UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS PROGRAMA DE PÓS - GRADUAÇÃO EM ENGENHARIA ELÉTRICA

SUELLEN CUNHA DA SILVA

BIBLIOTECA E IMPLEMENTAÇÃO DE MODELOS PARA REATORES NATURALMENTE SATURADOS NA LINGUAGEM MODELS DO PROGRAMA ATP

Recife 2016 Suellen Cunha da Silva

Biblioteca e Implementação de Modelos para Reatores Naturalmente Saturados na Linguagem MODELS do Programa ATP

Dissertação submetida ao Programa de Pós-Graduação em Engenharia Elétrica da Universidade Federal de Pernambuco como parte dos requisitos para obtenção do grau de Mestre em Engenharia Elétrica. Área de Concentração: Processamento de Energia.

Orientador: Manoel Afonso de Carvalho Júnior, PhD.

Recife 2016

Catalogação na fonte Bibliotecária Margareth Malta, CRB-4 / 1198

S586i	 Silva, Suellen Cunha da. Biblioteca e implementação de modelos para reatores naturalmente satura na linguagem MODELS do programa ATP / Suellen Cunha da Silva 2016. 194 folhas, il., gráfs., tabs. 			
	Orientador: Prof. Dr. Manoel Afonso Coorientador: Prof. Dr. Geraldo Leite Dissertação (Mestrado) – Universidad Programa de Pós-Graduação em Engenha Inclui Referências e Apêndice.	de Carvalho Júnior. e Torres. de Federal de Pernambuco. CTG. ria Elétrica, 2016.		
	 Engenharia Elétrica. Reat Linguagem MODELS. Programa Magnético Unificado. Carvalho Júnion II. Torres, Geraldo Leite. (Coorientador). 	ores naturalmente saturados. 3. ATP. 5. Circuito Equivalente r, Manoel Afonso de. (Orientador). III. Título.		
		UFPE		
	621.3 CDD (22. ed.)	BCTG/2016-324		

PARECER DA COMISSÃO EXAMINADORA DE DEFESA DE DISSERTAÇÃO DO MESTRADO ACADÊMICO DE

SUELLEN CUNHA DA SILVA

TÍTULO

"BIBLIOTECA E IMPLEMENTAÇÃO DE MODELOS PARA REATORES NATURALMENTE SATURADOS NA LINGUAGEM *MODELS* **DO PROGRAMA ATP"**

A comissão examinadora composta pelos professores: MANOEL AFONSO DE CARVALHO JÚNIOR, DEE/UFPE; RONALDO RIBEIRO BARBOSA DE AQUINO, DEE/UFPE e LUIZ ANTÔNIO MAGNATA DA FONTE, DEE/UFPE, sob a presidência do primeiro, consideram a

candidata SUELLEN CUNHA DA SILVA APROVADA.

Recife, 29 de agosto de 2016.

MARCELO CABRAL CAVALCANTI Coordenador do PPGEE MANOEL AFONSO DE CARVALHO JÚNIOR Orientador e Membro Titular Interno

LUIZ ANTÔNIO MAGNATA DA FONTE Membro Titular Externo **RONALDO RIBEIRO BARBOSA DE AQUINO** Membro Titular Interno

Dedico a Valdenira Cunha (in memoriam), minha avó.

Agradecimentos

Primeiramente agradeço a Deus, pois me abençoou durante toda a trajetória de estudos me proporcionando saúde, sabedoria e paciência. Ao meu marido Bruno Silva, que me incentivou e ajudou a durante estes dois anos, com tamanha persistência e sempre otimista. Aos meus pais e amigos do LDSP que me incentivaram e me ajudaram. Ao professor Manoel Afonso tenho profunda gratidão e admiração, pois me deu todo o suporte e dedicação sem exitar.

Resumo

Atualmente, a expansão da demanda energética acontece por dois motivos principais: o aumento da população mundial e do consumo energético per capita. Um dos desafios no contexto de distribuição de energia está relacionado a regulação dos níveis de tensão das barras de transmissão no sistema de distribuição de energia. Para correção de comportamentos indesejáveis (e.g., flutuações nos níveis de tensão), reatores naturalmente saturados (RNSs) são empregados na compensação de reativos ajustando os níveis de tensão do sistema elétrico de potência. Além da utilização de protótipos para validação de cenários do sistema elétrico, modelos computacionais de RNSs podem facilitar a modelagem de reatores utilizando ferramentas de softwares. Tais modelos auxiliam o projeto destes equipamentos e diminuem significativamente seu custo de prototipação. Este trabalho apresenta um esquema de modelagem e uma biblioteca de simulação de RNSs utilizando modelos de circuito magnético unificado (UMEC) na linguagem MODELS do software Alternative Transient Program (ATP). A biblioteca implementa características comuns a diferentes tipos de RNSs tornando simples a criação de novos modelos sem a necessidade de reescrita de todo o código para cada componente. Dessa forma, engenheiros podem simular o comportamento de RNSs com diferentes configurações de uma maneira simples e efetiva. Neste trabalho, diversos estudos de caso são mostrados com o intuito de se apresentar a viabilidade da solução apresentada.

Palavras-chave: Reatores Naturalmente Saturados, Linguagem MODELS, Programa ATP, Circuito Equivalente Magnético Unificado (UMEC).

Abstract

Currently, the energetic demand increase occurs due to two main reasons: the rise of world population and expansion of per-capita consumption. A key challenge in the context of power distribution is related to regulating the voltage levels of transmission bars in power distribution systems. In order to fix undesirable behavior (e.g., fluctuations in voltage levels), naturally saturated reactors (RNSs) are employed in the compensation of reactive power and adjusting the electrical system voltage levels. The complexity and high cost of creating actual prototypes for validating electrical system scenarios requires the creation of computer models of RNSs. Such models help the design of equipment and significantly reduce their cost of prototyping. This paper presents a modeling scheme and an RNS simulation library using Unified Magnetic Equivalent Circuit (UMEC) in MODELS language of Alternative Transient Program (ATP) software. The library implements common features for different types of RNSs facilitating the creation of new RNSs without the need write the all the source code from scratch for each component. Thus, engineers can simulate the behavior of RNSS with different configurations in a more simple and effective way. In this work, several case studies are shown to demonstrate the viability of the proposed solution.

Keywords: Naturally saturated reactors, MODELS language, ATP program, Unified Magnetic Equivalent Circuit (UMEC).

Lista de ilustrações

Figura 1 – Característica de saturação intrínseca ao material magnético	15
Figura 2 – Arquivo PlotXY	20
Figura 3 – Janela principal	21
Figura 4 – Menu suspenso de componentes do programa ATPdraw	22
Figura 5 – Circuito básico no ATPdraw	23
Figura 6 – Visualizador de resultados do ATPdraw	23
Figura 7 – Editor de texto do ATPdraw	24
Figura 8 – Circuito equivalente de transformador de dois enrolamentos	27
Figura 9 – Transformador equivalente depois da discretização	29
Figura 10 – Transformador não linear	30
Figura 11 – caminhos de fluxos magnéticos no núcleo	31
Figura 12 – Circuito equivalente (UMEC)	31
Figura 13 – Equivalente de Norton do modelo UMEC	32
Figura 14 – a) caminhos de fluxos magnéticos no núcleo. b) circuito equivalente (UMEC)	35
Figura 15 – Curva do indutor não linear $\lambda \ge I$	36
Figura 16 – Circuito simulador	36
Figura 17 – Algoritmo da Curva $B \times H$ utilizando método de aproximação linear por partes	38
Figura 18 – Algoritmo do cálculo da corrente do UMEC para RNS	41
Figura 19 – Caminhos de fluxos magnéticos no núcleo	42
Figura 20 – Circuito equivalente (UMEC)	42
Figura 21 – Caminhos de fluxos magnéticos no núcleo	44
Figura 22 – Circuito UMEC do reator com dois enrolamentos	44
Figura 23 – Caminhos de fluxos magnéticos no núcleo	47
Figura 24 – Circuito UMEC do reator com 6 enrolamentos.	47
Figura 25 – Caminhos de fluxos magnéticos no núcleo	51
Figura 26 – Cicruito UMEC do reator de 9 enrolamentos	52
Figura 27 – Caminhos de fluxos magnéticos no núcleo	55
Figura 28 – Circuito UMEC do reator em monobloco com 12 enrolamentos	55
Figura 29 – Biblioteca RLib	75
Figura 30 – Fluxo de chamadas da biblioteca RLib	76
Figura 31 – Integração entre a biblioteca RLib e diferentes implementações de reatores	
naturalmente saturados.	77
Figura 32 – Dados de Entrada do RNS1	78
Figura 33 – Curva BxH do reator monofásico saturado sem perdas.	79
Figura 34 – Corrente de saída do reator monofásico saturado sem perdas	79
Figura 35 – Fluxos magnéticos do reator monofásico saturado sem perdas	79

Figura 36 – Circuito indutor não linear no ATPdraw.	80
Figura 37 – Corrente de saída do modelo UMEC do reator monofásico sem perdas X	
Corrente de saída representado pelo Indutor não linear do TYPE98	80
Figura 38 – Circuito indutor não linear do ATPdraw com perdas	81
Figura 39 – Fluxos dispersos do reator com perdas e Fluxos dispersos do reator sem perdas.	81
Figura 40 – Correntes de reator com perdas e Correntes de reator sem perdas	81
Figura 41 – Dados de Entrada do RNS2	82
Figura 42 – parâmetros de testes utilizados no sistema	83
Figura 43 – Reator monofásico em testes	83
Figura 44 – Circuito do transformador saturável do atpdraw	83
Figura 45 – Comparativo de correntes primárias dos ensaios de curto-circuito do RNS e	
do transformador saturável do atpdraw	84
Figura 46 – Comparativo de correntes secundárias dos ensaios de curto-circuito do RNS	
e do transformador saturável do atpdraw	84
Figura 47 – Comparativo de correntes primárias dos ensaios de plena carga do RNS e do	
transformador saturável do atpdraw.	84
Figura 48 – Comparativo de correntes psecundárias dos ensaios de plena carga do RNS e	
do transformador saturável do atpdraw	85
Figura 49 – Comparativo de correntes primárias dos ensaios em vazio do RNS e do	
transformador saturável do atpdraw.	85
Figura 50 – Comparativo de correntes secundárias dos ensaios em vazio do RNS e do	
transformador saturável do atpdraw.	85
Figura 51 – Parâmetros de entrada do reator de 6 enrolamentos	86
Figura 52 – Corrente trifásica nos enrolamentos primário e secudário do reator trifásico.	86
Figura 53 – Tensão trifásica nos enrolamentos primário e secundário do reator trifásico.	87
Figura 54 – Corrente na fase A no enrolamento primário do RNS3YD	87
Figura 55 – Laço de histerese do RNS3YD	88
Figura 56 – transformador saturável do atpdraw.	88
Figura 57 – Corrente de fase A dos RNS3YD X Transformador saturável do ATPdraw.	88
Figura 58 – Parâmetros de entrada do reator RNS9.	89
Figura 59 – Corrente de fase A dos reatores trifásicos RNS9 e o RNS3YD	89
Figura 60 – Reator com ligação paralela dos enrolamentos	90
Figura 61 – Corrente da fase A do RNS em Monobloco	91
Figura 62 – Tensões nos enrolamentos de entrada do RNS em Monobloco	91

Lista de abreviaturas e siglas

ATP	Alternative Transient Program
RNS	Reator Naturalmente Saturado
UMEC	Circuito Equivalente Magnético Unificado
Rlib	Nome da Biblioteca
EMTP-ATP	Electromagnetic Transients Program
ATPDraw	Pré-processador Gráfico
TACS	Total Access Communication System
MODELS	Linguaguem de Programação
RlibAux	Módulos Auxiliares da Biblioteca
RNSMatrix	Módulo Principal para Operação de Matriz
RNS1	Reator Monofásico com um Enrolamento
RNS2	Reator Monofásico com dois Enrolamentos
RNS3YD	Reator Trifásico com seis Enrolamentos
RNS9	Reator Trifásico com nove Enrolamentos

Lista de símbolos

V_s	Tensão na Fonte
В	Campo Magnético
Н	Densidade Magnética
Ι	Corrente do Material Magnético
I_{ϕ}	Corrente de Saturação
λ	Fluxo Magnético
V_n	Tensão Nominal
I_n	Tensão Nominal
V_1	Tensão no Enrolamento Primário
V_2	Tensão no Enrolamento Secundário
L_1	Indutância no Enrolamento Primário
L_2	Indutância no Enrolamento Secundário
$L_{disperso}$	Indutância Dispersa
ϕ	Fluxo Magnético
Y	Admitância
Р	Permeância
I_{ns}	Corrente da fonte de Corrente
P_d	Permeância Dispersa
P_r	Permeância de Retorno
N	Número de Espiras

