−I )

+ IEθ [(y†−µ
†)(y†−µ

†)>](Φ−I )+ IEθ [(y∗−µ
∗)]b>}ι

= X>T1Φ
−1M−1D(I +D){V ∗(D−I )+C(Φ−I )}ι .

Here, V ∗ = diag(υ∗1 , . . . ,υ
∗
n ) and C = diag(c1, . . . ,cn). Since yt and yu, for t 6= u, are inde-

pendent, and IEθ1(y
∗
t − µ

∗(1)
t ) = 0, we have IEθ1[(y

∗
t − µ

∗(1)
t )(y∗u− µ∗u )] = 0. Also, IEθ1[(y

∗
t −

µ
∗(1)
t )(y∗t −µ∗t )] = IEθ1[(y

∗
t −µ

∗(1)
t )(y∗t −µ

∗(1)
t )]+ IEθ1[(y

∗
t −µ

∗(1)
t )(µ

∗(1)
t −µ∗t )] = IEθ1[(y

∗
t −

µ
∗(1)
t )2] = υ

∗(1)
t . Here, the superscript ’(1)’ indicates evaluation at θ1.

After some algebra, we obtain

IEθ1 [Uβ (θ1)`(θ)] = X>T (1)
1 Φ

−1(1)M−1(1)D(1)(I +D(1)){V ∗(1)(D(1)−I )+C(1)(Φ−I )}ι .

Hence,

IEθ1 [Uβ (θ1)`(θ1)]− IEθ1[Uβ (θ1)`(θ)] = X>T (1)
1 Φ

−1(1)M−1(1)D(1)(I +D(1)){V ∗(1)(D(1)−D)

+C(1)(Φ(1)−Φ)}ι .

Similarly, using (2.7) and (2.11) we obtain

IEθ [Uδ (θ)`(θ)] = IEθ [H>T2[P(y∗−µ
∗)+(y†−µ

†)]{(y∗−µ
∗)>(D−I )

+(y†−µ
†)>(Φ−I )+b>}ι ]

= H>T2{PIEθ [(y∗−µ
∗)(y∗−µ

∗)>](D−I )+PIEθ [(y∗−µ
∗)(y†−µ

†)>]

× (Φ−I )+ IEθ [(y†−µ
†)(y∗−µ

∗)>](D−I )+ IEθ [(y†−µ
†)(y†−µ

†)>]

× (Φ−I )}ι
= H>T2{PV ∗(D−I )+PC(Φ−I )+C(D−I )+V †(Φ−I )}ι .

Therefore,

IEθ1[Uδ (θ1)`(θ1)]− IEθ1[Uδ (θ1)`(θ)] = H>T (1)
2 {(P

(1)V ∗(1)+C(1))(D(1)−D)

+(P(1)C(1)+V †(1))(Φ(1)−Φ)}ι ,
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where V † = diag(υ†
1 , . . . ,υ

†
n ).

We shall now move to the derivation of ϒ̄ which is obtained from

ϒ =

[
IEθ1[Uβ (θ1)U>β (θ)] IEθ1[Uβ (θ1)U>δ (θ)]

IEθ1 [Uδ (θ1)U>β (θ)] IEθ1[Uδ (θ1)U>δ (θ)]

]
.

It follows from Equations (2.10) and (2.11) that

IEθ1[Uβ (θ1)U>β (θ)] = IEθ1[X
>T (1)

1 Φ
−1(1)M−1(1)D(1)(I +D(1))(y∗−µ

∗(1))

× (y∗−µ
∗)>(I +D)DM−1

Φ
−1T1X ]

= X>T (1)
1 Φ

−1(1)M−1(1)D(1)(I +D(1))V ∗(1)(I +D)DM−1
Φ
−1T1X ,

IEθ1[Uδ (θ1)U>δ (θ)] = IEθ1[H
>T (1)

2 {P
(1)(y∗−µ

∗(1))+(y†−µ
†(1))}{(y∗−µ

∗)>P>

+(y†−µ
†)>}T2H]

= H>T (1)
2 {P

(1)V ∗(1)P>+(P(1)+P>)C+V †}T2H,

IEθ1[Uβ (θ1)U>δ (θ)] = IEθ1[X
>T (1)

1 Φ
−1(1)M−1(1)D(1)(I +D(1))(y∗−µ

∗(1))

×{(y∗−µ
∗)>P>+(y†−µ

†)>}T2H]

= X>T (1)
1 Φ

−1(1)M−1(1)D(1)(I +D(1)){V ∗P>+C(1)}T2H,

IEθ1[Uδ (θ1)U>β (θ)] = IEθ1[H
>T (1)

2 {P
(1)(y∗−µ

∗(1))+(y†−µ
†(1))(y∗−µ

∗)>(I +D)

×DM−1
Φ
−1T1X ]

= H>T (1)
2 {P

(1)V ∗(1)+C(1)}(I +D)DM−1
Φ
−1T1X .

