NOME DO PROGRAMA:	Programa de Pós-Graduação em Engenharia Mecânica
CENTRO:	Centro de Tecnologia e Geociências

DADOS COMPLEMENTARES PARA O PROGRAMA						
NOME DO DOCENTE RESPONSÁVEL	Fábio Santana Magnani					
OFERTA:	()1° semestre	() 2° sem	estre	() 1° e 2° semestr	es
COMPONENTE DO	(X) mestrado		(X) douto	rado		
OBRIGATÓRIA	() sim	(X) não			
CARGA HORÁRIA:	TEÓRICAS:		45	hs	PRÁTICAS:	hs
COMPONTENTE PRÉ-REQUISITO	CÓDIGO:		NOME:			

NOME DO COMPONENTE: CARGA HORÁRIA: 45 hs TIPO DE COMPONENTE: (X) disciplina () atividade COMPONENTE FLEXÍVEL: () sim () não Introdução à Otimização. Perda de Carga. Trocadores de Calor. Solução de Sistemas Lineares. Solução de Sistemas Não-Lineares. Multiplicadores de Lagrange. Métodos de Busca. Programação Linear. Objetivo: Unificar conhecimentos das Ciências Térmicas e dos Métodos Numéricos com a finalidade de determinar a configuração ótima de sistemas térmicos. Justificativa: O projeto ideal de sistemas térmicos (termelétricas, sistemas de refrigeração, plantas termoquímicas) depende de muitas variáveis, como demandas, eficiências dos equipamentos e tarifas. Esse grande número de graus de liberdade comanda o uso de métodos computacionais de otimização. Conteúdo programático: 1 − Introdução à Otimização. 2 − Perda de Carga. 3 − Trocadores de Calor. 4 − Solução de Sistemas Lineares. 5 − Solução de Sistemas Não-Lineares. 6 − Multiplicadores de Lagrange. 7 − Métodos de Busca. 8 − Programação Linear. Método de avaliação: Entrega de cinco trabalhos individuais, cada um com peso de 20% no conceito final. Básicas:			DADOS DO COMPONENTE				
EMENTA Introdução à Otimização. Perda de Carga. Trocadores de Calor. Solução de Sistemas Lineares. Solução de Sistemas Não-Lineares. Multiplicadores de Lagrange. Métodos de Busca. Programação Linear. Objetivo: Unificar conhecimentos das Ciências Térmicas e dos Métodos Numéricos com a finalidade de determinar a configuração ótima de sistemas térmicos. Justificativa: O projeto ideal de sistemas térmicos (termelétricas, sistemas de refrigeração, plantas termoquímicas) depende de muitas variáveis, como demandas, eficiências dos equipamentos e tarifas. Esse grande número de graus de liberdade comanda o uso de métodos computacionais de otimização. Conteúdo programático: 1 - Introdução à Otimização. 2 - Perda de Carga. 3 - Trocadores de Calor. 4 - Solução de Sistemas Lineares. 5 - Solução de Sistemas Não-Lineares. 6 - Multiplicadores de Lagrange. 7 - Métodos de Busca. 8 - Programação Linear. Método de avaliação: Entrega de cinco trabalhos individuais, cada um com peso de 20% no conceito final.	NOME DO COMPONENTE:	Tópio	Tópicos Especiais em Energia (Otimização de Sistemas Térmicos)				
EMENTA Introdução à Otimização. Perda de Carga. Trocadores de Calor. Solução de Sistemas Lineares. Solução de Sistemas Não-Lineares. Multiplicadores de Lagrange. Métodos de Busca. Programação Linear. Objetivo: Unificar conhecimentos das Ciências Térmicas e dos Métodos Numéricos com a finalidade de determinar a configuração ótima de sistemas térmicos. Justificativa: O projeto ideal de sistemas térmicos (termelétricas, sistemas de refrigeração, plantas termoquímicas) depende de muitas variáveis, como demandas, eficiências dos equipamentos e tarifas. Esse grande número de graus de liberdade comanda o uso de métodos computacionais de otimização. Conteúdo programático: 1 – Introdução à Otimização. 2 – Perda de Carga. 3 – Trocadores de Calor. 4 – Solução de Sistemas Lineares. 5 – Solução de Sistemas Não-Lineares. 6 – Multiplicadores de Lagrange. 7 – Métodos de Busca. 8 – Programação Linear. Método de avaliação: Entrega de cinco trabalhos individuais, cada um com peso de 20% no conceito final.	CARGA HORÁRIA:	45 hs	TIPO DE COMPONENTE:	(X) disciplina	() atividade		
Sistemas Lineares. Solução de Sistemas Não-Lineares. Multiplicadores de Lagrange. Métodos de Busca. Programação Linear. Objetivo: Unificar conhecimentos das Ciências Térmicas e dos Métodos Numéricos com a finalidade de determinar a configuração ótima de sistemas térmicos. Justificativa: O projeto ideal de sistemas térmicos (termelétricas, sistemas de refrigeração, plantas termoquímicas) depende de muitas variáveis, como demandas, eficiências dos equipamentos e tarifas. Esse grande número de graus de liberdade comanda o uso de métodos computacionais de otimização. Conteúdo programático: 1 – Introdução à Otimização. 2 – Perda de Carga. 3 – Trocadores de Calor. 4 – Solução de Sistemas Lineares. 5 – Solução de Sistemas Não-Lineares. 6 – Multiplicadores de Lagrange. 7 – Métodos de Busca. 8 – Programação Linear. Método de avaliação: Entrega de cinco trabalhos individuais, cada um com peso de 20% no conceito final.			COMPONENTE FLEXÍVEL:	() sim	() não		
finalidade de determinar a configuração ótima de sistemas térmicos. Justificativa: O projeto ideal de sistemas térmicos (termelétricas, sistemas de refrigeração, plantas termoquímicas) depende de muitas variáveis, como demandas, eficiências dos equipamentos e tarifas. Esse grande número de graus de liberdade comanda o uso de métodos computacionais de otimização. Conteúdo programático: 1 – Introdução à Otimização. 2 – Perda de Carga. 3 – Trocadores de Calor. 4 – Solução de Sistemas Lineares. 5 – Solução de Sistemas Não-Lineares. 6 – Multiplicadores de Lagrange. 7 – Métodos de Busca. 8 – Programação Linear. Método de avaliação: Entrega de cinco trabalhos individuais, cada um com peso de 20% no conceito final.	EMENTA	Sistemas Line	ares. Solução de Sistemas Não	-Lineares. Multiplic	•		
REFERENCIAS: Básicas:		finalidade de d Justificativa: O refrigeração, p eficiências dos comanda o us Conteúdo prog 1 – Introdução 2 – Perda de Ca 3 – Trocadores 4 – Solução de 5 – Solução de 6 – Multiplicad 7 – Métodos de 8 – Programaçã Método de ava no conceito fin	Lagrange. Métodos de Busca. Programação Linear. Objetivo: Unificar conhecimentos das Ciências Térmicas e dos Métodos Numéricos com a finalidade de determinar a configuração ótima de sistemas térmicos. Justificativa: O projeto ideal de sistemas térmicos (termelétricas, sistemas de refrigeração, plantas termoquímicas) depende de muitas variáveis, como demandas, eficiências dos equipamentos e tarifas. Esse grande número de graus de liberdade comanda o uso de métodos computacionais de otimização. Conteúdo programático: 1 – Introdução à Otimização. 2 – Perda de Carga. 3 – Trocadores de Calor. 4 – Solução de Sistemas Lineares. 5 – Solução de Sistemas Não-Lineares. 6 – Multiplicadores de Lagrange. 7 – Métodos de Busca. 8 – Programação Linear.				
	REFERÊNCIAS:		aı.				