Sumário

1	$INTRODUÇÃO \dots \dots$	14
1.1	Considerações Iniciais	14
1.2	$\mathbf{Objetivos}$	15
1.3	Trabalhos Relacionados	16
1.4	Apresentação do trabalho	18
2	REFERENCIAL TEÓRICO	19
2.1	ATP - Alternative Transient Program	19
2.1.1	ATPDraw	20
2.1.2	MODELS	22
2.2	Modelo Básico de Transformadores	27
2.2.1	Modelagem de transformadores não lineares	29
2.3	${ m Circuito}~{ m Equivalente}~{ m Magn{{ m \acute{e}tico}}~{ m Unificado}~({ m UMEC})~\ldots~\ldots~.}$	30
2.3.1	Análise de transformador UMEC	31
2.4	Aproximação linear por partes	35
3	MODELAGEM DE REATORES NATURALMENTE SATU-	
	RADOS UTILIZANDO O UMEC NO ATP	39
3.1	Modelo UMEC para reator monofásico naturalmente saturado	
	com 1 enrolamento	40
3.2	Modelo UMEC para reator monofásico naturalmente saturado	
	com 2 enrolamentos	44
3.3	Modelo UMEC para reator trifásico naturalmente saturado	
	com 6 enrolamentos e dois retornos	47
3.4	Modelo UMEC para reator trifásico naturalmente saturado	
	com 9 enrolamentos e dois retornos	51
3.5	Modelo UMEC para reator trifásico com configuração em	
	monobloco naturalmente saturado com 12 enrolamentos e dois	
	retornos	55
4	BIBLIOTECA RLIB	60
4.1	Considerações Importantes Sobre a Linguagem Models	60
4.1.1	Implementação de subrotinas	60
4.1.2	Representação de matrizes retangulares	63
4.2	Visão Geral da Arquitetura da Biblioteca RLib	65
4.2.1	Pacote para operações sobre matrizes - RLibAux	65

4.2.2	Comportamento da Biblioteca RLIB		
4.2.3	Integração de Modelos de RNS com a Biblioteca RLIB	74	
5	ESTUDOS DE CASO	78	
5.1	RNS monofásico com um enrolamento	78	
5.2	RNS monofásico com dois enrolamentos	82	
5.3	${f RNS}$ trifásico com seis enrolamentos	86	
5.4	RNS trifásico com nove enrolamentos	87	
5.5	RNS trifásico em Monobloco com Doze Enrolamentos	89	
6	CONCLUSÃO	92	
6.1	Sugestões para trabalhos futuros	93	
	REFERÊNCIAS	94	
	CÓDIGO FONTE DA BIBLIOTECA RLIB	96	
	Código Fonte do Modelo para Inversão de Matrizes	96	
	Código Fonte da Biblioteca RLib	98	
	Codigo de Reatores Naturalmente Saturados	110	

1 Introdução

Este capítulo apresenta uma breve introdução do trabalho proposto. Entre os conceitos apresentados temos uma apresentação da motivação do trabalho, o objetivo do mesmo e os trabalhos relacionados.

1.1 Considerações Iniciais

O crescimento da demanda de energia nos sistemas elétricos de potência tem exigido das concessionárias a implantação de novos recursos de transmissão para atendimento da demanda de forma satisfatória. Uma particularidade dos longos sistemas de transmissão de alta tensão é a precária regulação oferecida nas barras de consumo. Na operação em plena carga, ocorre uma redução, por vezes, extrema da tensão. Por outro lado, o sistema na operação em vazio ou com pouca carga, e devido ao grande comprimento da linha e a capacitância associada apresenta elevações na tensão terminal, muitas vezes, intolerável.

Para inibir este comportamento indesejado, medidas corretivas devem ser utilizadas para restaurar os padrões exigidos e, neste campo, a regulação de tensão é um tema de grande relevância. Uma alternativa comumente empregada pelas empresas de energia é a compensação de reativos, em que utilizam reatores e capacitores conectados em derivação no terminal da carga, permitindo um controle de tensão local (FONTE, 1997).

A atuação dos reatores é de proibir que a tensão se eleve a valores inadmissíveis, entretanto, os capacitores atuam de forma a inibir a tensão de baixar além do permitido. Mesmo sendo uma prática comum este tipo de regulação de tensão, apresenta desvantagens, tais como:

- A regulação de tensão por meio desse procedimento utiliza um bloco desses elementos por vez.
- Sempre que o carregamento do sistema experimentar mudanças consideráveis, este tipo de compensação terá a necessidade de executar manobras de injeção ou remoção de equipamentos. Assim, quando a carga suprida pela linha sofrer uma elevação, os reatores deverão ser gradativamente retirados de operação para conter a redução da tensão, enquanto os capacitores devem seguir uma manobra similar quando houver redução do consumo energético no sistema.

Para resolver os inconvenientes mostrados anteriormente, uma solução viável corresponde ao uso de compensadores eletrônicos (FONTE, 1997). Embora tecnicamente atrativos, os elevados custos de aquisição e manutenção desses equipamentos se mostra uma solução de difícil aceitação.

Uma outra alternativa para a compensação de reativos, seria a utilização de Reatores Naturalmente Saturados (RNSs) que são mais baratos, possuem manutenção de baixo custo, elevada confiabilidade e alta resistência a intempéries (BRASIL, 1996). Seu princípio de funcionamento é mostrado na Figura 1 que apresenta as características de tensão (V) e corrente (I) do RNS.

Figura 1 – Característica de saturação intrínseca ao material magnético.

Fonte: (ARAUJO; NEVES, 2005)

Quando o reator está submetido a condição de plena carga, ele funcionará na vizinhança do ponto (V_s, I_{ϕ}) , demandando, dessa forma, uma potência bem pequena do sistema. Porém, quando a carga do sistema diminui, a tensão experimenta uma elevação correspondente, o que desloca o ponto de operação do reator para as proximidades do ponto (V_n, I_n) . Isso eleva o seu consumo numa proporção ditada pela inclinação da sua curva característica, a qual, em princípio, poderá ser especificada para satisfazer o nível de compensação desejada. Segundo (MAIA et al., 2012), tal comportamento, além de ensejar um controle contínuo da tensão dentro de patamares determinados, disponibiliza a capacidade da linha de transmissão para o atendimento das cargas.

1.2 Objetivos

Os principais equipamentos que são utilizados para regulação de tensão, compensadores eletrônicos e reatores saturados, possuem complexidade em fazer simulações computacionais para sua representação. Um dos motivos deve-se a sua natureza não linear. Uma ferramenta computacional muito utilizada para simulações de transitórios no sistema elétrico é a ferramenta *Alternative Transient Program* (ATP). Porém, para representar modelos de reatores naturalmente saturados no ATP, usuários necessitam realizar uma modelagem indireta por meio de outros componentes, tais como, o indutor não linear para representar reatores monofásicos ou transformador saturável para representar reatores trifásicos.

Buscando uma alternativa para representar reatores saturados na ferramenta ATP. Este trabalho tem por finalidade a criação de uma biblioteca construída na linguagem MODELS do programa ATP que represente modelos de reatores a núcleo saturados, que suporte as características magnéticas, quantidades de enrolamentos e diferentes quantidades de núcleos. A linguagem MODELS é uma ferramenta de simulação de componentes criados pelo próprio usuário. Este tipo de linguagem gera bastante interesse nos usuários pois, proporciona uma flexibilidade de utilização de uma linguagem de programação de alto nível sem precisar interagir de forma direta com o código fonte da ferramenta ATP. Assim, usuários ficam livres para criar bibliotecas de modelos e sub modelos em função de cada uma das aplicações.

Este trabalho é uma extensão de (DELFIN, 2014) que propôs uma modelagem de reatores naturalmente saturados utilizando circuito UMEC na linguagem MODELS no ATP. Apesar do pioneirismo do trabalho desenvolvido pela autora, os modelos apresentados possuem características que dificultam a reutilização e entendimento dos códigos propostos. Dessa forma, a criação e simulação de um novo modelo de RNS, tomando como base os modelos apresentados no trabalho, representa uma tarefa de difícil execução.

Por conta dessa falta de padronização e utilização de subrotinas, os códigos empregados se tornaram extensos, de difícil legibilidade e manutenabilidade. Para contornar as questões destacadas acima, uma biblioteca é proposta para facilitar a implementação de reatores a núcleo saturados de diferentes configurações. Esta biblioteca permite a criação de modelos de RNS na linguagem MODELS de forma simplificada.

Especificamente os objetivos deste trabalho são:

- Desenvolvimento de uma biblioteca responsável para facilitar a criação de modelos de reatores naturalmente saturados na linguagem MODELS do software ATP.
- Desenvolvimento de múltiplas configurações de reatores á núcleo saturado, variando-se o número de enrolamentos e o arranjo utilizado.
- Simulações dos modelos construídos.
- Comparações dos resultados obtidos nas simulações com componentes similares utilizados no programa ATP.

1.3 Trabalhos Relacionados

Nos últimos anos, alguns autores têm dedicado esforços para estudar questões sobre reatores saturados. Em (BRASIL, 1996) foi desenvolvido um modelo de reator saturado no programa de transitórios eletromagnéticos EMTP-ATP (versão anterior do ATP), que verifica a viabilidade da utilização do mesmo em simulações com regime transitórios e permanentes. Na

verdade, a diferença entre o EMTP e o ATP se dá mais pela interface mais amigável da segunda. Logo, as duas versões realizam os mesmos tipos de simulações.

Magnata (FONTE, 1997) propôs um aprofundamento teórico relacionado a reatores saturados estudando seu comportamento, tipos de ligações e como atenuar os harmônicos gerados pelos reatores.

Em (FONTE, 2004), o autor descreve o modelo matemático dos reatores saturados, projeta e constrói protótipos de reatores com saturação natural em laboratório acadêmico. Um dos focos do trabalho está na análise do desempenho dos protótipos e conferência dos seus resultados com estudos realizados anteriormente pelo autor.

(BARBOSA, 2009) analisa o comportamento de compensadores estáticos utilizando reatores saturados. Os estudos realizados evidenciaram que nas condições impostas, o tempo de resposta do reator se mostrou compatível com as referências encontradas na literatura. O reator saturado demonstrou claramente sua propriedade de regulação de tensão, bem como apresentou geração de harmônicos quando na condição de saturação.

O trabalho apresentado em (PACHECO et al., 2007) tem por finalidade projetar e analisar o desempenho de um reator saturado de 570 kVAr e 13,8 kV utilizado para regulação de tensão. Quando comparados com outros equipamentos, segundo autores, o novo produto demonstra expressivos ganhos, principalmente em relação às perdas, rendimentos, temperaturas de operação.

(BARBOSA et al., 2010) propõe uma estratégia para a modelagem computacional de reatores a núcleo saturado utilizando a plataforma ATP. Visando o estabelecimento de mecanismos para validação dos desempenhos computacionais obtidos, estes são correlacionados com medições em um protótipo de 600 kVAr e 13,8 kV. Os autores mostraram que as características operativas e representativas das correlações entre as potências reativas e correntes absorvidas pelo equipamento, diante de distintos níveis de tensões aplicadas, ratificaram o bom desempenho do modelo computacional.

A dissertação apresentada em (FREITAS, 2010) descreve arquiteturas e funcionalidades inéditas para dispositivos que empregam reatores naturalmente saturados como elemento de controle. Os resultados obtidos pelos experimentos da aplicação de reatores em série funcionando como limitador de corrente de curto circuito comprovam que este dispositivo é extremamente eficaz na contenção de curto circuitos, podendo promover variados níveis de redução.

Neves et al. (HERMANN, 1993) mostra um algoritmo para calcular as características de saturação de transformadores de núcleo de ferro, baseado nas curvas convencionais (VtimesI) fornecidas. Um método direto para o cálculo de curvas de saturação do núcleo de ferro ($\lambda \times I$) foi apresentado e é fundamento em bases de testes de transformador.

Diferente dos anteriores, esse trabalho propõe uma modelagem para representação de reatores naturalmente saturados de diferentes configurações utilizando a modelagem UMEC. Além disso, foram desenvolvidas as respectivas implementações na linguagem MODELS do

programa ATP. Para auxiliar o processo de modelagem e avaliações das matrizes relacionada aos modelos propostos, foi desenvolvida uma biblioteca denominada Rlib que permite a criação de novas implementações de reatores a núcleo saturado.

Segundo nossos melhores conhecimentos e intenções, esta é a primeira vez que se tentam fazer uma abordagem unificada que reúne modelos do tipo UMEC para RNS, suas implementações na linguagem MODELS e uma biblioteca que permite criação de novos modelos.

1.4 Apresentação do trabalho

A estrutura do documento é dividida em sete capítulos, conforme exposto a seguir:

- Capítulo 2 Apresenta os princípios básicos do programa ATP, relaciona alguns conceitos sobre modelos de transformadores, apresenta o modelo UMEC, explica como é realizada a inversão de matrizes na linguagem MODELS do ATP. Por fim, apresenta a teoria da linearização por trechos utilizada nesse trabalho.
- Capítulo 3 Descreve a modelagem matemática de cinco reatores saturados. Iniciando os estudos com reatores monofásicos e finalizando com a modelagem de um reator trifásico de doze enrolamentos com configuração em monobloco.
- Capítulo 4 Trata-se da criação de uma biblioteca na linguagem MODELS que possui módulos para cálculos envolvendo matrizes retangulares e um módulo específico para o cálculo das interações eletromagnéticas dos reatores naturalmente saturados.
- Capítulo 5 Apresenta as simulações dos reatores saturados modelados neste trabalho, igualmente compara-se os resultados com modelos utilizados no programa ATP.
- Capítulo 6 Consiste de algumas considerações finais acerca do trabalho, além de sugestões relevantes para a continuação de pesquisas relacionadas à modelagem de reatores saturados.