Finally, by combining the results presented above it is possible to write q̄ and ϒ̄ as

q̄ =

[
X>T̂1Φ̂−1M̂−1D̂(I + D̂){V̂ ∗(D̂− D̃)+Ĉ(Φ̂− Φ̃)}ι

H>T̂2{(P̂V̂ ∗+Ĉ)(D̂− D̃)+(P̂Ĉ+V̂ †)(Φ̂− Φ̃)}ι

]
and

ϒ̄ =

 X>T̂1Φ̂−1 ˆM−1D̂(I + D̂)V̂ ∗ X>T̂1Φ̂−1 ˆM−1D̂(I + D̂)

×(I + D̃)D̃ ˜M−1Φ̃−1T̃1X ×{V̂ ∗P̃+Ĉ}T̃2H
H>T̂2{P̂V̂ ∗+Ĉ}(I + D̃)D̃M̃−1Φ̃−1T̃1X H>T̂2{P̂V̂ ∗P̃+(P̂+ P̃)C̃+Ṽ †}T̃2H

 ,
We emphasize that the two adjusted likelihood ratio statistics can be easily computed using

standard software and computing environments since such computation only entail basic matrix
operations.



CHAPTER 4

Simulation results

In this chapter we shall present the results of a set of Monte Carlo simulations that were per-
formed to evaluate the finite sample performances of the standard likelihood ratio test (w) and
its two corrected counterparts (w∗ and w∗∗) in unit gamma regression models. Parameter esti-
mation was carried out by numerically maximizing the log-likelihood function using the BFGS
quasi-Newton optimization algorithm with analytic first derivatives. The number of Monte
Carlo replications is 10,000, i.e., all reported results are based on 10,000 samples. All simula-
tions were performed using the OX matrix programming language (Doornik, 2009).

Data generation is performed as follows. We generate a sample of size n from the gamma
distribution with parameters µ and φ , and we then exponentiate the negative of such values.
To see why such a data generating mechanism is valid, let z∼Gamma(µ,φ) and y = exp(−z),
and denote by Fz and Fy ( fz and fy) the corresponding distribution (density) functions. Notice
that

Fy(a) = Pr(y≤ a) = Pr(exp(−z)≤ a) = Pr(z >− log(a)) = 1−Fz(− log(a))

which implies

fy(a) =− fz(− log(a))
(
−1

a

)
=

µφ

Γ(φ)
a(µ−1)(− log(a))(φ−1), 0 < y < 1.

Hence, the data generating scheme we use is valid. Under fixed dispersion, we use the above
mechanism with µ replaced by µi, and under variable dispersion we, additionally, replace φ

with φi, i = 1, . . . ,n.

4.1 Fixed dispersion unit gamma regression

At the outset we consider a fixed dispersion unit gamma regression model with mean submodel
given by

log
(

µi

1−µi

)
= β1 +β2xi2 +β3xi3 +βi4xi4, (4.1)

i = 1, . . . ,n. The covariates values are obtained as random draws from the standard uniform
distribution, i.e., from U (0,1). We shall consider two separate scenarios. In the first scenario,
we test H0 : β4 = 0. Hence, l = 1 (one restriction). The parameter values are β1 = −1.5,
β2 = −1.5, β3 = 1.2 and β4 = 0. In the second scenario, we test H0 : β3 = β4 = 0. Hence,
l = 2 (two restrictions). The parameter values were specified as β1 = 1, β2 = 5 and β3 = β4 = 0.

30
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In both scenarios the null hypotheses were tested against bilateral alternative hypotheses. We
shall consider three separate range of values for µ: close to zero (µ1), around 0.5 (µ2) and
close to one (µ3). We consider three values for the precision parameter, namely: φ = 5,10,30.
The sample sizes are n = 20,40,60. The tests significance levels are α = 10%, α = 5% and
α = 1%.

The tests null rejection rates are presented in Table 4.1 (entries are percentages). The re-
ported results lead to interesting conclusions. First, the likelihood ratio test is considerably
oversized (liberal) when the sample size is small. For instance, when n = 20, φ = 10 and l = 2,
the test null rejection is in excess of 15% at the 10% significance level for all three ranges of
mean values. Second, the two corrected tests (w∗ and w∗∗) perform considerably better than the
standard likelihood ratio test. Under the same conditions (n = 20, φ = 10, l = 2, 10% signifi-
cance level) their null rejection rates range from 9.7% to 10% (w∗) and from 10.1% to 10.3%
(w∗∗) across the different ranges of mean values. Third, the two corrected tests behave simi-
larly, w∗ tending to be slightly more conservative than w∗∗. Overall, they perform very well,
i.e., they are quite effective when it comes to controlling the frequency of type I error. Fourth,
the range of variation of the mean responses do not noticeably affect the tests performances.
Fifth, the impact of the precision value on the tests finite sample performances is small.

The second set of simulations is based on the following fixed dispersion unit gamma re-
gression model:

log
(

µi

1−µi

)
= β1 +

p

∑
j=2

β jxi j.