BEJAN, A., **Advanced Engineering Thermodynamics**, 4th edition, Wiley, 2016. STOECKER, W.F., **Design of Thermal Systems**, 3rd edition, McGraw Hill, 1989. BEJAN, A., TSATSARONIS, G., MORAN, M., **Thermal Design and Optimization**, 1st edition, Wiley-Interscience, 1995.

Complementares:

MAGNANI, F., Análise Multimétrica, 2ª versão, 2014.

SOUZA, S. B. L.; SOUZA, M. F. P.; FREITAS, L. A.; SILVA, P. P.; MELO, F. M.; MAGNANI, F. S. . Design and Operational Optimization of CCHP Systems Using a Hybrid Method Based on MILP. **IEEE Latin America Transactions**, v. 19, p. 326-334, 2021.

FREITAS, LUCAS ADEMAR; SANTANA MAGNANI, FABIO; MONROE HORNSBY, ERIC. Robustness of Electricity and Chilled Water Supply Systems Subject to Change Technical and Economic. **IEEE Latin America Transactions**, v. 15, p. 908-915, 2017.

NOME DO PROGRAMA:	Programa de Pós-Graduação em Engenharia Mecânica
CENTRO:	СТБ

DADOS COMPLEMENTARES PARA O PROGRAMA						
NOME DO DOCENTE RESPONSÁVEL	José Ângelo Peixoto da Costa					
OFERTA:	()1° semestre (X) 2° semestre () 1° e 2° semestres				res	
COMPONENTE DO	(X) mestrado) ((X) douto	rado		
OBRIGATÓRIA	() sim	(X) não			
CARGA HORÁRIA:	TEÓRICAS:		35	hs	PRÁTICAS:	10hs
COMPONTENTE PRÉ-REQUISITO	CÓDIGO:		NOME:			