2 Referencial Teórico

2.1 ATP - Alternative Transient Program

A utilização de softwares de simulação para análises de sistemas elétricos de potência constitui um fator de grande importância na formação de engenheiros elétricos, dado que permite o estudo antecipado do comportamento de sistemas reais. Porém, deve-se considerar que softwares de simulação são uma ferramenta complementar aos estudos teóricos e na atuação prática. Assim, faz-se necessário uma correta interpretação e análise dos resultados de cada simulação.

O ATP é um dos sistemas mais utilizados para simulação digital de fenômenos transitórios eletromagnéticos, bem como de natureza eletromecânica em sistemas elétricos de potência. Com este programa, redes complexas e sistemas de estrutura arbitrária de controle podem ser simulados, e suas respectivas métricas são calculadas em tempos discretos. O ATP tem uma ampla capacidade de modelagem, além de fazer cálculos de transientes.

O aplicativo não é do domínio público, porém qualquer pessoa que não tenha o propósito de utilizá-lo para fins comerciais pode instalar e utilizar o programa sem nenhum custo. O ATP analisa variáveis de interesse em redes de energia elétrica em função do tempo, geralmente iniciadas por alguns distúrbios. Para resolver equações diferenciais no domínio do tempo, o ATP utiliza basicamente a regra de integração trapezoidal (KRAUSE; AMBLER; FOX, 1993).

Este programa realiza análises de transitórios, frequências, harmônicos e estatísticas. A ferramenta apresenta uma biblioteca de componentes elétricos prontos para serem utilizados pelo usuários. O principais componentes da biblioteca são:

- Componentes de resistências, capacitâncias e indutâncias concentradas.
- Modelos de linhas de transmissão aéreas ou cabos.
- Componentes não-lineares: transformadores, incluindo saturação e histerese, pára-raios, indutâncias e resistências.
- Fontes ideais de corrente e de tensão sinusoidais, exponenciais, degrau, tipo rampa.
- Máquinas rotativas: máquina síncrona trifásicas, modelo de máquina universal.
- Válvulas (diodos, tiristores, os triacs), TACS/MODELS e chaves controladas.

O arquivo de entrada de dados do software ATP geralmente possui a terminação .ATP (ou .DAT), exceto arquivos criados pelo ATPDraw (Seção 2.1.1) que possuem extensão .ADP. Os

arquivos de saída do ATP possuem a terminação .LIS para os resultados impressos e a terminação .PL4 para a visualização dos gráficos. Através de uma tabela de valores de arquivos .PL4, gráficos podem ser produzidos através do programa PlotXY (presente no software ATP) Figura 2. No PlotXY, o usuário pode escolher métricas (e.g., BN1, ou HN1) e plotar a variação dessa métrica ao longo do tempo t ou em relação a outra variável (lista de variáveis no lado esquedo da Figura 2).

Loa	id.,	. Refresh				+] [E 🖌 🖌	2
	f	FileName	# of v	ars	# of	FPo	ints	Tmax	
x	1	RNS3Yd.pl4	75		100	01		0.05	
1	t			*	/ pl	ot1	V	plot2 \/ plot3 \/ p	lot4
2	m	:HN1			f	#		Variable name	Х
3	m	:BN1		W.	a	1	t		x
4	m	:HN3		-					
5	m	:BN3							
6	m	:HN5							
7	m	BN5			-				
в	m	:HN7			-				
9	m	:BN7					-		
10	m	:HN8						Fourier	Plot
11	m	:BN8			-			[Coup uppo]	Denet
12	m	BN9			-			Save vars	Reset
13	m	:HN9			Equ	Jalis	e pla	ot window sizes	
14	m	:BN10			0	to P	lot w	in 1	Equate
15	m	:HN10		-	0	to:		6	Arrange

Figura 2 - Arquivo PlotXY

Fonte: Próprio Autor

2.1.1 ATPDraw

Como dito anteriormente, o ATP utiliza arquivos de entrada do tipo .ATP ou .DAT. Esses arquivos são textuais e não são simples de serem manipulados. Para facilitar a criação/manipulação de esquemas do ATP, a ferramenta gráfica ATPDraw (PRIKLER; HOILDALEN, 2002) foi criada. O aplicativo apresenta a maioria dos componentes elétricos que são utilizados na modelagem de circuitos de potência do ATP e foi desenvolvido para simplificar a modelagem de circuitos elétricos de potência no ATP. O circuito é armazenado no disco em um único arquivo de projeto, que inclui todos os objetos de simulação e opções necessárias para simular o sistema. Na inexistência de componentes já prontos na biblioteca, o usuário através da linguagem Models pode criar seus próprios modelos.

O ATPDraw admite sistemas em circuitos monofásicos ou trifásicos e possui as funcionalidades do sistema operacional Windows: copiar, colar, girar, importar, exportar, agrupar, desfazer, entre outros. A janela principal do programa é visualizada na Figura 3. O menu principal do ATPdraw é composto por:

ATPDraw - [Noname. File Edit View ATI Image:	acp] P Library Tools Windows	Web Help G Mi A III A AL A 2 ⊞ 6	- B ×
	Probes & 3-phase Image: Branch Linear Branch Nonlinear Branch Nonlinear Image: Branch Nonlinear Branch Nonlinear Branch Nonlinear Image: Branch Nonlinear Image: Branch Nonlinear Branch Nonlinear Image: Branch Nonlinear	Resistor Qapacitor Inductor RLC RLC-Y 3-ph RLC-D 3-ph RLC-D 3-ph C: U(0) L: I(0)	
4			+

Figura 3 – Janela principal

Fonte: Próprio Autor

- File permite criar novos circuitos elétricos, salvar ou abrir um arquivos criado anteriormente, fechar arquivos, importar elementos, fechar o programa.
- Edit contém as funções básicas de edição, por exemplo: copiar/colar, desfazer/refazer, duplicar, escolher, apagar, adicionar texto, etc.
- View configura a visualização das janelas, zoom, tipo de letra dos componentes, atualização de mudanças no circuito, e opções para personalizar as janelas de desenho.
- ATP executa o programa, cria nomes para todos os nós do sistema simulado, gera ou edita arquivos .ATP, especifica qual a configuração desejada para simulação do sistema criado.
- Library permite criar e/ou modificar componentes já existentes ou aqueles que foram criados pelo usuário.
- Tools ferramentas de edição de texto, edição de imagens e pode-se configurar a interface do ATPDraw.
- Windows O usuário pode selecionar a janela correspondente a cada circuito e ativar ou desativar uma janela do sistema.

• Help - O usuário pode solicitar informação de ajuda do ATPDraw.

ATPDraw suporta modelagem hierárquica de componentes, substituindo um grupo de objetos por um único ícone em um número quase ilimitado de camadas. Suporta até 10.000 componentes, cada um com no máximo 64 dados e 32 nós (PRIKLER; HOILDALEN, 2002). A Figura 4 detalha alguns componentes que podem ser utilizados no programa, tais como: Componentes Standard (Probes & 3-phase), Ramais Lineares (Branch Linear), Ramais Não-Lineares (Branch Nonlinear), Linhas e Cabos (Lines/Cables), Interruptores (Switches), Fontes (Sources), Máquinas (Machines), Transformadores (Transformer), entre outros.

Figura 4 – Menu suspenso de componentes do programa ATPdraw

Fonte: Próprio Autor

Na Figura 5, é mostrado um exemplo básico de circuito criado no ATPDraw, seus gráficos são plotados no programa PlotXY (Figura 6) que permite representar até 8 curvas no mesmo gráfico, também é possível representar na mesmo gráfico curvas com métricas de até três arquivos diferentes. As curvas são apresentadas em diferentes cores para uma melhor visualização dos dados. No programa PlotXY, também é possível analisar os harmônicos, basta acionar a opção FOUR (circulado em vermelho na Figura 6) que os gráficos de Fourier são mostrados. Por fim, a Figura 7 apresenta o código fonte respectivo ao modelo da Figura 5. Para mais detalhes relacionados as ferramentas ATP e ATPDraw o leitor é referido as referências (KRAUSE; AMBLER; FOX, 1993) e (PRIKLER; HOILDALEN, 2002).

Figura 5 - Circuito básico no ATPdraw

Fonte: Próprio Autor

🕅 MC's PlotXWin - Data selei	ction	- C - X -	Est MC's PlotXWin - plot 1	
Load Refresh		ts Tmax 0,05	10.0 [KV] 7,5 -	1
Variables xx0001-	⊕ ⊕ Res Res	et+	2,5-	
	Variable X	Factor Offset	0,0-	
	v1XX0001-	1 0	-2.5- -5.0- -7.5- -10.0 0 10 20 30	40 (ma)
	Update Pa	Four Plot	(Ha SAMPLE (K. N. W. 1) - 100000-	- 🛤 📾
	Equalise plot window To window 1 Call to: 502 x 38	azes A <u>Go</u>		

Fonte: Próprio Autor

2.1.2 MODELS

A MODELS é uma liguagem de programação criada para simular sistemas no domínio do tempo e descrever comportamentos dinâmicos de sistemas físicos de alta complexidade (DUBÉ, 1996). No programa ATP, esta linguagem permite o controle da operação dos componentes elétricos do sistema simulado, tal como a criação de novos modelos. Ela tem a capacidade de interligar o ATP com programas externos.

A linguagem MODELS possui como características:

- Um extenso campo de variáveis, que podem ser numéricas, lógicas, escalares ou matriciais.
- Uma sintaxe regular para o uso de variáveis, matrizes, expressões e funções.
- A possibilidade de especificar operações que só são executadas quando estiverem reunidas algumas condições, como por exemplo quando forem detectados erros.
- A linguagem gerencia automaticamente o armazenamento e recuperação de valores históricos das variáveis de um modelo, conforme necessário durante a execução da

Figura 7 – Editor de texto do ATPdraw

Fonte: Próprio Autor

simulação.

- Instâncias individuais dos modelos de um sistema automaticamente atualizam o seu funcionamento de acordo com o aumento do valor do tempo de simulação.
- Uma série de funções pré-definidas com base no tempo são disponíveis, tais como, integrais, derivadas, equações diferenciais, operadores de Laplace e funções de transferência Z.

A MODELS é uma ferramenta para o desenvolvimento de modelos de componentes de circuito e de controle que não pode ser construída facilmente com o conjunto de componentes existentes disponíveis na ATP e TACS. Ela possui a flexibilidade de uma linguagem de programação completa sem ter que interagir com ATP ao nível de programação. Proporciona uma interface de programa no ATP definido no nível de modelagem em termos de tensões, correntes e sinais de controle, em oposição a uma interface que seria definido ao nível de programação em termos de variáveis, blocos comuns, e sub-rotinas do ATP (DUBÉ, 1996).

Esta linguagem faz com que seja possível ligar programas externos com o ATP para a modelagem de componentes, o acesso a medições, ou interação com equipamentos, sem a necessidade de um conhecimento de programação da operação interna de ATP e sem necessidade de qualquer modificação para ser feito com o código fonte de ATP (DUBÉ, 1996).

Tal como a MODELS, a linguagem de programação TACS também simula sistemas de controle utilizando algoritmos. Porém a TACS, não fornecem um mecanismo para resolver conjuntos de equações simultâneas não lineares. Qualquer loop envolvendo um dispositivo não-linear é cortado automaticamente para que possa caber na solução de matriz linear da TACS. Isso implica em atrasos de uma iteração nas saídas dos dispositivos não-lineares. Dependendo do tamanho do passo do tempo e da natureza do sistema simulado, as consequências desta abordagem podem variar a saída de forma satisfatória deixando o resultado numericamente instável, por este motivo esta linguagem entrou em desuso.