The interest lies in testing H0 : β2 = 0 against H1 : β2 6= 0. We shall report numerical results
for p = 3,4,5. Notice that the number of nuisance parameters increase with p. The sample
sizes are n = 20,40,60, φ = 30 and, as before, we consider the ranges of values for µ . The
tests null rejection rates can be found in Table 4.2 (entries are percentages). The figures in this
table show that the likelihood ratio test tends to become more liberal as the number of nuisance
parameters increases. Consider, e.g., n = 20 and µ2 (i.e., response means assuming values in
the middle of the standard unit interval). At the 5% significance level, the test null rejection
rates corresponding to p = 3,4,5 are, respectively, 7.0%, 8.4% and 9.4%. In contrast, the finite
sample behaviors of the two corrected tests are much less affected by the increase in the number
of nuisance parameters. Under the same conditions, for instance, the null rejection rates of w∗

(w∗∗) are 4.7%, 4.9% and 5.1%(4.9%, 5.1% and 5.5%). It is also noteworthy that once again
the two corrected tests behave similarly, w∗ being slightly more conservative than w∗∗. As in
the previous set of simulations, the range of variation of the mean responses has no noticeable
impact on the tests performances.

Figure 4.1 contains quantile-quantile (QQ) plots for the three test statistics. The sample
size is n = 20, φ = 5,10 and the response means assume values in the middle of the standard
unit interval. In each panel we plot the test statistic empirical quantiles against the correspond-
ing asymptotic quantiles, i.e., against χ2

1 quantiles. There is good agreement between exact
and asymptotic null distributions when the curve is close to the 45 degree line (the thin solid,
diagonal line). Visual inspection of the QQ plots shows that the null distributions of the two
corrected test statistics are much better approximated by the reference χ2 square distribution
than that of the likelihood ratio test statistic. It is also clear that the corrected test statistics are



4.1 FIXED DISPERSION UNIT GAMMA REGRESSION 32

Table 4.1 Null rejection rates (%), fixed dispersion I.
α = 10%

µ1 µ2 µ3
φ l n w w∗ w∗∗ w w∗ w∗∗ w w∗ w∗∗

20 14.9 10.0 10.3 14.7 10.0 10.4 14.7 10.0 10.4
30 1 40 12.2 9.8 9.9 11.8 9.8 9.9 12.1 9.9 10.0

60 11.3 9.9 9.9 11.3 9.8 9.9 11.1 9.8 9.9
20 16.2 10.3 10.7 16.3 10.5 10.8 16.2 10.4 10.8

2 40 13.1 10.0 10.2 13.0 10.2 10.3 12.9 10.2 10.3
60 11.8 10.1 10.1 11.8 10.1 10.2 11.8 10.1 10.2
20 14.9 9.9 10.3 14.8 9.9 10.3 14.7 9.7 10.1

10 1 40 12.0 9.9 9.9 11.7 9.6 9.7 11.9 9.7 11.9
60 11.9 10.4 10.5 11.8 10.6 10.7 11.7 10.5 10.5
20 15.6 9.7 10.1 15.8 10.0 10.3 15.5 9.9 10.1

2 40 12.6 9.8 9.9 12.3 9.7 9.7 12.3 9.6 9.7
60 11.8 10.1 10.1 11.5 10.0 10.0 11.4 10.1 10.1
20 15.0 10.4 10.7 15.0 10.4 10.8 14.7 10.3 10.6

5 1 40 11.6 9.3 9.5 11.7 9.7 9.8 11.2 9.3 9.4
60 11.3 9.8 10.0 11.4 10.0 10.1 11.2 9.8 9.9
20 16.5 9.8 10.2 15.8 9.6 10.0 15.7 9.8 10.1

2 40 12.7 10.0 10.0 12.6 10.0 10.0 12.3 9.9 10.0
60 11.2 9.5 9.6 11.5 9.9 9.9 11.2 9.9 9.9

α = 5%
20 8.4 5.2 5.4 8.6 5.2 5.4 8.2 5.1 5.3

30 1 40 6.2 4.7 4.9 6.4 4.8 4.9 6.3 4.7 4.8
60 6.0 5.2 5.2 6.2 5.1 5.2 5.8 5.1 5.2
20 9.5 5.0 5.2 9.5 5.3 5.4 9.5 5.1 5.4

2 40 6.7 5.1 5.2 6.7 4.7 4.8 6.7 4.8 4.9
60 6.4 5.0 5.0 6.2 5.0 5.0 6.1 5.1 5.1
20 8.3 5.3 5.5 8.4 5.1 5.3 8.1 5.1 5.4

10 1 40 6.4 4.8 4.9 6.0 4.6 4.7 6.1 4.6 4.7
60 6.3 5.3 5.4 6.0 5.1 5.2 6.2 5.3 5.3
20 9.2 5.2 5.4 9.1 5.1 5.3 8.9 5.2 5.3

2 40 6.6 4.8 4.8 6.5 4.9 4.9 6.4 4.7 4.8
60 6.4 5.0 5.1 6.2 5.0 5.0 6.3 5.2 5.2
20 8.9 5.3 5.6 8.5 5.1 5.4 8.5 5.1 5.3