		DADOS DO COMPONENTE					
NOME DO COMPONENTE:	Tópicos Especiais em Energia (Simulação Multifísica FSI (Fluid Structure						
		Interacti	on)				
CARGA HORÁRIA:	45 hs	TIPO DE COMPONENTE:	(X) disciplina	() atividade			
		COMPONENTE FLEXÍVEL:	() sim	() não			
EMENTA	_	Introdução ao FSI; Elementos finitos, análise estática, análise dinâmica, fadiga; Métodos dos volumes finitos; Interação Fluido Estrutura; Aplicações.					
		Objetivo: Capacitar o aluno na resolução de problemas de engenharia envolvendo a Dinâmica dos Fluidos Computacional acoplado a problemas estruturais.					
	Justificativa: Muitos problemas de engenharia necessitam de uma abordagem acoplada de múltiplas física como é o caso do acoplamento de problemas estruturais com a Dinâmica dos Fluidos Computacional.						
	Conteúdo programático: 1 — Introdução e aplicação Simulação FSI (Fluid Structure Interaction): Histórico; Aplicações e Perspectivas futuras.						
	2 – Introdução à Análise Estrutural FEA (Finite Element Analys) Histórico; Modelagem CAD; Geração da malha; Condições de contorno; Pós-Processamento.						
		ção de equações diferenciais	S 1D 2D 2D				
		os Elementos Finitos: ELEMENTOS		Yaiaa da			
	_	ento da simulação: domínio comp os processamento	utacional, maina, f	isica do			
	грговіетта е ро	is processamento					

- 2.4 Solução de problemas de engenharia aplicados ao FEA:
- 2.4.1 Trelicas e vigas
- 2.4.2 Chapas e elementos de casca (vasos de pressão)
- 2.4.3 Concentração de tensão e singularidade numérica
- 2.4.4 Análise de transferência de calor
- 2.4.5 Análise não linear (grandes deformações, plasticidade, materiais anisotrópicos
- 2.4.6 Análise dinâmica
- 2.4.7 Análise de fadiga
- 2 Introdução à Dinâmica dos Fluidos Computacional (CFD):Histórico;Modelagem CAD ; Geração da malha; Condições de contorno; Pós-Processamento.
- 2.1 Simulação 2D Elbow
- 2.2 Simulação Equipamento de Mistura
- 2.3 Simulação de Feixe de tubos de trocador
- 2.4 Análise CHT (Conjugate Heat Transfer)
- 2.5 Simulação Perfil aerodinâmico NACA 0012
- 2.6 Escoamento turbulento (modelos de turbulência)
- 3 Simulação FSI (Fluid Structure Interaction)
- 3.1. Introdução às abordagens Análise de uma via (1-way) e análise de duas vias (2-way)
- 3.2. Co-simulação Geometria e Malhas
- 3.3. Co-simulação Configuração FEA, CFD e System Coupling
- 3.4. Co-simulação Análise de convergência de resultados
- 4 Aplicações FSI
- 4.1. Análise de Tensões Térmicas de tubulações (1-way);
- 4.2. Análise FSI de Perfil NACA 0012 (1-way);
- 4.3. Análise FSI de Flap hiperelástico (2-way);
- 4.4. Análise FSI de Coletor de Exaustão Automotivo (2-way).

Método de avaliação: Trabalho de simulação de conceitos fundamentais; Apresentação de trabalho final no formato de artigo científico ou patente. A nota será a média aritméticas das avaliações.

REFERÊNCIAS:

Básicas:

KIM, N., H; SANKAR, B. V. Introdução à Análise e ao Projeto em Elementos Finitos. 1ª ed. LTC, 2011.

AVELINO, A. Elementos Finitos a Base da Tecnologia CAE, 5ª ed. Érica, 2007.

Maliska, C. R. **Transferência de calor e mecânica dos fluidos computacional**. 2. ed. Rio de Janeiro: LTC, 2004.

Fortuna, A. O. **Técnicas computacionais para dinâmica dos fluidos**. São Paulo: EDUSP, 2000.

Versteeg, H. K.; Malalasekera, W. An introduction to computational fluid dynamics, the finite volume method. 2. ed. Harlow, England: Pearson, 2007.

Complementares:

Patankar, S. V. **Numerical heat transfer and fluid flow**. New York: Hemisphere, 1980. Anderson, J.D. Jr. **Computational Fluid Dynamics - The Basics with Applications**, 1995, McGraw-Hill.

Ferziger, J.H. e PERIC, M. **Computational Methods for Fluid Dynamics**, 2002, Springer-Verlag.

Fish, j., Belytschko, T. Um primeiro Curso em Elementos Finitos, 1ª ed. LTC, 2009. Soriano, H. L. **Elementos finitos – Formulação e Aplicação na Estática e Dinâmica das Estruturas**. 1ª ed. Ciência Moderna, 2009.

Logan. D. L. A First Course in the Finite Element Method. Cengage Learning; 6ª ed, 2016. Vaz, L. E. Método dos elementos finitos em análise de estruturas. 1ª ed. Campus, 2011. Cook, R. D. Finite Element Modeling for Stress Analysis, John Wiley & Sons, 1995.