A liguagem MODELS é bastante semelhante a linguagem FORTRAN E PASCAL. Suas instruções podem ser vistas no exemplo Código Fonte 2.1:

```
2 MODEL proc_example
    DATA inival {dflt:0}
 4
    INPUT x
    VAR y
 6
    INIT -- this is executed when the instance is created or first USEd
 8
      integral(x) := inival
    ENDINIT
11 EXEC -- this is the default operation procedure,
          -- executed when the instance is used from a USE statement
      y := integral(x) -- assigns value of integral to y
13
                        -- calls the procedure 'write_y'
14
      self.write_y
    ENDEXEC
      PROC write_y
18
     write('In model proc_example, y=', y)
19 ENDPROC
20
21
   PROC reset_integral(resetval) -- uses one input argument
22
     integral(x) := resetval
                                   -- resets the value of the integral
   ENDPROC
23
25
    PROC integral_value
      integral_value := integral(x) -- returns the value of the integral
26
27
    ENDPROC
28
29 ENDMODEL
```


O parâmetro DATA são valores constantes de um modelo, como parâmetros e dimensões da matriz, definidos quando uma nova instância de um modelo é criada em uma instrução USE. DATA é usado para a realização de valores que são definidos no exterior do modelo, e que não

variam durante a simulação. Os nomes dos elementos de DATA são visíveis dentro do modelo, onde eles são declarados. O seu valor é atribuído no procedimento USE, uma vez atribuído, valores de dados não variam no tempo. O seu valor é constante ao longo do comprimento total de uma simulação, um valor padrão também pode ser opcionalmente atribuído dentro do modelo, na declaração. Quando existe um valor padrão para um elemento de dados, que a atribuição de elemento de um valor na instrução USE é opcional.

```
      2
      DATA n
      -- uma dimensão de matriz utilizada no modelo

      3
      DATA freq {dflt: 60}
      -- uma frequência em Hz
```

Código Fonte 2.2 – Exemplo de utilização do elemento DATA

O parâmetro INPUT são entradas usadas para a realização de valores que são definidos no exterior do modelo, e que varia durante a simulação. Os nomes dos elementos INPUT são visíveis no interior do modelo onde eles são declarados, e também nas demonstrações USE do modelo. Seu valor é atribuído nas demonstrações USE. Um valor padrão também pode ser opcionalmente atribuído dentro do modelo, na declaração. Quando existe um valor padrão para um elemento de entrada, atribuir esse elemento um valor na instrução USE é opcional. Valores de entrada são automaticamente recalculados na declaração USE cada vez que a instância USE é chamado.

```
      1

      2
      DATA n
      -- numeros de terminais

      3
      INPUT vterm[1..n]
      -- valor das tensões nos terminais

      4
      vref {dflt: 0}
      -- valor de tensão de referência igual a zero, se não for usado.
```

Código Fonte 2.3 – Exemplo de utilização do elemento INPUT

Os nomes das variáveis VAR só são visíveis dentro do modelo em que elas são declaradas, exceto quando eles são declarados como OUTPUT. Seu valor pode ser atribuído em qualquer declaração dentro do modelo. Uma vez atribuído um valor, uma variável mantém esse valor durante o simulação, até que seja atribuído um novo valor. Continuando com o exemplo anterior, pode-se controlar as tensões de entrada para amplitude máxima para cada terminal, digamos, e o máximo para todos terminais. Definindo as variáveis vtmax e vmax:

```
      1

      2
      DATA n
      -- numeros de terminais

      3
      INPUT vterm[1..n]
      -- valor das tensões nos terminais

      4
      vref {dflt: 0}
      -- valor de tensão de referência igual a zero, se não for usado.

      5
      VAR vtmax[1..n]
      -- Valor maximo absoluto de cada tensão terminai

      6
      vmax
      -- Valor maximo absoluto de todas as tensões terminais
```

Código Fonte 2.4 - Exemplo de utilização do elemento VAR

As variáveis podem ser declaradas como saída de um modelo. Os nomes das variáveis declarados como OUTPUT são visíveis para os parâmetros USE que definem os casos do modelo.

Nenhuma outra variável é visível fora do modelo. Continuando o exemplo, os valores de vtmax e vmax podem ser especificada como a saída do modelo, como mostrado a seguir:

1		
2	DATA n –	- numeros de terminais
3	<pre>INPUT vterm[1n] -</pre>	- valor das tensões nos terminais
4	<pre>vref {dflt: 0} -</pre>	- valor de tensão de referência igual a zero, se não for usado.
5	VAR vtmax[1n] -	- Valor maximo absoluto de cada tensão terminal
6	vmax -	- Valor maximo absoluto de todas as tensões terminais
7	OUTPUT vtmax[1n], vma	x pode ser usado como saída do modelo

Código Fonte 2.5 – Exemplo de utilização do elemento OUTPUT

A instução EXEC é o procedimento operacional principal do modelo, chamado quando é necessário atualizar uma instância do modelo para um novo tempo de simulação. Ele é chamado automaticamente cada vez que uma instrução USE é executado. Descreve como o modelo funciona como incremento do tempo. Finalizando a execução com a instrução ENDEXEC.

```
INPUT voltage, current
2
3
    VAR flux, energy, power, gen_1
4
    INIT
      integral(voltage) := 0
      integral(power) := 0
6
7
    ENDINIT
8
    EXEC
9
      flux := integral da tensão
      energy := integral da potência
11
      power := voltage * current
    ENDEXEC
13 ENDMODEL
```

Código Fonte 2.6 – Exemplo de utilização do elemento EXEC

Para mais detalhes sobre a linguagem MODELS, o leitor é referido a (DUBÉ, 1996).

2.2 Modelo Básico de Transformadores

O circuito equivalente básico de um modelo de transformador é mostrado na Figura 8. As tensões através destas bobinas é expressa na Equação 1.

$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} L_{11} & L_{12} \\ L_{21} & L_{22} \end{bmatrix} \frac{d}{dt} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}$$
(1)

Figura 8 - Circuito equivalente de transformador de dois enrolamentos

Fonte: (SWIFT, 1971)

Descrevendo a Equação 1, L_{11} e L_{22} representam as indutâncias próprias dos enrolamentos primário e secundário do transformador. L_{12} e L_{21} são as indutâncias mutuas entre os enrolamentos. As correntes que passam nos enrolamentos primários i_1 e secundários i_2 são expressadas na Equação 2.

$$\frac{d}{dt} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \frac{1}{L_{12}L_{21} - L_{11}L_{22}} \begin{bmatrix} -L_{22} & L_{12} \\ L_{21} & -L_{11} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
(2)

Como o acoplamento mútuo é bilateral, L_{12} e L_{21} são idênticos. Usando a relação de transformação a = v_1/v_2 da Equação 1, chega-se a:

$$L_1 = L_{11} - aL_{12} \tag{3}$$

$$L_2 = a^2 L_{22} - a L_{12} \tag{4}$$

Separando as Equações 3 e 4 de acordo com seus componentes, temos:

$$\frac{di_1}{dt} = \frac{L_{22}}{L_{11}L_{22} - L_{12}L_{21}}v_1 - \frac{L_{21}}{L_{11}L_{22} - L_{12}L_{21}}v_2$$
(5)

$$\frac{di_2}{dt} = \frac{-L_{12}}{L_{11}L_{22} - L_{12}L_{21}}v_1 + \frac{L_{11}}{L_{11}L_{22} - L_{12}L_{21}}v_2 \tag{6}$$

Resolvendo a Equação 5 utilizando a regra de integração trapezoidal (COGO; OLIVEIRA, 1983), têm - se que a corrente que passa no enrolamento primário é:

$$i_1(t) = \frac{L_{22}}{L_{11}L_{22} - L_{12}L_{21}} \int_0^t v_1 dt - \frac{L_{21}}{L_{11}L_{22} - L_{12}L_{21}} \int_0^t v_2 dt \tag{7}$$

$$= i_1(t - \Delta t) + \frac{L_{22}}{L_{11}L_{22} - L_{12}L_{21}} \int_{t - \Delta t}^t v_1 dt - \frac{L_{21}}{L_{11}L_{22} - L_{12}L_{21}} \int_{t - \Delta t}^t v_2 dt$$

$$= i_1(t-\Delta t) + \frac{L_{22}\Delta t}{2(L_{11}L_{22} - L_{12}L_{21})} (v_1(t-\Delta t) + v_1(t)) - \frac{L_{21}\Delta t}{2(L_{11}L_{22} - L_{12}L_{21})} (v_2(t-\Delta t) + v_2(t))$$

De forma similar, pode-se estender os conceitos para determinar a corrente $i_2(t)$. A modelagem dessas equações pode ser vista na Figura 9. Deve-se observar que a discretização desses modelos usando a regra trapezoidal não permite completa isolação entre os terminais da fonte. Se a fonte d.c é aplicada no enrolamento primário uma pequena parte segue para o enrolamento secundário.

Fonte: (WATSON JOS ARRILLAGA, 2007)

Através de testes de curto-circuito e circuito aberto as informações de aL_{12} , L_1 e L_2 são adquiridas. Em programas de simulações esses testes são realizados internamente e o usuário entra apenas com os valores de reatância de dispersão e magnetizante. A matriz de indutância fornece informações sobre as correntes magnetizantes e também, a indutância de dispersão.

A indutância de dispersão é dada pela Equação 8:

$$L_{disperso} = L_{11} - L_{21}^2 / L_{22} \tag{8}$$

Os valores da matriz de indutância devem ser especificados com muita precisão para reduzir os erros causados pela subtração de dois números.

2.2.1 Modelagem de transformadores não lineares

Os efeitos da não linearidade magnética e das perdas nos núcleos dos transformadores são representados pela fonte de corrente *shunt* e resistência equivalente no enrolamento. A

aproximação monofásica não incorpora acoplamento magnético entre as fases e a injeção de corrente magnetizante é calculada em cada passo de tempo independente das outras fases.

Para evitar uma retriangulação da matriz indutância (HERMANN, 1993) toda vez que as indutâncias mudarem, a representação da fonte de corrente é utilizada. No momento da inicialização é desejável inibir a saturação, através de um limite de fluxo derivado da integração da tensão, permitindo assim, que o estado estacionário chegue rapidamente. Depois, este limite é retirado permitindo que o fluxo vá para a região de saturação. A Figura 10 mostra a saturação no enrolamento mutuamente acoplado.

O programa de simulação EMTP utiliza o princípio da dualidade para obter informações da corrente de magnetização e configurações dos núcleos de transformadores de múltiplas pernas. Porém, este método envolve grande quantidades de componentes, tornando sua implementação complexa.

Para reduzir a complexidade exigida pelo método da dualidade um modelo baseado no equivalente de Norton, é derivado diretamente de análises de circuitos magnéticos. O chamado modelo UMEC(circuito equivalente magnético unificado). Esclarecendo que ambos os métodos apoiam-se diretamente na arquitetura dos circuitos magnéticos. Porém, o modelo UMEC utiliza um processamento próprio.

Figura 10 - Transformador não linear

Fonte: (WATSON JOS ARRILLAGA, 2007)

2.3 Circuito Equivalente Magnético Unificado (UMEC)

A maioria dos programas de simulações utilizam modelos de transformadores convencionais, baseados nos seus componentes(resistores e indutores). Nesses modelos seus parâmetros são obtidos de forma fácil, através de testes de curto-circuito e circuito aberto. Porém, para transformadores de múltiplos núcleos, onde o fluxo se distribui de forma desigual este modelo não representa o transformador de forma adequada.

Diferente do modelo citado, o modelo de transformadores de Circuito Equivalente Magnético Unificado (UMEC) baseia-se na geometria do núcleo ferromagnético. Ele emprega os efeitos de acoplamento magnético entre os enrolamentos(de mesma fase e fases diferentes), e os efeitos da saturação. Dessa forma, gera uma matriz de indutância e cria um circuito equivalente mais adequado. Caracterizando melhor o comportamento do transformador em um sistema elétrico (HORITA,).

2.3.1 Análise de transformador UMEC

A Figura 11 representa o circuito magnético de um transformador monofásico de dois enrolamentos e a Figura 12 mostra o respectivo circuito equivalente magnético unificado (UMEC).

Na Figura 11 as tensões relativas $v_1(t) \in v_2(t)$ dos enrolamentos primário e secundário são usadas para calcular os fluxos $\Phi_1(t) \in \Phi_2(t)$ em cada enrolamento.

O fluxo Φ_1 relacionado ao enrolamento primário é dividido em fluxo no jugo (Φ_3) e fluxo de dispersão (Φ_4) . De forma similar, o enrolamento 2 possui o fluxo que o percorre (Φ_2) , fluxo que percorre o jugo (Φ_3) e o fluxo disperso (Φ_5) . Exibindo dessa forma que os fluxos não se comportam de forma uniforme nos núcleos. Os jugos superiores e inferiores são considerados iguais e possuem comprimentos L_y e área de seção transversal A_y . L_w representa o comprimento das colunas onde estão os enrolamentos e A_w a área de seção transversal.

Na Figura 12 observa-se as fontes de forças magnetomotrizes $N_1i_1(t)$ e $N_2i_2(t)$ que representam os enrolamentos primário e secundário. P_1 e P_2 representam as permeâncias das colunas onde se encontram os enrolamentos. P_3 representa a permeância nos jugos do

transformador, P_4 e P_5 equivalem as permeâncias dispersas em cada enrolamento. A permeância no núcleo é calculada através da curva BxH.

O circuito magnético da Figura 12 pode ser representado pelo equivalente de Norton mostrado na Figura 13 que é adequado para implementação de transientes eletromagnéticos. A força magnetomotriz em cada ramo da Figura 12 do circuito pode ser escrito em forma de vetor como na Equação 9.