5 1 40 6.3 5.0 5.1 6.2 4.8 4.9 6.1 4.9 4.9
60 5.6 4.8 4.9 5.9 5.0 5.2 5.6 4.8 4.8
20 9.4 4.6 4.7 9.0 4.8 5.1 8.8 4.8 4.9

2 40 6.9 4.8 4.8 6.6 4.9 4.9 6.6 4.8 4.8
60 6.0 4.7 4.8 5.9 4.7 4.7 5.9 4.8 4.8

α = 1%
20 2.4 1.0 1.1 2.4 1.0 1.0 2.3 0.9 1.0

30 1 40 1.3 0.9 0.9 1.4 1.0 1.0 1.4 0.9 1.0
60 1.4 1.0 1.0 1.4 1.0 1.0 1.3 1.0 1.1
20 2.5 1.0 1.1 2.6 0.9 1.0 2.5 0.9 0.9

2 40 1.6 0.9 1.0 1.5 1.0 1.0 1.5 1.0 1.0
60 1.3 1.0 1.0 1.4 1.0 1.0 1.4 1.0 1.0
20 2.4 1.0 1.1 2.4 1.0 1.2 2.3 1.0 1.2

10 1 40 1.4 0.9 1.0 1.3 0.9 0.9 1.4 0.9 0.9
60 1.4 1.0 1.1 1.2 0.9 1.0 1.3 0.9 1.0
20 2.8 1.0 1.1 2.7 1.0 1.1 2.7 1.0 1.1

2 40 1.5 0.9 0.9 1.5 1.0 1.0 1.4 0.9 0.9
60 1.4 1.0 1.0 1.5 1.0 1.0 1.4 1.1 1.1
20 2.4 1.0 1.1 2.4 1.0 1.1 2.2 1.0 1.1

5 1 40 1.4 0.9 1.0 1.4 0.9 1.0 1.4 0.9 1.0
60 1.3 1.0 1.1 1.3 1.0 1.1 1.4 1.0 1.0
20 2.6 0.9 1.0 2.5 1.0 1.0 2.4 0.9 1.0

2 40 1.4 0.8 0.8 1.5 0.8 0.9 1.3 0.8 0.9
60 1.4 0.9 0.9 1.2 0.9 0.9 1.3 0.9 0.9
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Figure 4.1 Quantile-quantile (QQ) plots, fixed dispersion, l = 1, n = 20.
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less affected by the increase in the number of nuisance parameters.

4.2 Variable dispersion unit gamma regression

Next, we consider the variable precision unit gamma regression model given by

log
(

µi

1−µi

)
= β1 +β2xi2 +β3xi3 +βi4xi4

and
log(φi) = δ1 +δ2hi2 +δ3hi3 +δ4hi4,

i = 1, . . . ,n. Again, the covariates values are obtained as random standard uniform draws. We
shall consider two separate scenarios. In the first scenario, we test H0 : δ2 = δ3 = δ4 = 0 (l = 3)
against a two-sided alternative hypothesis. Notice that we test the null hypothesis of constant
dispersion against the alternative hypothesis of variable dispersion. The parameter values used
for data generation are β1 = 1.5, β2 = 1.5, β3 = 4.5, β4 =−3.5, δ1 = log(30), δ2 = δ3 = δ4 = 0,
δ1 = log(30), log(10), log(5). In the second scenario, we test H0 : β3 = β4 = 0,δ2 = δ3 =
δ4 = 0 (l = 5). Data generation was carried out using β1 = 1.5, β2 = 1.5, β3 = 0, β4 = 0,
δ1 = (log(30), log(10), log(5)), δ2 = δ3 = δ4 = 0. The sample sizes are n = 20,30,40,50,60
in the first scenario and n = 20,40,60 in the second scenario. In both scenarios, the tests
significance levels are α = 10%, α = 5% and α = 1%. The results (tests null rejection rates)
are presented in Table 4.3 (entries are percentages).

Table 4.3 Null rejection rates (%), variable dispersion I.
α = 10% α = 5% α = 1%

δ1 n w w∗ w∗∗ w w∗ w∗∗ w w∗ w∗∗

20 34.8 12.5 15.6 24.5 7.0 9.0 10.8 1.6 2.3
30 22.5 10.6 11.8 14.2 5.8 6.4 4.8 1.1 1.2

log(30) 40 17.6 9.7 10.2 10.4 5.0 5.3 2.9 1.0 1.0
50 15.7 9.9 10.2 8.6 4.7 4.9 2.3 0.9 1.0
60 14.6 10.2 10.3 8.0 5.1 5.2 2.1 1.0 1.1
20 33.2 12.9 15.7 23.5 7.2 9.1 10.2 1.7 2.4
30 22.4 11.4 12.3 14.5 5.8 6.5 4.5 1.2 1.4