NOME DO PROGRAMA:	PPGEM / UFPE
CENTRO:	CTG

		DADOS DO COMPONENTE						
NOME DO COMPONENTE:		Tópicos Especiais em Energia (Teoria de controle)						
CARGA HORÁRIA:	45hs	45hs TIPO DE COMPONENTE: (X) disciplina () ativic						
		COMPONENTE FLEXÍVEL:	() sim	() não				
EMENTA:	1. Modelos er	1. Modelos em espaço de estados;						
	2. controlabili	dade e observabilidade;						
	3. dinâmica di	reta x dinâmica inversa;						
	4. estabilidad	4. estabilidade;						
	5. análise e design de sistemas de controle;							
	6. observador de estado (estimador de estado);							
	7. reguladores quadráticos.							
REFERÊNCIAS:	1- Dorf, R.C. & Bishop, R. H. Modern Control System, addison Wesley.							
	2- Nise, N. S. E	Engenharia de sistemas de con	itrole. 3. ed. Rio de	e Janeiro: LTC.				
	l	s, G. A stable reentry trajector Journal of Control, 94(5), 1297	•	ipulators.				

NOME DO PROGRAMA:	PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA - PPGEM
CENTRO:	TECNOLOGIA E GEOCIÊNCIAS - CTG

	DADOS COMI	PLEMENTARES	PARA O F	PROGRAMA		
NOME DO DOCENTE RESPONSÁVEL	Darlan Karlo Elisiá	Darlan Karlo Elisiário de Carvalho				
OFERTA:	() 1° semestre	(X) 2° ser	nestre	() 1° e 2° semes	tres	
COMPONENTE DO	(X) mestrado	() doutor	ado			
OBRIGATÓRIA	() sim	(X) não				
CARGA HORÁRIA:	TEÓRICAS:	45	hs	PRÁTICAS:	0hs	
COMPONENTE PRÉ-REQUISITO	CÓDIGO:	NOME:				

		DADOS DO COMPONENTE					
NOME DO COMPONENTE:	Estud	Estudos Especiais para o Mestrado (MODELAGEM NUMÉRICA 3D DO					
	ES(COAMENTO MULTIFÁSICO E DO	O TRANSPORTE DI	E INIBIDORES DE			
		INCRUSTAÇÃO EM D	UTOS DE PETRÓL	EO)			
CARGA HORÁRIA:	30h	TIPO DE COMPONENTE:	(X) disciplina	() atividade			
		COMPONENTE FLEXÍVEL:	() sim	(X) não			
EMENTA	escoamentos tridimensionais transporte de tratamento de malhas estrutu aprimorar a pro Justificativa: A enfrenta sério comprometem comumente ve esses depósito aquosa ao long para compreer simulações en precisão a inte domínio de tée injeção, garant continuidade de	curso, os alunos estudarão os multifásicos em dutos de s. Será dado enfoque ao mode espécies (sem reação química) e parede aprimorado. Além dissoradas e a técnica de adaptativida ecisão dos resultados das simulaços de indústria do petróleo e gás, os desafios relacionados à forma integridade dos dutos. A eliculados ao monoetilenoglicol (Nos, mas sua eficácia depende da go da tubulação. Nesse contexto, nder o comportamento do MEG an Computational Fluid Dynamice eração entre as fases e a evolução cricas de modelagem 3D é, porta la produção offshore no setor peteramático:	petróleo por m lo Volume of Fluid ao modelo de turb o, serão estudadas de dinâmica de mal ões. principalmente el mação de incrusta injeção de inibi dEG), é amplamente distribuição adequ a análise tridimens ao longo do duto d s - CFD, é possíve ão espacial da conce anto, crucial para a crustações e contril	eio de metodologias (VOF), ao modelo de ulência k-E padrão, com formas de geração de lha, com o objetivo de m produções offshore, ações inorgânicas, que dores de incrustação, e utilizada para prevenir ada do inibidor na fase sional se torna essencial e petróleo. Por meio de el capturar com maior centração do inibidor. O primorar estratégias de			
	Conteúdo pro	gramático:					

- Escoamentos multifásicos e multicomponentes
- Padrões de escoamento em dutos verticais

- Principais problemas de garantia de escoamento, com foco nas incrustações inorgânicas
- Modelo multifásico: Volume of Fluid (VOF)
- Modelo multicomponente: modelo de transporte de espécies, sem reação química
- Modelo de turbulência: k-ε padrão, com tratamento de parede aprimorado
- Geração de malhas estruturadas, refinamento para testes de convergência
- Adaptatividade dinâmica de malha
- Configurações (Setup) dos casos a serem simulados no software Ansys Fluent
- Pós-processamento e análise de resultados

Método de avaliação:

Relatórios/seminários sobre as temáticas envolvidas, construção das malhas, modelagem dos casos utilizando CFD em *softwares* 3D e realização de análises acerca dos resultados obtidos.