Fonte: Própria

$$\tilde{\theta} = [N]i - [R]\tilde{\phi} \tag{9}$$

A representação do fluxo em um ramo do reator na forma de vetor é demonstrado na Equação 10. Sendo [P] a matriz diagonal contendo as permeâncias dos ramos e [N] a matriz diagonal contendo os números de enrolamentos.

$$\tilde{\Phi} = [P]([N]i - \hat{\theta}) \tag{10}$$

Para determinar a matriz de incidência nodal [A], temos que em cada nó os fluxos devem somar zero:

$$[A]^T \tilde{\phi} = \tilde{0} \tag{11}$$

Aplicando a matriz de ligação de ramos e nós do circuito, temos:

$$[A]\tilde{\theta}_{nodal} = \tilde{\theta} \tag{12}$$

Multiplicando a Equação 10 por $[A]^T$ e substituindo nas Equações 11 e 12, temos:

$$\tilde{0} = [A]^T [P] [N] \tilde{i} - [A]^T [P] [A] \tilde{\theta}_{nodal}$$
(13)

Resolvendo a Equação 13 e multiplicando ambos os lados por [A]:

$$[A]\theta_{nodal} = ([A]^T[P][A])^{-1}[A]^T[P][N]i$$
(14)

Substituindo a Equação 13 na Equação 11 e em seguida na Equação 10, tem-se:

$$\tilde{\phi} = [M][P][N]\tilde{i} \tag{15}$$

onde,

$$[M] = ([I] - [P][A]([A]^T[P][A])^{-1}[A]^T)[P]$$
(16)

A matriz [M] é não singular. O ramo divide-se em dois grupos, um com a força magnetomotriz onde está o enrolamento e o outro com relutância pura, logo:

$$\begin{bmatrix} \Phi_s \\ \Phi_r \end{bmatrix} = \begin{bmatrix} [M_{ss}] & [M_{sr}] \\ [M_{rs}] & [M_{rr}] \end{bmatrix} \begin{bmatrix} [P_s] & [0] \\ [0] & [P_r] \end{bmatrix} \begin{bmatrix} [N_s]i_s \\ [0] \end{bmatrix}$$
(17)

O fluxo no braço do enrolamento $\Phi_s(t - \Delta t)$ é calculado através da corrente do enrolamento utilizando a parte superior da Equação 17:

$$\tilde{\Phi}_s = [M_{ss}^*][P_s^*][N_s]\tilde{i}_s \tag{18}$$

 Φ_s é o vetor que contem os fluxos dos enrolamentos Φ_1 e Φ_2 . i_s é o vetor que contem a corrente nos enrolamentos i_1 e i_2 . $[P_s]$ representa o ramo da permeância atual. $[M_{ss}]$ e $[N_s]$ representam a matriz de permeância quadrática e matriz diagonal das espiras nos enrolamentos. O fluxo nos jugos e os fluxos dispersos $\Phi_r(t - \Delta t)$ são calculados utilizando a parte inferior da Equação 17:

$$\Phi_r = [M_{rs}^*][P_s^*][N_s]i_s \tag{19}$$

Através da lei de Faraday, pode-se obter a tensão no enrolamento visto na Equação 20.

$$v = N \frac{d\Phi}{dt} \tag{20}$$

Isolando o fluxo na Equação 20 e aplicando o método da integração trapezoidal (COGO; OLIVEIRA, 1983) a Equação 20 fica:

$$\tilde{\Phi}_s(t) = \tilde{\Phi}_s(t - \Delta t) + \frac{dt}{2} [N_s]^{-1} [\tilde{v}_s(t) + \tilde{v}_s(t - \Delta t)]$$
(21)

A integração trapezoidal é utilizada para relacionar a tensão no enrolamento do transformador com o fluxo magnético no enrolamento. Esta derivação é adequada para programas de simulações eletromagnéticas, onde, Δt é o passo de tempo da simulação e v_s é o vetor da tensão v_1 e v_2 no enrolamento. Cada tensão no enrolamento é usada para calcular o fluxo correspondente ao braço onde está o enrolamento.

Combinando as Equações 21 e 18, obtêm-se o equivalente de Norton:

$$\tilde{i}_s(t) = [Y_{ss}^*]\tilde{v}_s(t) + i_{ns}^*(t)$$
(22)

onde,

$$[Y_{ss}^*] = ([M_{ss}^*][P_s^*][N_s])^{-1} \frac{dt}{2} [N_s]^{-1}$$
(23)

e

$$i_{ns}^{*}(t) = ([M_{ss}^{*}][P_{s}^{*}][N_{s}])^{-1}(\frac{dt}{2}[N_{s}]^{-1}\tilde{v}_{s}(t-\Delta t) + \tilde{\Phi}_{s}(t-\Delta t))$$
(24)

logo, para o UMEC da Figura 14 a Equação 22 representa:

$$\begin{bmatrix} i_1(t) \\ i_2(t) \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \begin{bmatrix} v_1(t) \\ v_2(t) \end{bmatrix} + \begin{bmatrix} i_{ns1}(t) \\ i_{ns2}(t) \end{bmatrix}$$
(25)

Representado pelo circuito equivalente de Norton do modelo UMEC. O circuito equivalente de Norton é ideal para simulações dinâmicas e a matriz admitância simétrica $[Y_{ss}^*]$ é não diagonal, assim inclui acoplamento mútuo. Se necessário, as perdas nos enrolamentos podem ser representados pela adição de resistências em série nos terminais do equivalente de Norton.

Figura 14 – a) caminhos de fluxos magnéticos no núcleo. b) circuito equivalente (UMEC) Fonte: Própria

2.4 Aproximação linear por partes

Constantemente, simulações de fenômenos transitórios solicitam a representação de elementos não lineares, tais como, indutâncias de núcleos de transformadores e reatores. Esses elementos são usualmente tratados com a utilização de aproximação linear por partes.

O indutor não linear, usado no programa ATP para representar reator naturalmente saturado, tem seu núcleo de forma fechada, tal como um transformador com secundário sem enrolamentos. Nesse programa a curva λ x I do indutor não linear (Figura 15) é produzida através de chaveamento de componentes. L_1 e L_2 mostrados na Figura 16 são inclinações do primeiro e segundo segmentos, respectivamente.

Idealmente, a chave S_1 fecha em $\lambda = \wedge_1$ e abre quando a condição $\lambda < \wedge_1$ for atingida. Com S_1 aberta, a indutância L_1 reproduz a região linear de 0 a \wedge_1 no eixo λ ; com a chave fechada, o segmento em que $\lambda < \wedge_1$ é reproduzido. A reprodução do segundo segmento não é trivial. Observa-se que, quando S_1 fecha, embora a tensão nos terminais de L_1 e L_2 seja a mesma, o fluxo, em cada elemento , é diferente. No momento de fechamento da chave S_1 , o fluxo em L_2 é nulo.

O fluxo total enlaçado na indutância não-linear é a integral da tensão entre seus terminais:

$$\lambda(t) = \int_0^t v(t)dt \tag{26}$$

Assumindo que t_a é o instante de acionamento da chave, essa equação é a soma de duas parcelas:

$$\lambda(t) = \int_0^{t_a} v(t)dt + \int_{t_a}^t v(t)dt$$
(27)

Fonte: (ARAUJO; NEVES, 2005)

Figura 16 - Circuito simulador

Fonte: (ARAUJO; NEVES, 2005)

A primeira parcela corresponde a \wedge_1 , a segunda ao fluxo enlaçado λ_{L_2} quando L_2 é conectado. Assim,

$$\lambda(t) = \wedge_1 + \lambda_{L_2} \tag{28}$$

No circuito da Figura 16, com a chave fechada, a corrente *i* no primeiro trecho é dada por:

$$i(t) = \lambda(t)/L_1 + \lambda_{L_2}(t)/L_2$$
 (29)

Substituindo λ_{L_2} da equação 28 na equação 29, tem-se:

$$i(t) = \lambda(t)/L_1 + (\lambda_{L_2}(t) - \Lambda_1)/L_2$$
 (30)

Considerando as características $\lambda \ge \lambda_1$:

$$i(t) = i_1 + (\lambda(t) - \Lambda_1) / L'_2 = \Lambda(t)) / L_1 + (\lambda(t) - \Lambda_1) / L'_2$$
(31)

Como,

$$i(t) = h(t)/L_1 + (\lambda(t) - h_1)/L_2' = h(t)/L_1 + (\lambda(t) - h_1)/L_2$$
(32)

Desse modo $L_2 = L'_2 // L_1$, temos que a inclinação da curva $\lambda \ge i$ no segundo segmento é:

$$1/L_2' = 1/L_1 + 1/L_2 \tag{33}$$

Da mesma forma é feito para diversos segmentos da curva $\lambda \ge i$.

Como demonstrado nas equações anteriores o indutor não linear é representado pelo método de aproximação linear por trechos na curva $\lambda \ge i$. Através dele, simula-se RNS monofásicos no programa ATP.

Para a modelagem do UMEC usa-se parâmetros da curva BxH e seu algoritmo é proposto pelo método da aproximação linear por trechos (Figura17).

Figura 17 – Algoritmo da Curva $B \times H$ utilizando método de aproximação linear por partes

Fonte: Próprio Autor

3 Modelagem de Reatores naturalmente saturados utilizando o UMEC no ATP

Para simulações de máquinas elétricas, tais como, transformadores e reatores naturalmente saturados, é de extrema importância um bom entendimento de suas características eletromagnéticas, especificamente nos enrolamentos e nos núcleos. Neste capítulo será enfatizado as propriedades magnéticas destes equipamentos, seus comportamentos dinâmicos e os efeitos de saturação.

Primeiramente será descrito o comportamento dinâmico dos transformadores monofásicos, posteriormente os trifásicos e por fim, os efeitos de saturação. Nas primeiras simulações realizadas nos programas de transitórios eletromagnéticos foi assumido que os fluxos eram uniformes através das pernas e dos jugos no núcleo dos transformadores. Os fluxos dispersos nos enrolamentos individuais foram combinados e a corrente magnetizante foi inserida ao lado da reatância resultante série de dispersão. Um modelo para representar um transformador com vários núcleos também foi criado, baseado em circuito equivalente magnético unificado(UMEC) implementado no programa ATP.

O reator naturalmente saturado calcula a permeabilidade magnética em cada passo de tempo através da curva $B \times H$. As permeâncias do UMEC são calculadas pelas permeâncias no ramo mostrada na Equação 1, permeâncias de dispersão é demonstrada pela Equação 2 e permeâncias no retorno é calculada pela Equação 3.

$$P = \frac{\mu \times A_w}{L_w} \tag{1}$$

$$P_d = \frac{L_d}{N^2} \tag{2}$$

$$P_r = \frac{L_s}{N_1 \times N_2} \tag{3}$$

Os fluxos magnéticos dispostos no modelo UMEC é dividido em:

* Fluxo Magnético do ramo principal.

$$\phi = B \times A \tag{4}$$

* Fluxo Magnético de dispersão.

$$\phi_d = P_d(H \times L + \frac{\phi}{P}) \tag{5}$$

* Fluxo Magnético de retorno.

$$\phi_r = P_r \frac{\phi_{d1}}{P_{d1}} + \frac{\phi_{d2}}{P_{d2}} \tag{6}$$

* Fluxo Magnético no Jugo.

$$\phi_y = \phi - \phi_d \tag{7}$$

As equações que vão da Equação 1 a 7 são utilizadas para montar o algoritmo do UMEC desenvolvido na linguagem MODELS do programa ATP. Este algoritmo completo é mostrado na Figura 18.

3.1 Modelo UMEC para reator monofásico naturalmente saturado com 1 enrolamento

A modelagem deste reator foi desenvolvida com base na Figura 19 que representa o circuito magnético. E através dele, é desenvolvido o modelo UMEC (Figura 20). O modelo UMEC é constituído de nós para representar entradas e saídas de fluxos magnéticos, a fonte de força magnetomotriz N_1 I_1 representa cada enrolamento individualmente, as tensões dos enrolamentos são usadas para calcular os fluxos do membro onde se encontra o enrolamento.

As matrizes utilizadas para a modelagem matemática do reator em questão são mostradas a partir da Equação 8 que representa a Matriz de Incidência Nodal, finalizando com a Equação 21 que demonstra correntes nos enrolamentos.

* Matriz [A] é obtida através dos nós do modelo UMEC, assim:

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -1 & 0 \\ -1 & 1 \end{bmatrix}$$
(8)

* Matriz Permeância [P] diagonal é :

$$P = \begin{bmatrix} P_1 & 0 & 0 & 0\\ 0 & P_2 & 0 & 0\\ 0 & 0 & P_3 & 0\\ 0 & 0 & 0 & P_4 \end{bmatrix}$$
(9)

Figura 18 – Algoritmo do cálculo da corrente do UMEC para RNS

Fonte: Próprio Autor

Figura 19 - Caminhos de fluxos magnéticos no núcleo.