log(10) 40 17.6 10.7 11.1 10.8 5.2 5.4 3.2 1.2 1.2
50 15.1 10.1 10.2 8.6 5.1 5.2 2.3 1.0 1.1
60 13.9 9.6 9.7 7.7 4.8 4.8 1.8 0.8 0.9
20 32.5 12.5 15.6 22.7 7.1 9.2 10.0 2.1 2.7
30 22.2 11.6 12.6 14.0 6.1 6.6 4.7 1.4 1.6

log(5) 40 17.7 10.8 11.2 10.4 5.5 5.7 2.8 1.0 1.1
50 14.7 9.7 9.9 8.4 4.9 5.0 2.0 1.0 1.1
60 14.4 10.5 10.6 8.2 5.5 5.6 2.2 1.1 1.2
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The Table 4.3 show that the likelihood ratio test tends to be considerably liberal in small
samples, i.e., it tends to overreject the null hypothesis when such a hypothesis is true. For
instance, when n = 20, δ1 = log(10) and α = 0.10, the test null rejection rate equals 33.2%,
i.e., it is over three times larger than the test significance level. When n = 50, it equals 15.1%;
it still is over 50% larger than the nominal level. The corrected tests are less size distorted.
Under the same conditions, e.g., the null rejection rates of w∗ (w∗∗) are 12.9% and 15.7% for
n = 20. It is noteworthy that w∗ is less oversized than w∗∗, especially when n is small.

The tests null rejection rates for the second scenario (joint test on the parameters of both
submodels) are presented in Table 4.4 (entries are percentages). Once again, the likelihood
ratio test is substantially oversized in small samples. For instance, when n = 20, δ1 = log(30)
and α = 10%, its null rejection rate equals 34.9%. The two corrected tests perform well. Under
the same circumstance, their null rejection rates are 8.8% (w∗) and 10.5% (w∗∗). As expected,
the tests performances improve as the sample size increases.

Table 4.4 Null rejection rates (%), variable dispersion II.
α = 10% α = 5% α = 1%

δ1 n w w∗ w∗∗ w w∗ w∗∗ w w∗ w∗∗

20 34.9 8.8 10.5 24.6 5.5 6.5 10.3 2.1 2.6
log(30) 40 17.7 8.9 9.4 10.3 4.1 4.4 3.0 0.8 0.9

60 14.7 9.4 9.7 7.9 4.4 4.6 1.8 0.9 0.9
20 34.1 8.2 9.9 23.8 4.8 5.8 9.8 1.8 2.3

log(10) 40 17.5 8.7 9.3 10.3 4.4 4.7 2.8 0.9 1.0
60 13.9 9.1 9.2 7.8 4.6 4.7 1.9 0.9 0.9
20 34.1 8.2 9.9 23.8 4.8 5.8 9.8 1.8 2.3

log(5) 40 17.5 8.7 9.3 10.3 4.4 4.7 2.8 0.9 1.0
60 13.9 9.1 9.2 7.8 4.6 4.7 1.9 0.9 0.9

Figure 4.2 contains QQ plots for the second simulation design. It is clear that the null
distribution of w is poorly approximated by the limiting chi-squared distribution. It is also
clear that such an approximation is much more precise when used with the two corrected test
statistics, especially when n≥ 40. Notice that the case where there are only twenty observations
in the sample is quite challenging since there are five restrictions under test. Even with n =
20, however, the chi-squared approximation is somewhat precise when used with w∗ and w∗∗,
except in the distribution upper tail.

Overall, the numerical evidence in this chapter shows that likelihood ratio testing inferences
in unit gamma regressions can be quite unreliable in small samples. Much more precises can
be achieved by using the two corrected test statistics derived in this dissertation. We also note
that testing inferences based on w∗ tend to be slightly more accurate than those based on w∗∗.



4.2 VARIABLE DISPERSION UNIT GAMMA REGRESSION 37

0 5 10 15 20

0
5

10
15

20

Asymptotic quantile

E
m

pi
ric

al
 q

ua
nt

ile

δ1=log(30), n=20

w

w*

w**

0 5 10 15 20

0
5

10
15

20

Asymptotic quantile

E
m

pi
ric

al
 q

ua
nt

ile
δ1=log(30), n=40

w

w*

w**

0 5 10 15 20

0
5

10
15

20
Asymptotic quantile

E
m

pi
ric

al
 q

ua
nt

ile

δ1=log(30), n=60

w

w*

w**

0 5 10 15 20

0
5

10
15

20

Asymptotic quantile

E
m

pi
ric

al
 q

ua
nt

ile

δ1=log(10), n=20

w

w*

w**

0 5 10 15 20

0
5

10
15

20

Asymptotic quantile

E
m

pi
ric

al
 q

ua
nt

ile

δ1=log(10), n=40

w

w*

w**

0 5 10 15 20

0
5

10
15

20

Asymptotic quantile

E
m

pi
ric

al
 q

ua
nt

ile

δ1=log(10), n=60

w

w*

w**

Figure 4.2 Quantile-quantile (QQ) plots, variable dispersion, l = 5.