REFERÊNCIAS:

Básicas:

- 1. YADIGAROGLU, G.; HEWITT, G. Introduction to Multiphase Flow: Basic Concepts, Applications and Modelling. Springer, 2018.
- ISHII, M.; HIBIKI, T. Thermo-Fluid Dynamics of Two-Phase Flow. 2 ed. Springer, 2011.
- 3. GIOVANGIGLI, V. Multicomponent Flow Modeling. Springer, 1999.
- 4. ANSYS. Ansys Fluent Theory Guide, Version 2024 R1.

Complementares:

- 1. KUMAR, A. Perspectives of Flow Assurance Problems in Oil and Gas Production: A Mini-review. *Energy Fuels*, 37, 8142–8159, 2023.
- 2. RAWAHI, Yousuf M. Al; SHAIK, Feroz. Studies on Scale Deposition in Oil Industries & Their Control. *International Journal For Innovative Research In Science & Technology (Ijirst)*. Índia, p. 152-167, 2017.
- 3. PALADINO, E. E. Estudo do escoamento multifásico em medidores de vazão do tipo pressão diferencial. 2005. Tese (Doutorado em Engenharia Mecânica) Universidade Federal de Santa Catarina, Florianópolis, 2005.
- NASCIMENTO, J. C. S. Simulador de Escoamento Multifásico em Poços de Petróleo (SEMPP). 2013. 134 f. Dissertação (Mestrado em Ciência e Engenharia de Petróleo) – Universidade Federal do Rio Grande do Norte, Natal, 2013.
- 5. HIRT, C. W.; NICHOLS, B. D. Volume of fluid (VOF) method for the dynamics of free boundaries. *Journal of Computational Physics*, S.I., v. 39, 1981
- GUERRERO, E.; MUÑOZ, F. Comparison between Eulerian and VOF models for two-phase flow assessment in vertical pipes. *Ingeniería*, v. 20, n. 1, p. 68-83, 2015.
- SILVA, F. N.; ANDRADE, T. H. F.; LIMA, A. G. B.; NETO, S. R. F. Estudo numérico do escoamento trifásico (água-óleo pesado-gás) tipo core-flow em uma conexão "t".
 In: Congresso Brasileiro de Pesquisa e Desenvolvimento em Petróleo e Gás PDPETRO, 6., 2011, Florianópolis. Anais [...]. Florianópolis: ABPG, 2011.
- 8. ROSA, R., SOPRANA, A. B., GIRARDI, V., FERNANDO M. V. Assessment of Chemical Injection to Mitigate Wax Deposition in Unconventional Wells. *SPE Annual Technical Conference and Exhibition*, Dubai, UAE, September 2021.

NOME DO PROGRAMA:	Programa de Pós-Graduação em Engenharia Mecânica
CENTRO:	Centro de Tecnologia e Geociências

DADOS COMPLEMENTARES PARA O PROGRAMA							
NOME DO DOCENTE RESPONSÁVEL	José Ângelo Peixoto da Costa						
OFERTA:	()1° semestre (X	()1° semestre (X) 2° semestre ()1° e 2° semestres					
COMPONENTE DO	(X) mestrado ()	(X) mestrado () doutorado					
OBRIGATÓRIA	() sim (X) não					
CARGA HORÁRIA:	TEÓRICAS:	20 hs	PRÁTICAS:	10 hs			
COMPONTENT E PRÉ-REQUISITO	CÓDIGO:	NOME:					

DADOS DO COMPONENTE

NOME DO COMPONENTE :	Estudos Es	Estudos Especiais para o Mestrado (Simulação WECs)						
CARGA HORÁRIA:	30 hs	TIPO DE COMPONENTE:	(X) disciplina () atividade					
		COMPONENTE FLEXÍVEL:	() sim () não					
FMFNTA	Introdução à a	energia maremotriz. Tinos de	dispositivos geradores					

Introdução à energia maremotriz, Tipos de dispositivos geradores, Tratamento de geometria, Materiais e parâmetros de solução, Condições de contorno, carregamentos e considerações sobre casos padrão,

Pós-processamento, Tópicos complementares

Objetivo: Proporcionar ao aluno conhecimentos necessário sobre energia maré motriz e sua simulação CFD e FEA.

Justificativa: Com a evolução das fontes de energias alternativas, a maremotriz tem se tornado cada vez mais relevante para o cenário brasileiro, neste contexto, entender o comportamento e sua capacidade de geração através de simulações CFD e FEA é extremamente importante para o desenvolvimento e aprimoramento da tecnologia.