Fonte: Próprio Autor

* Matriz diagonal das espiras [N]:

$$N = \begin{bmatrix} N_1 \end{bmatrix} \tag{10}$$

* Matriz das tensões nos enrolamentos:

$$V = \begin{bmatrix} V_1 \end{bmatrix} \tag{11}$$

* Matriz dos fluxos nos enrolamentos:

$$\Phi = \left[\Phi_1\right] \tag{12}$$

* Matriz identidade [I] =

$$I = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(13)

* Matriz relacionada a fonte de corrente de cada enrolamento $[I_{ns}]$:

$$I_{ns} = \begin{bmatrix} I_{ns1} \end{bmatrix} \tag{14}$$

* Matriz [M] quadrada é:

$$M = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix}$$
(15)

como $[M] = [I] - [P][A]([A]^T[P][A])^{-1}[A]^T$, temos:

$$\begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} \\ m_{21} & m_{22} & m_{23} & m_{24} \\ m_{31} & m_{32} & m_{33} & m_{34} \\ m_{41} & m_{42} & m_{43} & m_{44} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} P_1 & 0 & 0 & 0 \\ 0 & P_2 & 0 & 0 \\ 0 & 0 & P_3 & 0 \\ 0 & 0 & 0 & P_4 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -1 & 0 \\ -1 & 1 \end{bmatrix} \left(\begin{bmatrix} A \end{bmatrix}^T \begin{bmatrix} P_1 & 0 & 0 & 0 \\ 0 & P_2 & 0 & 0 \\ 0 & 0 & P_3 & 0 \\ 0 & 0 & 0 & P_4 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -1 & 0 \\ -1 & 1 \end{bmatrix} \right)$$
(16)

* A submatriz $[M_{ss}]$ pode ser obtida:

$$M_{ss} = \begin{bmatrix} M_{11} \end{bmatrix} \tag{17}$$

* Matriz [Pss] relacionada ao enrolamento 1 é :

$$P_s = \begin{bmatrix} P_1 \end{bmatrix} \tag{18}$$

* A matriz admitância pode ser entendida como: $[Y_{ss}^*] = ([M_{ss}^*][P_s^*][N_s])^{-1} \frac{dt}{2} [N_s]^{-1}$, logo:

$$Y_{ss} = \begin{bmatrix} Y_{11} \end{bmatrix} \tag{19}$$

* Reescrevendo a matriz I_{ns} , temos:

$$\begin{bmatrix} I_{ns1} \end{bmatrix} = \left(\begin{bmatrix} M_{11} \end{bmatrix} \begin{bmatrix} P_1 \end{bmatrix} \begin{bmatrix} N_1 \end{bmatrix} \right)^{-1} \left(\frac{\Delta t}{2} \begin{bmatrix} N_1 \end{bmatrix}^{-1} \begin{bmatrix} V_1 \end{bmatrix} + \begin{bmatrix} \Phi_1 \end{bmatrix} \right)$$
(20)

* Logo, a corrente no enrolamento 1 é :

$$\begin{bmatrix} I_1 \end{bmatrix} = \begin{bmatrix} Y_{11} \end{bmatrix} \begin{bmatrix} V_1 \end{bmatrix} + \begin{bmatrix} I_{ns1} \end{bmatrix}$$
(21)

3.2 Modelo UMEC para reator monofásico naturalmente saturado com 2 enrolamentos

Figura 21 – Caminhos de fluxos magnéticos no núcleo.

Fonte: Próprio Autor

A modelagem deste reator leva em consideração o circuito magnético da Figura 21 e o modelo UMEC mostrado na Figura 22.

Da mesma forma que foi calculada as matrizes para o reator anterior, aplica-se para o reator saturado com dois enrolamentos. Iniciando os estudos com a matriz de Incidência Nodal na Equação 22 e finalizando com a fórmula das correntes para os dois enrolamentos (Equação 35), temos:

* Matriz [A] é obtida através dos nós 1 e 2 do modelo UMEC:

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -1 & 0 \\ -1 & 1 \\ 0 & 1 \end{bmatrix}$$
(22)

* De acordo com o modelo UMEC a Matriz Permeância [P] é construída:

$$P = \begin{bmatrix} P_1 & 0 & 0 & 0 & 0\\ 0 & P_2 & 0 & 0 & 0\\ 0 & 0 & P_3 & 0 & 0\\ 0 & 0 & 0 & P_4 & 0\\ 0 & 0 & 0 & 0 & P_5 \end{bmatrix}$$
(23)

* Matriz diagonal [N] dos dois enrolamentos:

$$N = \begin{bmatrix} N_1 & 0\\ 0 & N_2 \end{bmatrix}$$
(24)

* Matriz das tensões dos enrolamentos:

$$V = \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$
(25)

* Matriz dos fluxos magnéticos dos enrolamentos:

$$\Phi = \begin{bmatrix} \Phi_1 \\ \Phi_2 \end{bmatrix}$$
(26)

* Matriz identidade [I] =

$$I = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
(27)

* Matriz relacionada a fonte de corrente de cada enrolamento $[I_{ns}]$:

$$I_{ns} = \begin{bmatrix} I_{ns1} \\ I_{ns2} \end{bmatrix}$$
(28)

* Matriz [M] quadrada :

$$M = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} & m_{15} \\ m_{21} & m_{22} & m_{23} & m_{24} & m_{25} \\ m_{31} & m_{32} & m_{33} & m_{34} & m_{35} \\ m_{41} & m_{42} & m_{43} & m_{44} & m_{45} \\ m_{51} & m_{52} & m_{53} & m_{54} & m_{55} \end{bmatrix}$$
(29)

como
$$[M] = [I] - [P][A]([A]^T[P][A])^{-1}[A]^T$$
, temos

$$M = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} P_1 & \cdots & 0 \\ \vdots & \vdots & \vdots \\ 0 & \cdots & P_5 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -1 & 0 \\ 0 & 1 \end{bmatrix} ([A]^T \begin{bmatrix} P_1 & 0 & 0 & 0 & 0 \\ 0 & P_2 & 0 & 0 & 0 \\ 0 & 0 & P_3 & 0 & 0 \\ 0 & 0 & 0 & P_4 & 0 \\ 0 & 0 & 0 & 0 & P_5 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -1 & 0 \\ 0 & 1 \end{bmatrix})^{-1} [A]^T$$
(30)

* A submatriz $[M_{ss}]$ pode ser obtida:

$$M_{ss} = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}$$
(31)

* Matriz [Pss] relacionada aos enrolamentos 1 e 2 é :

$$P_s = \begin{bmatrix} P_1 & 0\\ 0 & P_2 \end{bmatrix}$$
(32)

* A matriz admitância pode ser entendida como: $[Y_{ss}^*] = ([M_{ss}^*][P_s^*][N_s])^{-1} \frac{dt}{2} [N_s]^{-1}$, logo:

$$Y_{ss} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix}$$
(33)

* Reescrevendo a matriz I_{ns} , temos:

$$\begin{bmatrix} I_{ns1} \\ I_{ns2} \end{bmatrix} = \begin{pmatrix} \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} \begin{bmatrix} P_1 & 0 \\ 0 & P_2 \end{bmatrix} \begin{bmatrix} N_1 & 0 \\ 0 & N_2 \end{bmatrix})^{-1} \begin{pmatrix} \Delta t \\ 2 \end{bmatrix} \begin{bmatrix} N_1 & 0 \\ 0 & N_2 \end{bmatrix}^{-1} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} + \begin{bmatrix} \Phi_1 \\ \Phi_2 \end{bmatrix}) \quad (34)$$

* Logo, as correntes nos enrolamentos 1 e 2 do reator são:

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} + \begin{bmatrix} I_{ns1} \\ I_{ns2} \end{bmatrix}$$
(35)

3.3 Modelo UMEC para reator trifásico naturalmente saturado com 6 enrolamentos e dois retornos

Replicando os conceitos utilizados nas outras modelagens segue os circuito magnético (Figura 23) e o UMEC do RNS com 6 enrolamentos e 2 retornos.

Figura 23 – Caminhos de fluxos magnéticos no núcleo.

Fonte: Próprio Autor

Figura 24 – Circuito UMEC do reator com 6 enrolamentos.

Fonte: Próprio Autor

As matrizes necessárias para a modelagem do RNS trifásico com 6 enrolamentos são mostradas a seguir:

* Matriz [A] é obtida através dos nós do modelo UMEC, logo:

* Matriz Permeância [P] diagonal é obtida de acordo com o modelo UMEC:

$$\begin{bmatrix} P_1 & 0 & \cdots & 0 \\ 0 & P_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & P_{18} \end{bmatrix}$$

* Matriz diagonal das espiras [N]:

$$N = \begin{bmatrix} N_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & N_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & N_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & N_4 & 0 & 0 \\ 0 & 0 & 0 & 0 & N_5 & 0 \\ 0 & 0 & 0 & 0 & 0 & N_6 \end{bmatrix}$$
(37)

* Matriz das tensões nos enrolamentos:

$$V = \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \\ V_5 \\ V_6 \end{bmatrix}$$
(38)

* Matriz dos fluxos nos enrolamentos:

$$\Phi = \begin{bmatrix} \Phi_1 \\ \Phi_2 \\ \Phi_3 \\ \Phi_4 \\ \Phi_5 \\ \Phi_6 \end{bmatrix}$$
(39)

* Matriz identidade [I]:

$$I_{18} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$
(40)

* Matriz relacionada a fonte de corrente de cada enrolamento $[I_{ns}]$:

$$I_{ns} = \begin{bmatrix} I_{ns1} \\ I_{ns2} \\ I_{ns3} \\ I_{ns4} \\ I_{ns5} \\ I_{ns6} \end{bmatrix}$$
(41)

* Matriz [M] quadrada é dada por:

$$[M] = [I] - [P][A]([A]^T[P][A])^{-1}[A]^T$$
, logo

* A submatriz $[M_{ss}]$ pode ser obtida:

$$M = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} & m_{15} & m_{16} \\ m_{21} & m_{22} & m_{23} & m_{24} & m_{25} & m_{26} \\ m_{31} & m_{32} & m_{33} & m_{34} & m_{35} & m_{36} \\ m_{41} & m_{42} & m_{43} & m_{44} & m_{45} & m_{46} \\ m_{51} & m_{52} & m_{53} & m_{54} & m_{55} & m_{56} \\ m_{61} & m_{62} & m_{63} & m_{64} & m_{65} & m_{66} \end{bmatrix}$$
(42)

* Matriz [Pss] relacionada aos enrolamentos 1 ao 6 é :

$$P_{s} = \begin{bmatrix} P_{1} & 0 & 0 & 0 & 0 & 0 \\ 0 & P_{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & P_{3} & 0 & 0 & 0 \\ 0 & 0 & 0 & P_{4} & 0 & 0 \\ 0 & 0 & 0 & 0 & P_{5} & 0 \\ 0 & 0 & 0 & 0 & 0 & P_{6} \end{bmatrix}$$
(43)

* A matriz admitância pode ser entendida como: $[Y_{ss}^*] = ([M_{ss}^*][P_s]][N_s])^{-1} \frac{dt}{2} [N_s]^{-1}$, logo:

$$Y_{ss} = \begin{bmatrix} Y_{11} & Y_{12} & Y_{13} & Y_{14} & Y_{15} & Y_{16} \\ Y_{21} & Y_{22} & Y_{23} & Y_{24} & Y_{25} & Y_{26} \\ Y_{31} & Y_{32} & Y_{33} & Y_{34} & Y_{35} & Y_{36} \\ Y_{41} & Y_{42} & Y_{43} & Y_{44} & Y_{45} & Y_{46} \\ Y_{51} & Y_{52} & Y_{53} & Y_{54} & Y_{55} & Y_{56} \\ Y_{61} & Y_{62} & Y_{63} & Y_{64} & Y_{65} & Y_{66} \end{bmatrix}$$
(44)

* Reescrevendo a matriz I_{ns} , temos:

$$\begin{bmatrix} I_{ns1} \\ \vdots \\ I_{ns6} \end{bmatrix} = \left(\begin{bmatrix} M_{ss} \end{bmatrix} \begin{bmatrix} P_1 & 0 & \cdots & 0 \\ 0 & P_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & P_6 \end{bmatrix} \begin{bmatrix} N_1 & 0 & \cdots & 0 \\ 0 & P_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & N_6 \end{bmatrix} \right)^{-1} \left(\frac{\Delta t}{2} \begin{bmatrix} N_s \end{bmatrix}^{-1} \begin{bmatrix} V_1 \\ \vdots \\ V_6 \end{bmatrix} + \begin{bmatrix} \Phi_1 \\ \vdots \\ \Phi_6 \end{bmatrix} \right)$$
(45)

* Consequentemente, as correntes nos 6 enrolamentos são:

$$\begin{bmatrix} I_1 \\ \vdots \\ \vdots \\ I_6 \end{bmatrix} = \begin{bmatrix} Y_{1,1} & \cdots & Y_{1,6} \\ \vdots & \ddots & \vdots \\ \vdots & \cdots & \vdots \\ Y_{6,1} & \cdots & Y_{6,6} \end{bmatrix} \begin{bmatrix} V_1 \\ \vdots \\ V_6 \end{bmatrix} + \begin{bmatrix} I_{ns1} \\ \vdots \\ I_{ns6} \end{bmatrix}$$
(46)

3.4 Modelo UMEC para reator trifásico naturalmente saturado com 9 enrolamentos e dois retornos

O circuito magnético (Figura 25) e o UMEC (Figura 26) do reator trifásico naturalmente saturado com 9 enrolamentos e 2 retornos. É mostrado na figura abaixo:

Figura 25 - Caminhos de fluxos magnéticos no núcleo.

As matrizes necessárias para a modelagem do RNS trifásico com nove enrolamentos são mostradas:

Fonte: Próprio Autor

Figura 26 – Cicruito UMEC do reator de 9 enrolamentos.