CHAPTER 5

An empirical application

In what follows we shall present an empirical application that uses both the unit gamma and the
beta regression model. We shall use a dataset analyzed by Smithson and Verkuilen (2006) that
contains 44 observations on reading accuracy of dyslexic and nondyslexic Australian children;
the data are presented in Table A.1. The variable of interest (y) are reading accuracy indices
of such children. The independent variables are: dyslexia versus non-dyslexia status (x2) and
nonverbal IQ converted to z-scores (x3). We also consider two additional covariates, namely: an
interaction variable (x2× x3) and z-scores squared (x2

3). The participants (19 dyslexics and 25
controls) were students from primary schools in the Australian Capital Territory. The ages of
the 44 children range from eight years five months to twelve years three months. The covariate
x2 is a dummy variable, which equals 1 if the child is dyslexic and−1 otherwise. The observed
scores were linearly transformed from their original scale to the open unit interval (0,1); see
Smithson and Verkuilen (2006). These dara were also analyzed by Espinheira et al. (2008),
Grün et al. (2011), Pinto Ferreira de Queiroz (2011), Cribari-Neto and Queiroz (2014) and
Bayer and Cribari-Neto (2015) using beta regression models. It is noteworthy that different
regression models were used in the literature. One of such models uses the interation variable
(x2× x3) and the squared values of the z-scores in the precision submodel. According to Bayer
and Cribari-Neto (2015), this is the model selected by most standard beta regression model
selection approaches. We shall denote such a model by BetaModel–I. It is given by

log
(

µi

1−µi

)
= β1 +β2xi2 +β3x2

i3 +β4(xi2× x2
i3) (5.1)

and
log(φi) = δ1 +δ2xi2 +δ3xi3 +δ4x2

i3 +δ5(xi2× xi3), (5.2)

i = 1, . . . ,44. Notice that here x2
3 and x2× x3 are included as covariates in the precision sub-

model. We shall investigate whether such variables should be included in such a submodel. We
shall consider both beta and unit gamma regression models. Since the sample size is small, all
testing inferences shall be carried out at the 10% significance level.

5.1 Beta regression modeling

At the outset we assume that the response (y) is beta distributed. As explained above, the
interest lies in determining whether x2

3 and x2× x3 should be used as precision covariates in
BetaModel–I. To that end, we test the null hypothesisH0 : δ4 = δ5 = 0 against a two-sided
alternative hypothesis. The likelihood ratio test statistic (w) equals 16.410 (p-value < 0.001).
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We also computed the adjusted test statistics w∗ and w∗∗ using the results in Ferrari and Pinheiro
(2011); their values are, respectively, 5.544 (p-value = 0.063) and 7.342 (p-value = 0.025).
All three tests reject the null hypothesis at the 10% significance level, our significance level
of reference. We note, however, that only the standard likelihood ratio test rejects the null
hypothesis at the 5% significance level; indeed, it does so even at the 1% significance level.

Next, we test H0 : δ5 = 0 against H1 : δ5 6= 0. We obtain w = 7.248 (p-value = 0.007),
w∗ = 1.067 (p-value = 0.302) and w∗∗ = 2.385 (p-value = 0.123). It is noteworthy that the
testing inference based on the standard likelihood ratio test (H0 is rejected, even at the 5%
significance level) is different from that obtained using the corrected tests (H0 is not rejected).

The maximum likelihood parameter estimates and the corresponding standard errors for
BetaModel–I are given in Table 5.1.

Table 5.1 Parameter estimates and standard errors (S.E.): BetaModel–I.
Parameter β1 β2 β3 β4 δ1 δ2 δ3 δ4 δ5
Estimate 1.064 −0.856 0.448 −0.394 2.668 1.513 1.587 1.842 1.456

S.E. 0.150 0.149 0.056 0.056 0.306 0.270 0.257 0.290 0.360

Based on the testing inferences yielded by the two corrected tests, we removed the inter-
action variable (x2× x3) from the precision submodel, thus arriving at the following reduced
model:

log
(

µi

1−µi

)
= β1 +β2xi2 +β3x2

i3 +β4(xi2× x2
i3) (5.3)

and
log(φi) = δ1 +δ2xi2 +δ3xi3 +δ4x2

i3, (5.4)

i = 1, . . . ,44. We shall denote such a model by BetaModel–II. Its parameter estimates and
standard errors are presented in Table 5.2.

Table 5.2 Parameter estimates and standard errors: BetaModel–II.
Parameter β1 β2 β3 β4 δ1 δ2 δ3 δ4
Estimate 1.116 −0.791 0.443 −0.411 2.593 1.249 1.050 0.897

S.E. 0.151 0.151 0.070 0.070 0.307 0.262 0.251 0.209

We now test H0 : δ4 = 0 against a two-sided alternative hypothesis. The test statistics values
are w = 9.162 (p-value = 0.002), w∗ = 5.159 (p-value = 0.023) and w∗∗ = 5.596 (p-value =
0.018). The three tests reject the null hypothesis, thus suggesting that x2

3 should be included as
a precision covariate.