Conteúdo programático:

- Introdução à energia maremotriz
- Tipos de dispositivos geradores
- Tratamento de geometria
- Materiais e parâmetros de solução
- Condições de contorno, carregamentos e considerações sobre casos padrão
- Pós-processamento
- Tópicos complementares

Método de avaliação: Relatório da simulação de WECs aplicada à dissertação de mestrado do aluno

REFERÊNCIAS:	Básicas:	
	Maliska, C. R. Transferência de calor e mecânica dos fluidos computacional . 2. ed. Rio de Janeiro: LTC, 2004.	
	Logan. D. L. A First Course in the Finite Element Method . Cengage Learning; 6ª ed, 2016.	
	Cook, R. D. Finite Element Modeling for Stress Analysis , John Wiley & Sons, 1995.	
	Journée, J.M.J; Massie, W.W. Offshore hydromechanics . First Edition. ed. Delft University of Technology: [s. n.], 2001	
	Lewis, E. V. Principles of naval architecture: Motions in waves and controllability. 2. ed. Jersey City, NJ, USA: Society of Naval Architects and Marine Engineer, 1990.	
	Newman, J. N. Marine Hydrodynamics . MIT Press, Caml 1977.	bridge, UK,

FOX, R. W.; MCDONALD, A. T.; MITCHELL, J. W. Fox and McDonald's I **ntroduction to fluid mechanics**. 10. ed. Nashville, TN, USA: John Wiley & Sons, 2020.

NOME DO	PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA
PROGRAMA:	MECÂNICA - PPGEM
CENT RO:	TECNOLOGIA E GEOCIÊNCIAS - CTG

DADOS COMPLEMENTARES PARA O PROGRAMA						
NOME DO DOCENTE RESPONSÁVEL	José Ângelo Peixoto da Costa					
OFERTA:	() 1° semestre (X) 2° semestre () 1° e 2° semestres					
COMPONENTE DO	(X) mestra	do	() do	utora	do	
OBRIGATÓRIA	() sim	() sim (X) não				
CARGA HORÁRIA:	TEÓRICAS: 20hs PRÁTICAS: 10hs					10hs
COMPONENTE PRÉ-REQUISITO	CÓDIGO:		NOME:			1

	DADOS DO COMPONENTE						
NOME DO COMPONENTE:	Estudos Especiais para o Mestrado (GERENCIAMENTO TÉRMICO DE CÉLULAS A COMBUSTÍVEL VIA CFD)						
CARGA HORÁRIA:	30hs	TIPO DE COMPONENTE:	(X) disciplina () atividade				
		COMPONENT E FLEXÍVEL:	() sim (X) não				

EMENTA

Esta disciplina apresenta os fundamentos e aplicações da simulação numérica voltada ao gerenciamento térmico de células a combustível. Serão abordadas as equações governantes dos fenômenos de transporte, seleção de modelos físicos, análise de diferentes geometrias de canais, e influência de propriedades dos fluidos de trabalho. Técnicas de geração de malhas, configuração de simulações e análise crítica de resultados serão trabalhadas por meio de ferramentas CFD amplamente utilizadas na indústria e na academia.

Justificativa: O gerenciamento térmico das células de combustível é fundamental para garantir desempenho, durabilidade e segurança operativa. A simulação numérica por CFD permite avaliar o comportamento térmico e hidráulico em geometrias complexas de canais de resfriamento, utilizando diferentes tipos de fluidos, sob variadas condições de operação. Esta disciplina proporciona ao aluno a base necessária para configurar, executar e interpretar simulações avançadas em sistemas de geração de energia limpa, contribuindo para o projeto e otimização desses dispositivos.

Conteúdo programático:

- Introdução aos princípios de operação e arquitetura das células de combustível
- Equações de conservação (massa, quantidade de movimento, energia) e seus fundamentos físicos
- Análise de diferentes configurações de canais de resfriamento (simples e complexas)
- Influência de propriedades físicas dos fluidos no desempenho térmico
- Estudo de regimes de escoamento: laminar, transicional e turbulento
- Modelos de turbulência aplicáveis a microcanais (k-ε, k-ω e SST)
- Estratégias de malhagem e controle de qualidade da malha
- Modelagem computacional com ANSYS Fluent
- Interpretação de resultados e geração de relatórios técnicos com visualizações e gráficos
- Comparação com dados da literatura e avaliação da confiabilidade numérica

NOME DO PROGRAMA:	Programa de Pós-Graduação em Engenharia Mecânica
CENTRO:	TECNOLOGIA E GEOCIÊNCIAS - CTG

DADOS COMPLEMENTARES PARA O PROGRAMA							
NOME DO DOCENTE RESPONSÁVEL	José Ângelo Peixoto da Costa						
OFERTA:	()1° semestre (X	()1° semestre (X) 2° semestre () 1° e 2° semestres					
COMPONENTE DO	(X) mestrado ()	doutorado					
OBRIGATÓRIA	() sim (X) não					
CARGA HORÁRIA:	TEÓRICAS: 20 hs PRÁTICAS: 10hs						
COMPONENTE PRÉ-REQUISITO	CÓDIGO:	NOME:					

DA	DO	os	DO	CON	ИРС	N	ENT	ΓΕ

j i							
NOME DO COMPONENTE :	Estudos Especiais para o Mestrado (Simulação CFD Aplicada a Dispositivos Anticavitação)						
CARGA HORÁRIA:	30 hs	TIPO DE COMPONENTE:	(X) disciplina () atividade				
		COMPONENTE FLEXÍVEL:	() sim () não				
EMENTA	escoamentos i desempenho l carga e coefici	da dinâmica dos fluidos com multifásicos; modelagem de o nidráulico em válvulas; extraç entes hidráulicos; análise est válvulas com dispositivos an	cavitação; análise de cão de curvas de perda de rutural acoplada (FSI);				

Objetivo: Capacitar o aluno a realizar simulações numéricas de escoamentos com cavitação em dispositivos hidráulicos, utilizando ferramentas CFD (ANSYS Fluent), bem como a realizar acoplamento com análise estrutural e interpretação crítica de desempenho de válvulas modificadas.