* Matriz [A] é obtida através dos nós do modelo UMEC, logo:

	_								_	
	1	-1	0	0	0	0	0	0	0	
A =	0	1	-1	0	0	0	0	0	0	
	0	0	1	0	0	0	0	0	0	
	0	0	0	1	$^{-1}$	0	0	0	0	
	0	0	0	0	1	$^{-1}$	0	0	0	
	0	0	0	0	0	1	0	0	0	
	0	0	0	0	0	0	1	-1	0	
	0	0	0	0	0	0	0	1	-1	
	0	0	0	0	0	0	0	0	1	
	-1	1	0	0	0	0	0	0	0	
	0	-1	1	0	0	0	0	0	0	
	0	0	$^{-1}$	0	0	0	0	0	0	
	0	0	0	$^{-1}$	1	0	0	0	0	
	0	0	0	0	$^{-1}$	1	0	0	0	
	0	0	0	0	0	$^{-1}$	0	0	0	
	0	0	1	0	0	0	$^{-1}$	1	0	
	0	0	0	0	0	0	0	$^{-1}$	1	
	0	0	0	0	0	0	0	0	-1	
	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	
	-1	0	0	0	0	0	0	0	0	
	-1	0	0	1	0	0	0	0	0	
	0	0	0	1	0	0	$^{-1}$	0	0	
	0	0	0	0	0	0	$^{-1}$	0	0	
	_								_	

(47)

* Matriz Permeância [P] diagonal é obtida de acordo com o modelo UMEC e equivale a

uma matriz de tamanho 24.

$$P = \begin{bmatrix} P_1 & 0 & \cdots & 0 \\ 0 & P_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & P_{24} \end{bmatrix}$$
(48)

* Matriz das tensões nos enrolamentos:

$$V = \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \\ V_5 \\ V_6 \\ V_7 \\ V_8 \\ V_9 \end{bmatrix}$$
(49)

* Matriz dos fluxos nos enrolamentos:

$$\Phi = \begin{bmatrix} \Phi_{1} \\ \Phi_{2} \\ \Phi_{3} \\ \Phi_{4} \\ \Phi_{5} \\ \Phi_{6} \\ \Phi_{6} \\ \Phi_{7} \\ \Phi_{8} \\ \Phi_{9} \end{bmatrix}$$
(50)

* Matriz identidade [I] :

$$I_{24} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$
(51)

* Matriz relacionada a fonte de corrente de cada enrolamento $[I_{ns}]$:

$$I_{ns1} = \begin{bmatrix} I_{ns1} \\ I_{ns2} \\ I_{ns3} \\ I_{ns3} \\ I_{ns4} \\ I_{ns5} \\ I_{ns6} \\ I_{ns7} \\ I_{ns8} \\ I_{ns9} \end{bmatrix}$$
(52)

* Matriz [M] é dada por : $[M] = [I] - [P][A]([A]^T[P][A])^{-1}[A]^T$, logo:

* A submatriz $[M_{ss}]$ pode ser obtida:

$$M_{ss} = \begin{bmatrix} m_{11} & m_{12} & m_{13} & m_{14} & m_{15} & m_{16} & m_{17} & m_{18} & m_{19} \\ m_{21} & m_{22} & m_{23} & m_{24} & m_{25} & m_{26} & m_{27} & m_{28} & m_{29} \\ m_{31} & m_{32} & m_{33} & m_{34} & m_{35} & m_{36} & m_{37} & m_{38} & m_{39} \\ m_{41} & m_{42} & m_{43} & m_{44} & m_{45} & m_{46} & m_{47} & m_{48} & m_{49} \\ m_{51} & m_{52} & m_{53} & m_{54} & m_{55} & m_{56} & m_{57} & m_{58} & m_{59} \\ m_{61} & m_{62} & m_{63} & m_{64} & m_{65} & m_{66} & m_{67} & m_{68} & m_{69} \\ m_{71} & m_{72} & m_{73} & m_{74} & m_{75} & m_{76} & m_{77} & m_{78} & m_{79} \\ m_{81} & m_{82} & m_{83} & m_{84} & m_{85} & m_{86} & m_{87} & m_{88} & m_{89} \\ m_{91} & m_{92} & m_{93} & m_{94} & m_{95} & m_{96} & m_{97} & m_{98} & m_{99} \end{bmatrix}$$

* Matriz [Pss] relacionada aos enrolamentos 1 ao 9 é :

$$P_{s} = \begin{bmatrix} P_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & P_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & P_{3} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & P_{4} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & P_{5} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & P_{6} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & P_{7} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & P_{8} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & P_{9} \end{bmatrix}$$
(54)

* A matriz admitância pode ser entendida como: $[Y^*_{ss}] = ([M^*_{ss}][P^*_s][N_s])^{-1} \frac{dt}{2} [N_s]^{-1}$

(53)

* Reescrevendo a matriz I_{ns} , temos:

$$\begin{bmatrix} I_{ns} \end{bmatrix} = \left(\begin{bmatrix} M_{ss} \end{bmatrix} \begin{bmatrix} P_{ss} \end{bmatrix} \begin{bmatrix} N_{ss} \end{bmatrix} \right)^{-1} \left(\frac{\Delta t}{2} \begin{bmatrix} N_{ss} \end{bmatrix}^{-1} \begin{bmatrix} V \end{bmatrix} + \begin{bmatrix} \Phi \end{bmatrix} \right)$$
(55)

* Assim, as correntes nos 9 enrolamentos são:

$$\begin{bmatrix} I_{1} \\ \vdots \\ \vdots \\ I_{9} \end{bmatrix} = \begin{bmatrix} Y_{1,1} & \cdots & Y_{1,9} \\ \vdots & \ddots & \vdots \\ \vdots & \cdots & \vdots \\ Y_{9,1} & \cdots & Y_{9,9} \end{bmatrix} \begin{bmatrix} V_{1} \\ \vdots \\ \vdots \\ V_{9} \end{bmatrix} + \begin{bmatrix} I_{ns1} \\ \vdots \\ \vdots \\ I_{ns9} \end{bmatrix}$$
(56)

3.5 Modelo UMEC para reator trifásico com configuração em monobloco naturalmente saturado com 12 enrolamentos e dois retornos

Figura 27 - Caminhos de fluxos magnéticos no núcleo.

Fonte: Próprio Autor

Fonte: Próprio Autor

O circuito magnético (Figura 27) e o UMEC (Figura 28) do reator trifásico naturalmente saturado com 12 enrolamentos e 2 retornos são mostrados. As matrizes necessárias para a modelagem do reator saturado trifásico com configuração monobloco são mostradas a seguir:

	1	-1	0	0	0	0	0	0	0	0	0	0	
	0	1	0	0	0	0	0	0	0	0	0	0	
	0	0	1	-1	0	0	0	0	0	0	0	0	
	0	0	0	1	0	0	0	0	0	0	0	0	
	0	0	0	0	1	-1	0	0	0	0	0	0	
	0	0	0	0	0	1	0	0	0	0	0	0	
	0	0	0	0	0	0	1	-1	0	0	0	0	
	0	0	0	0	0	0	0	1	0	0	0	0	
	0	0	0	0	0	0	0	0	1	-1	0	0	
	0	0	0	0	0	0	0	0	0	1	0	0	
	0	0	0	0	0	0	0	0	0	0	1	-1	
	0	0	0	0	0	0	0	0	0	0	0	1	
	-1	1	0	0	0	0	0	0	0	0	0	0	
	0	-1	0	0	0	0	0	0	0	0	0	0	
	0	0	-1	1	0	0	0	0	0	0	0	0	
	0	0	0	-1	0	0	0	0	0	0	0	0	
A =	0	0	0	0	-1	1	0	0	0	0	0	0	
	0	0	0	0	0	-1	0	0	0	0	0	0	
	0	0	0	0	0	0	-1	1	0	0	0	0	
	0	0	0	0	0	0	0	-1	0	0	0	0	
	0	0	0	0	0	0	0	0	-1	1	0	0	
	0	0	0	0	0	0	0	0	0	-1	0	0	
	0	0	0	0	0	0	0	0	0	0	-1	1	
	0	0	0	0	0	0	0	0	0	0	0	-1	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	-1	0	0	0	0	0	0	0	0	0	0	0	
	-1	0	1	0	0	0	0	0	0	0	0	0	
	0	0	1	0	-1	0	0	0	0	0	0	0	
	0	0	0	0	-1	0	1	0	0	0	0	0	
	0	0	0	0	0	0	1	0	-1	0	0	0	
	0	0	0	0	0	0	0	0	-1	0	1	0	
	0	0	0	0	0	0	0	0	0	0	-1	0	

* Matriz [A] é obtida através do modelo UMEC, logo:

* Matriz Permeância [P] diagonal é obtida de acordo com o modelo UMEC e equivale a uma matriz de tamanho 33.

$$P = \begin{bmatrix} P_1 & 0 & \cdots & 0 \\ 0 & P_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & P_{33} \end{bmatrix}$$
(58)

(57)

* Matriz das tensões nos enrolamentos:

$$V = \begin{bmatrix} V_{1} \\ V_{2} \\ V_{3} \\ V_{4} \\ V_{5} \\ V_{6} \\ V_{7} \\ V_{8} \\ V_{9} \\ V_{10} \\ V_{11} \\ V_{12} \end{bmatrix}$$
(59)

* Matriz dos fluxos nos enrolamentos:

$$\Phi = \begin{bmatrix} \Phi_{1} \\ \Phi_{2} \\ \Phi_{3} \\ \Phi_{4} \\ \Phi_{5} \\ \Phi_{6} \\ \Phi_{7} \\ \Phi_{8} \\ \Phi_{9} \\ \Phi_{10} \\ \Phi_{11} \\ \Phi_{12} \end{bmatrix}$$
(60)

* Matriz identidade [I] :

$$I_{33} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$
(61)

* Matriz relacionada a fonte de corrente de cada enrolamento $[I_{ns}]$:

-

$$I_{ns} = \begin{bmatrix} I_{ns1} \\ I_{ns2} \\ I_{ns3} \\ I_{ns4} \\ I_{ns5} \\ I_{ns6} \\ I_{ns7} \\ I_{ns8} \\ I_{ns9} \\ I_{ns10} \\ I_{ns11} \\ I_{ns12} \end{bmatrix}$$
(62)

* Matriz [M] é dada por : $[M] = [I] - [P][A]([A]^T[P][A])^{-1}[A]^T$, logo:

* A submatriz $[M_{ss}]$ pode ser obtida:

$$M_{ss} = \begin{bmatrix} m_{1,1} & \cdots & m_{1,12} \\ \vdots & \ddots & \vdots \\ \vdots & \cdots & \vdots \\ m_{12,1} & \cdots & m_{12,12} \end{bmatrix}$$
(63)

	Гъ	0	0	0	0	0	0	0	0	0	0		
	$ P_1 $	0	0	0	0	0	0	0	0	0	0	0	
	0	P_2	0	0	0	0	0	0	0	0	0	0	
	0	0	P_3	0	0	0	0	0	0	0	0	0	
	0	0	0	P_4	0	0	0	0	0	0	0	0	
	0	0	0	0	P_5	0	0	0	0	0	0	0	
D _	0	0	0	0	0	P_6	0	0	0	0	0	0	(6
<i>I</i> _s –	0	0	0	0	0	0	P_7	0	0	0	0	0	(0
	0	0	0	0	0	0	0	P_8	0	0	0	0	
	0	0	0	0	0	0	0	0	P_9	0	0	0	
	0	0	0	0	0	0	0	0	0	P_{10}	0	0	
	0	0	0	0	0	0	0	0	0	0	P_{11}	0	
	0	0	0	0	0	0	0	0	0	0	0	P_{12}	

* Matriz [Pss] relacionada aos enrolamentos 1 ao 12 é :

* A matriz admitância pode ser entendida como: $[Y^*_{ss}] = ([M^*_{ss}][P^*_s][N_s])^{-1} \frac{dt}{2} [N_s]^{-1}$

* Reescrevendo a matriz I_{ns} , temos:

$$\begin{bmatrix} I_{ns} \end{bmatrix} = \left(\begin{bmatrix} M_{ss} \end{bmatrix} \begin{bmatrix} P_{ss} \end{bmatrix} \begin{bmatrix} N_{ss} \end{bmatrix} \right)^{-1} \left(\frac{\Delta t}{2} \begin{bmatrix} N_{ss} \end{bmatrix}^{-1} \begin{bmatrix} V \end{bmatrix} + \begin{bmatrix} \Phi \end{bmatrix} \right)$$
(65)

* Logo, as correntes nos 12 enrolamentos é definida como:

$$\begin{bmatrix} I_{1} \\ \vdots \\ \vdots \\ I_{12} \end{bmatrix} = \begin{bmatrix} Y_{1,1} & \cdots & Y_{1,12} \\ \vdots & \ddots & \vdots \\ \vdots & \cdots & \vdots \\ Y_{12,1} & \cdots & Y_{12,12} \end{bmatrix} \begin{bmatrix} V_{1} \\ \vdots \\ V_{12} \end{bmatrix} + \begin{bmatrix} I_{ns1} \\ \vdots \\ \vdots \\ I_{ns12} \end{bmatrix}$$
(66)

4 Biblioteca RLib

Este capítulo apresenta uma descrição da biblioteca desenvolvida para avaliação de reatores naturalmente saturados utilizando a linguagem Models do ATP (RLib). A ideia de se utilizar uma biblioteca para reatores naturalmente saturados veio da necessidade de ter um componente unificado que permitisse a implementação de diferentes reatores naturalmente saturados sem a necessidade de se recriar todo o código para cada componente. Dessa forma, cientistas e engenheiros podem simular o comportamento de RNSs com diferentes configurações de uma maneira mais simples que copiar o código de reatores previamente implementados e adicionar novas funcionalidades. Esse tipo de implementação é mais suscetível a erros.