Finally, we test H0 : δ2 = δ3 = δ4 = 0. For this test, w = 33.689 (p-value < 0.001), w∗ =
20.549 (p-value < 0.001) and w∗∗ = 21.830 (p-value < 0.001). All three tests reject the null
hypothesis, even at the 1% significance level. Hence, we consider BetaModel–II to be the
correct model based on which all futher inferences should be made.
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We computed the pseudo-R2, AIC and BIC values for the two beta regression fitted models,
i.e., for BetaModel–I and BetaModel–II; see Table 5.3. The pseudo-R2 we compute is that
of Nagelkerke (1991), i.e., R2 = 1− (Lnull/L f it)

2/n, where Lnull is the maximized likelihood
function using only the intercept (no regressors used) and L f it is the maximized likelihood
function based on the model at hand (regressors used); see Long (1997). Notice that both
AIC and BIC favor BetaModel–I. However, since the interaction precision covariate is not
statistically significance, we still select BetaModel–II as the best fitting model.

Table 5.3 Pseudo-R2, AIC and BIC values; BetaModel–I and BetaModel–II .
Model pseudo-R2 AIC BIC

BetaModel–I 0.628 −126.76 −110.70
BetaModel–II 0.624 −121.51 −107.24

5.2 Unit gamma regression modeling

We shall now turn to unit gamma regression modeling, i.e., we shall assume that the response
(y) follows the unit gamma law. At the outset, we consider the model defined by (5.1) and
(5.2), which we denote by GammaModel–I. We test the null hypothesis H0 : δ4 = δ5 = 0
against a two-sided alternative hypothesis. The values of the likelihood ratio test statistic (w)
and its two corrected variants (w∗ and w∗∗) are, respectively, 6.876 (p-value = 0.032), 0.380
(p-value = 0.827) and 1.914 (p-value = 0.384). It is noteworthy that the testing inferences
are quite different when based on the standard likelihood ratio test (H0 is rejected) and on the
corrected tests (H0 is not rejected). Indeed, the p-value of the w∗ test, the best performing test
in our Monte Carlo simulations, is quite large (in excess of 0.8), which indicates that there is
very little evidence against the null hypothesis. The parameter estimates and standard errors
for GammaModel–I can be found in Table 5.4.

Table 5.4 Parameter estimates and standard errors: GammaModel–I.
Parameter β1 β2 β3 β4 δ1 δ2 δ3 δ4 δ5
Estimate 1.099 −0.820 0.427 −0.413 1.290 2.209 1.103 1.122 1.027

S.E. 0.152 0.152 0.058 0.058 0.281 0.250 0.254 0.286 0.361

Based on the testing inference reached using the two corrected tests, we removed the co-
variates x2

3 and x2× x3 from the precision submodel, thus arriving at the model we denote by
GammaModel–II:

log
(

µi

1−µi

)
= β1 +β2xi2 +β3x2

i3 +β4(xi2× x2
i3) (5.5)

and
log(φi) = δ1 +δ2xi2 +δ3xi3, (5.6)
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i = 1, . . . ,44. The parameter estimates and standard errors obtained for such a model are dis-
played in Table 5.5.

Table 5.5 Parameter estimates and standard errors: GammaModel–II.
Parameter β1 β2 β3 β4 δ1 δ2 δ3
Estimate 1.062 −0.663 0.474 −0.476 1.603 2.030 0.625

S.E. 0.150 0.150 0.086 0.086 0.204 0.241 0.241

We now test the null hypothesis of fixed precision, i.e., we test H0 : δ2 = δ3 = 0. The values
of the test statistics are w = 47.920, w∗ = 41.923 and w∗∗ = 42.111; all three p-values are quite
small and, as a consequence, the null hypothesis is rejected by all three tests. There is, thus,
evidence, of variable dispersion.

Table 5.6 contains the pseudo-R2, AIC and BIC values for the two unit gamma regres-
sion models. The pseudo-R2 and the AIC favor GammaModel–I whereas the BIC favors
GammaModel–II. Since, the precision covariates x2

3 and x2× x3 do not seem to be statistically
significant according to the adjusted tests, we select GammaModel–II.

Table 5.6 Pseudo-R2, AIC and BIC values; GammaModel–I and GammaModel–II.
Model pseudo-R2 AIC BIC

GammaModel–I 0.627 −126.89 −110.83
GammaModel–II 0.607 −124.01 −111.52

It is noteworthy that the AIC and BIC values of the selected unit gamma regression model
(−124.01 and −111.52) are smaller than those of the chosen beta regression model (−121.51
and−107.24); they are also slightly smaller than those of the competing beta regression model.
It then follows that there is some evidence that the unit gamma regression model outperforms
the beta regression model for the data at hand.

The above empirical application shows that it is important to perform accurate testing infer-
ences when modeling data that assume values in the standard unit interval. When the sample
size is small we recommend that such testing inferences be based on the two corrected tests
developed in this dissertation, especially on w∗.