Justificativa: Capacitar o aluno a realizar simulações numéricas de escoamentos com cavitação em dispositivos hidráulicos, utilizando ferramentas CFD (ANSYS Fluent), bem como a realizar acoplamento com análise estrutural e interpretação crítica de desempenho de válvulas modificadas.

Conteúdo programático:

- 1 Introdução à Dinâmica dos Fluidos Computacional (CFD):
 Modelagem CAD
- ; Geração da malha; Condições de contorno; Pós-Processamento.
- 1.1 Modelagem do escoamento com cavitação
- 1.1.1 Mapeamento de zonas de cavitação
- 1.1.2 Simulações multifásicas
- 1.2 Análise de desempenho hidráulico
- 1.2.1 Extração de curvas de perda de carga
- 1.2.2 Determinação de coeficientes Cv e K
- 1.2.3 Gráficos, pós-processamento e interpretação

- 1.3 Técnicas avançadas de simulação CFD
- 1.3.1 Modelos de escoamentos turbulentos
- 1.3.2 Técnicas de refinamento de malha e de convergência
- 1.4 Estudos paramétricos e comparativos
- 2 Introdução e aplicação Simulação FSI (Fluid Structure Interaction): Histórico; Aplicações e Perspectivas futuras.
- 2.1 Importação de campos de pressão para ANSYS Mechanical
- 2.2 Avaliação de tensões e deformações no dispositivo e critérios de falha

REFERÊNCIAS:

Básicas:

KIM, N., H; SANKAR, B. V. Introdução à Análise e ao Projeto em Elementos Finitos. 1ª ed. LTC, 2011.

AVELINO, A. Elementos Finitos a Base da Tecnologia CAE, 5ª ed. Érica, 2007.

Maliska, C. R. **Transferência de calor e mecânica dos fluidos computacional**. 2. ed. Rio de Janeiro: LTC, 2004.

Fortuna, A. O. **Técnicas computacionais** para dinâmica dos fluidos. São Paulo: EDUSP, 2000.

Versteeg, H. K.; Malalasekera, W. An introduction to computational fluid dynamics, the finite volume method . 2. ed. Harlow, England: Pearson, 2007.

Complementares:

Patankar, S. V. **Numerical heat transfer** and fluid flow. New York: Hemisphere, 1980.

Anderson, J.D. Jr. Computational Fluid Dynamics - The Basics with Applications, 1995, McGraw-Hill.

Ferziger, J.H. e PERIC, M. Computational Methods for Fluid Dynamics, 2002, Springer-Verlag.

Fish, j., Belytschko, T. Um primeiro Curso em Elementos Finitos, 1ª ed. LTC, 2009.

Soriano, H. L. Elementos finitos – Formulação e Aplicação na Estática e Dinâmica das Estruturas. 1ª ed. Ciência Moderna, 2009.

Logan. D. L. A First Course in the Finite Element Method. Cengage Learning; 6^a ed, 2016.

Vaz, L. E. **Método dos elementos finitos em análise de estruturas**. 1ª ed. Campus, 2011.

Cook, R. D. Finite Element Modeling for Stress Analysis, John Wiley & Sons, 1995.

SERVIÇO PÚBLICO FEDERAL MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO UNIVERSIDADE FEDERAL DE PERNAMBUCO DEPARTAMENTO DE ENGENHARIA MECÂNICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

Estudos Especiais para o Mestrado – PEM 906 Estudos fundamentais sobre modelos simplificados de cinética aplicada à combustão de hidrocarbonetos. (2º semestre de 2025)

<u>Professor:</u> Jorge Recarte Henríquez Guerrero

Aluno: Gabriel Cordeiro Moreira Dias

Ementa:

- 1. Princípios básicos sobre cinética da combustão e revisão da literatura
- 2. Pesquisa e estudos sobre modelos simplificados de cinética.
- 3. Modelos e Softwares para análise da cinética da combustão
- 4. Tratamento numérico e construção de algoritmos de solução dos modelos simplificados
- 5. Realização de um estudo numérico simplificado aplicado a misturas GLP/H2: definição do problema; Construção do modelo; Definição da estratégia de resolução do modelo; Realização de estudos paramétricos, Comparação com a literatura.

Bibliografia Básica:

Sara McAllister, S.; Chen, J.Y; Fernandez-Pello, A.C., Fundamentals of Combustion Processes, Edit. Springer, 2014. ISBN 978-1-4419-7942-1.

Peters, N.; Rogg, B., Reduced Kinetic Mechanisms for Applications in Combustion Systems (Lecture Notes in Physics), Springer-Verlag, 1993, ISBN 3-540-56372-5

Oran, E.S.; Boris, J.P., Numerical Simulation of Reactive Flow. 2nd Ed., Cambridge University Press, 2001.

Bibliografia Complementar:

Artigos de Periódicos (Portal Capes).

Forma de acompanhamento e avaliação:

- Seminários quinzenais realizados pelo discente;
- Relatório final da disciplina.
- Preparação de 1 artigo para submissão em periódico.

NOME DO PROGRAMA:	PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA - PPGEM
CENTRO:	TECNOLOGIA E GEOCIÊNCIAS - CTG

DADOS COMPLEMENTARES PARA O PROGRAMA						
NOME DO DOCENTE RESPONSÁVEL	Darlan Karlo Elisiário de Carvalho					
OFERTA:	(X)1° semestre () 2° semestre () 1° e 2° semestres					es
COMPONENTE DO	() mestrado (X) doutorado					
OBRIGATÓRIA	() sim	((X) não			
CARGA HORÁRIA:	TEÓRICAS:		45	ihs	PRÁTICAS:	0hs
COMPONENTE PRÉ-REQUISITO	CÓDIGO:		NOME:			

DADOS DO COMPONENTE				
NOME DO COMPONENTE:	Estudos Especiais para o Doutorado (Uso de Redes Neurais Artificiais para a			
NOWE DO COMPONENTE.	Modelagem do Escoamento Multifásico em Dutos de Petróleo)			
CARGA HORÁRIA:	30hs	TIPO DE COMPONENTE:		() atividade
CANGA HONANIA.	30113		` ' '	. ,
		COMPONENTE FLEXÍVEL:	() sim	(X) não
EMENTA	Neste curso, os alunos estudarão os fundamentos e aplicações de redes neurais artificiais (RNAs) para a modelagem de escoamentos multifásicos em dutos de petróleo. Serão abordados algoritmos, tais como Decision Tree, Random Forest e Artificial Neural Networks (ANNs) aplicados à previsão de padrões de escoamento, determinação de parâmetros operacionais e estimação de propriedades de mistura. O curso contemplará também técnicas de aprendizado supervisionado, validação de modelos e integração com dados simulados da indústria do petróleo. Justificativa: A crescente complexidade dos escoamentos multifásicos nos sistemas de produção petrolífera, especialmente em ambientes submarinos de longa distância, demanda soluções computacionais mais flexíveis e capazes de lidar com incertezas. As redes neurais artificiais e demais algoritmos de aprendizado de máquina vêm se consolidando como ferramentas poderosas para a modelagem de fenômenos físicos complexos, oferecendo alternativas mais ágeis e adaptativas aos modelos determinísticos tradicionais. Este curso visa capacitar os alunos a utilizar técnicas modernas de inteligência artificial na engenharia de escoamentos multifásicos.			
	 Conteúdo programático: Fundamentos de Redes Neurais Artificiais Pré-processamento de Dados em Engenharia de Escoamentos Aplicações de Aprendizado de Máquina na Indústria do Petróleo Predição de Padrões de Escoamento com Aprendizado Supervisionado Algoritmos de Classificação e Regressão: Decision Tree, Random Forest e ANN Validação Cruzada e Métricas de Desempenho Comparação entre Modelos Físicos e Modelos Baseados em Dados Integração com Softwares de Simulação: ALFAsim, Ansys Fluent Estudos de Caso com Dados de Simulações 			

Método de avaliação:

Seminários semanais, desenvolvimento de modelos preditivos com aprendizado de máquina em Python (frameworks como Scikit-learn, TensorFlow e PyTorch), relatórios técnicos e apresentação final de projeto aplicado.

REFERÊNCIAS:

Básicas:

- 1. Du, K.-L.; Swamy, M. N. S. Neural Networks and Statistical Learning. Springer London, 2019.
- 2. Sadrehaghighi, I. (Ed. & Adapt.). Artificial Intelligence (AI) and Deep Learning for CFD. CFD Open Series / Patch 2.60, Annapolis, MD, 2022. 160 p.
- 3. Goodfellow, I., Bengio, Y., Courville, A. Deep Learning. MIT Press, 2016.
- 4. Chollet, F. Deep Learning with Python. Manning Publications, 2021.
- 5. LeCun, Y., Bengio, Y., Hinton, G. Deep learning. Nature, 2015.

Complementares:

- 1. Raschka, S., Mirjalili, V. Python Machine Learning. Packt, 2022.
- Chen, S. Machine Learning for Fluid Flow Prediction. Journal of Fluid Engineering, 2021.
- 3. Brennen, C.E. Fundamentals of Multiphase Flows. Cambridge University Press, 2005.
- 4. Hewitt, G. F., Hall-Taylor, N. Annular Two-Phase Flow. Elsevier, 1970.