Table 5.7 P-values of the tests J.
Statistic

J test w w∗ w∗∗

GammaModel–II vs. BetaModel–II 0.0000 0.0866 0.0003
BetaModel–II vs. GammaModel–II 0.0000 0.0004 0.0004

Next, we wish to distinguish between the following models by means of a hypothesis test:
GammaModel–II and BetaModel–II. Since such models are non-nested, we shall use the J test;
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for details, see Cribari-Neto and Lucena (2015) and Cribari-Neto and Lucena (2017). J testing
inferences were carried out using the standard likelihood ratio test statistic (w) and also de two
corrected test statistics (w∗ and w∗∗). The tests p-values are presented in Table 5.7. Based on
the w∗ test, we do not reject GammaModel–II and reject BetaModel–II at the 5% significance
level. There is thus evidence that the unit gamma regression model yields a better fit than the
beta regression model for these data.



CHAPTER 6

Concluding remarks

The unit gamma regression can be used to model responses that assume values in the standard
unit interval, i.e., with dependent variables that assume values in (0,1), such as rates and pro-
portions. It is an alternative to the beta regression model. The unit gamma regression model is
based on the assumption that the variable of interest follows the unit gamma law which is pa-
rameterized in terms of mean and precision parameters. Inference on the parameters that index
the model is typically carried out using the likelihood ratio test. Such a test, however, tends to
be quite inaccurate in small samples. In particular, it tends to be liberal, i.e., it overrejects the
null hypothesis when such a hypothesis is true. In this dissertation, we derived two modified
likelihood ratio tests statistics that are expected to deliver more accurate inferences when the
sample size is small. They are obtained using a correction proposed by Skovgaard (2001). We
considered both fixed and variable precision unit gamma regression models. The latter con-
tains a submodel for the response mean and a separate submodel for the precision whereas in
the former only the mean varies across observations.

We list the main contributions:

1. We derived two modified likelihood ratio test statistics, w∗ and w∗∗, following the pro-
posal made by Skovgaard (2001) for the class of unit gamma regression models. We
obtained results for both fixed and variable precision models.

2. We performed Monte Carlo simulations to evaluate the tests finite sample behavior. The
numerical evidence showed that the standard likelihood ratio testing inference can be
quite inaccurate when the sample size is small. In particular, the test can be considerably
liberal. The two corrected tests, in contrast, tend to be much less size distorted, thus
yielding more accurate inferences. Our numerical results have also shown that one of the
modified tests tends to be less liberal, i.e., more accurate: w∗.

3. We presented an empirical application in which the variable of interest was modeled
using both a beta regression model and a unit gamma regression model. It is noteworthy
that the corrected tests yielded an inference that is different from that obtained using the
standard likelihood ratio test.

In short, we obtained two variants of the likelihood ratio test that are expected to deliver
more accurate inferences in small samples. The numerical evidence we presented showed that
the test we denoted by w∗ is particularly accurate in small samples.

In future research we shall derive the Skovgaard adjustment (Skovgaard, 2001) for the
classes of Kumaraswamy (Kumaraswamy, 1980) and simplex (Barndorff-Nielsen and Jørgensen,
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1991; Jorgensen, 1997) regression models, which can also be used to model random variables
that assume values in the standard unit interval.
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APPENDIX A

Appendix A - Data

Table A.1: Reading accuracy data.

Observation y x1 x2
1 0.88386 −1 0.82700
2 0.76524 −1 0.59000
3 0.91508 −1 0.47100
4 0.98376 −1 1144
5 0.88386 −1 −0.67600
6 0.70905 −1 −0.79500
7 0.77148 −1 −0.28100
8 0.99000 −1 −0.91400
9 0.99000 −1 −0.04300

10 0.99000 −1 0.90700
11 0.99000 −1 0.51100
12 0.99000 −1 1223
13 0.99000 −1 0.5900
14 0.99000 −1 1856
15 0.99000 −1 −0.39900
16 0.99000 −1 0.59000
17 0.70281 −1 −0.04300
18 0.99000 −1 1738
19 0.66535 −1 0.47100
20 0.99000 −1 1619
21 0.95878 −1 1144
22 0.99000 −1 −0.20100
23 0.73402 −1 −0.28100
24 0.64662 −1 0.59000
25 0.99000 −1 1777
26 0.57794 1 −0.08300
27 0.64038 1 −0.16200
28 0.45932 1 −0.79500
29 0.65286 1 −0.28100
30 0.60916 1 −0.87400
31 0.60916 1 0.31300

(continues on the next page)
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Table A.1 – continued from the previous page
Observation y x1 x2

32 0.54048 1 0.70900
33 0.57170 1 1223
34 0.70281 1 −1.23000
35 0.56546 1 −0.16200
36 0.53424 1 −0.99300
37 0.57794 1 −1191
38 0.69032 1 −1745
39 0.54673 1 −1745
40 0.68408 1 −0.43900
41 0.59043 1 −1666
42 0.62165 1 −1507
43 0.67159 1 −0.51800
44 0.66535 1 −1.27000