Com a utilização do componente proposto, o trabalho de elaboração de um modelo de simulação é facilitado e o tempo de desenvolvimento do projeto do reator é diminuído de forma significativa. Este capítulo é divido em três seções principais listadas a seguir: (i) arquitetura do biblioteca RLib; (ii) comportamento da biblioteca RLib; (iii) integração com modelos de reatores naturalmente saturados. É importante destacar que nesse capítulo além de uma visão geral de como é o comportamento e estrutura da biblioteca RLib, serão mostrados também detalhes de implementação de como utilizar a biblioteca. Dessa forma, analistas de RNSs poderão criar modelos de reatores utilizando os exemplos aqui mostrados como base.

4.1 Considerações Importantes Sobre a Linguagem Models

Esta seção apresenta algumas considerações que devem ser mencionadas para deixar mais clara a forma como alguns componentes da linguagem Model foram utilizados. Por exemplo, na linguagens modelos a representação de matrizes retangulares não é claramente definida. Portanto, soluções alternativas tiveram que ser implementadas para que esse tipo de comportamento fosse codificado. Os dois principais elementos destacados nesse capítulo se referem a utilização de subrotinas e implementação de matrizes retangulares.

4.1.1 Implementação de subrotinas.

A linguagem models apesar de poderosa, difere de linguagens de programação convencionais como C, Java ou Python. Uma vez que tem o foco na representação e interligação de componentes elétricos, a linguagem não possui alguns elementos que facilitam a representação de tipos de dados de alto nível como classes, estrutura de dados ou subrotinas. Ao invés disso, a linguagem permite a criação de submodelos hierárquicos que simulam o comportamento de subrotinas. Mais especificamente, a linguagem models permite as seguintes formas de se escrever subrotinas ou procedimentos (DUBÉ, 1996):

Função declarativas. Uma função declarativa possui as mesmas caracteríticas de uma expressão. Para um certo conjunto de argumentos, uma função da linguagem Models calcula a expressão e retorna um resultado. Contudo, toda expressão deve ser atômica e variáveis intermediárias não podem ser criadas. Dessa forma, funções da linguagem Models diferem de funções em linguagens de mais alto nível, como C++ por exemplo, dado que expressões não podem ser encadeadas. Na linguagem models, uma expressão por função é admitida.

O trecho de código 4.1 apresenta a forma como funções são definidas na linguagem Models. A palavra chave *FUNCTION* inicia a função. Em seguida, o nome da função declarativa deve ser declarada, sua lista de argumentos (*argname1, argname2, ...*) e por fim uma expressão (*expression*) que calcula e retorna um resultado baseado nos parâmetros informados.

FUNCTION somename(argname1, argname2, ...) := expression

Código Fonte 4.1 – Template para criação de funções declarativas.

Um exemplo da utilização de uma função declarativa pode ser vista no Código Fonte 4.2. Nesse caso, três variáveis são somadas e o resultado é retornado. Observe que apenas um expressão pode ser utilizada para o cálculo do resultado. Portanto, algoritmos mais complexos que requerem a utilização de uma ou mais variáveis não podem ser criados apenas utilizando-se funções declarativas.

```
1 -- Calcula a soma de param1 + param2 + param3
2 FUNCTION simple_sum(param1, param2, param3) := a+b+c
3 ...
4 -- result guarda o valor 6.
5 result := simple_sum(1, 2, 3)
```

Código Fonte 4.2 – Exemplo de utilização de funções declarativas

- Função externa. Uma função externa corresponde a uma rotina escrita em outra linguagem de programação e adicionada a linguagem models no processo de montagem do código fonte (*linking process*). Apesar de apresentar uma solução viável para construir subrotinas complexas, o código fonte do ATP precisa ser recompilado juntamente com o código da rotina externa para que essa possa ser utilizada o que torna o processo como um todo bastante trabalhoso. Para detalhes de como utilizar funções externas o leitor é direcionado a referência (DUBÉ, 1996)
- Submodelos da Models. Submodelos da linguagem Models, ou simplesmente modelos, são componentes da linguagem que permitem guardar valores e executar procedimentos. Portanto, modelos intermediários são utilizados para representar o comportamento de procedimentos na linguagem. Ao invés de criarmos um procedimento e utilizarmos este para

a execução de uma subrotina, um submodelo é criado e este é usado para representar/executar a funcionalidade desejada. Existem duas formas de se utilizar um submodelo dentro de outro modelo: (i) utilizando um modelo localmente definido, ou (ii) empregando-se um modelo externo. No modelo localmente definido, a sua descrição é feita dentro do modelo que o chama. Por outro lado, o modelo externo é declarado fora do módulo que o utiliza. O Código Fonte 4.3 apresenta a forma como um submodelo é criado e utilizado. Observe que um modelo de mais alto nível é criado na linha 1 (*modelo_principal*) e dentro deste um submodelo é criado (*sub_modelo*). A forma de utilização do submodelo pelo modelo principal é mostrada na linha 17.

```
MODEL modelo_principal
 2
     -- O modelo de alto nível é definido da forma habitual
     CONST ...
 4
     DATA ...
     INPUT ...
     VAR ...
 6
     OUTPUT ...
 8
      MODEL sub_modelo
 9
       -- O modelo intermediário é criado e utilizado no modelo principal
       CONST ...
11
       DATA ...
       . . .
13
       ENDMODEL
14
       . . .
15
       EXEC
     . . .
     USE sub_modelo AS submod_1
18
     -- Forma de utilização do submodelo
     . . .
20
     ENDUSE
21
     . . .
     ENDEXEC
23
     ENDMODEL
```

Código Fonte 4.3 – Exemplo de utilização de submodelos localmente definidos

A outra forma de utilização de um submodelo corresponde a um modelo externo. Nesse caso, ao invés de se definir o submodelo dentro do modelo que o utiliza, o modelo externo é definido fora do modelo chamador utilizando-se a palavra chave *EXTERNAL*. O Código Fonte 4.4 apresenta a forma de utilização de um modelo externo na linguagem models. Nesse exemplo o modelo_utilizador (linhas 1 a 5) executa o modelo_utilizado (linhas 16). Para que o modelo_utilizador reconheça o modelo_utilizado como um submodelo é necessário que isso seja definido com o uso da palavra chave *EXTERNAL* na linha 12.

```
1 MODEL modelo_utilizado
2 CONST ...
3 DATA ...
4 ...
5 ENDMODEL
6
```

```
MODEL modelo_utilizador
8
     -- Esse modelo vai utilizar o modelo_utilizado
9
     CONST ...
    DATA ...
     . . .
    MODEL modelo_utilizado EXTERNAL
     . . .
   EXEC
     . . .
   USE modelo_utilizado AS mod1
     -- O modelo_utilizado está sendo usado nesse ponto.
     . . .
19
     ENDUSE
20
     . . .
21
     ENDEXEC
     ENDMODEL
```

Código Fonte 4.4 – Forma de utilização de modelos externos.

A biblioteca RLib utiliza submodelos internos e externos para declaração de procedimentos e subrotinas fazendo com que a solução proposta seja totalmente compatível com a linguagem model da ATP e não dependente de nenhuma outra linguagem de programação como no caso da utilização de funções externas.

4.1.2 Representação de matrizes retangulares.

Lingaugens de programação de alto nível como C++, Java ou Python apresentam suporte nativo para representação e manipulação de matrizes retangulares. Por exemplo, na linguagem java, a expressão

```
int matrix[][] = new int[20][20];
```

cria uma matriz de inteiros chamada matrix com 20 linhas e 20 colunas. Contudo, na linguagem models apenas matrizes de uma dimensão (matrizes do tipo linha) são suportados (DUBÉ, 1996). Assim, uma solução alternativa é proposta para contornar essa restrição da linguagem e ainda assim representar matrizes com mais de uma dimensão. Nesse caso, para representa uma matrix $A_{n\times m}$ utilizamos um vetor de B de dimensão $p = n \times m$. Para tal, cada elemento de $a_{i,j} \in A$ é mapeado em um elemento $b \in B_p$. Esse mapeamento é representado a seguir:

$$b_{(i-1)\times m+i} \in \mathbb{R}^p = a_{i,i} \in \mathbb{R}^{n \times m}$$

Esse mapeamento representa as n linhas da matriz A de forma justaposta no vetor B. Considere esse exemplo para demonstrar como uma matriz retangular $C_{n \times m}$, definida a seguir, pode ser mapeada em um vetor D com dimensão $p = n \times m$.

$$C = \begin{bmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,m} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n,1} & c_{n,2} & \cdots & c_{n,m} \end{bmatrix}.$$

Utilizando-se o mapeamento definido acima podemos representar o vetor D na forma a seguir.

$$D = (d_1, d_2, \cdots, d_{n \times m}) = (c_{1,1}, \cdots, c_{1,m}, c_{2,1}, \cdots, c_{2,m}, \cdots, c_{n,1}, \cdots, c_{n,m})$$

Portanto, sempre que quisermos representar uma matriz retangular de n linhas e m colunas na linguagem models, utilizaremos um vetor com tamanho $n \times m$ e acessaremos o elemento da linha n e coluna m da forma apresentada no Código Fonte 4.5. Na linha 2, um vetor (chamado *matrix*) de tamanho 200 (10 × 20), o número de linhas da matriz (*linhas*) e o número de colunas (*colunas*) são representados. Em seguida essas variáveis são inicializadas na linha 6. Nas linhas 11 e 14, os elementos das posições (5, 4) e (6, 9) da matriz são atualizadas com valores 12 e 13 respectivamente. Por fim, o elemento da posição (9, 10) recebe a soma das dos dois elementos mancionados anteriormente.

```
MODEL matrixRepresentation
    VAR matrix[1..200], linhas, colunas
    INIT
 4
       -- Cria uma matrix de 20 linhas e 10 colunas e inicializa todos os
 5
       -- elementos com valor '0'
      linhas := 20, colunas:= 10, matrix[1..200]:=0
    ENDINIT
8
    EXEC
9
     -- Guarda o valor 12 no elemento da linha 5 e coluna 4 (matrix[5][4] = 12).
    matrix[(5 - 1) * columns + 4] = 12
     -- Guarda o valor 13 no elemento da linha 6 e coluna 9 (matrix[6][9] = 13).
14
    matrix[(6 - 1) * columns + 9] = 13
16
    -- Soma o elemento da posição (5, 4) com o element (6, 9) e guarda no elemento (9, 10)
17
    matrix[(9 - 1)*colunas + 10] = matrix[(5 - 1)*colunas + 4] + matrix[(6 - 1)*colunas + 9]
18
19
     -- O elemento (9, 10) da matrix contem o valor 25
    ENDEXEC
21 ENDMODEL
```

Código Fonte 4.5 – Forma alternativa de representação de matrizes retangulares na linguagem models

4.2 Visão Geral da Arquitetura da Biblioteca RLib

O diagrama de classes (LOBO,) que representa a biblioteca RLib é mostrada na Figura 29. Na Figura são listados sete módulos auxiliares (RLibAux) e um módulo principal (RNSMatrix). Esses oito módulos juntos formam a biblioteca RLib. Na linguagem Models, um módulo é também chamado de modelo. Portanto, nesse documento utilizaremos ambas as expressões (módulo e modelo) para designar uma entidade do sistema que possui um conjunto de atributos e operações. Nesta seção, inicialmente será apresentada a biblioteca RLibAux que é composta por modelos criados para realizar operações sobre matrizes (Seção 4.2.1). Em seguida o comportamento da biblioteca RLib propriamente dita é descrita (Seção 4.2.2).

4.2.1 Pacote para operações sobre matrizes - RLibAux

Os modelos da biblioteca RLibAux (Figure 29) são mostrados a seguir:

 sumMatrices. Este módulo é responsável por realizar a soma de matrizes (Código Fonte 4.6). O módulo recebe duas matrizes (e.g., mmA e mmB) como parâmetro e retorna uma nova matriz correspondente a soma das entradas (mmOut = mmA + mmB). Observe que a forma de representação das duas matrizes está de acordo com o que foi apresentado na Seção 4.1.2. Dois *loops* encadeados do tipo FOR (linhas 17 e 18) são criados para varrer os elementos das matrizes mmA e mmB e armazenar a respetiva soma na matriz mmC. Observe que na linha 19 os elementos da mmA e mmB são somados e o resultado é guardado na matrix mmOut.

Para o modelo apresentado, o número máximo de elementos em cada matriz de entrada e na matriz de saída é 900 (linhas 2, 3 e 6). Contudo, é possível aumentar essa capacidade alterando-se o tamanho das matrizes de entrada e saída. É importante salientar que quanto maior a capacidade de representação de cada matriz maior será a quantidade de memória consumida pela biblioteca.

```
MODEL sumMatrices
       INPUT linesA, columnsA, mmA[1..900]
2
 3
      linesB, columnsB, mmB[1..900]
      VAR i, j, c, mmOut[1..900], linesOut, columnsOut
 4
 5
       OUTPUT
 6
       mmOut[1..900], linesOut, columnsOut
     TNTT
8
       i := 0, j:= 0, c:= 0, mmOut[1..900]:=0
9
     ENDINIT
     EXEC
     linesOut := linesA, columnsOut := columnsA
13
14
     -- SUM THE MATRICES
```

```
17 FOR i:=1 TO linesA DO
18
18 FOR j:=1 TO columnsA DO
19 mmOut[(i-1)*columnsA + j] := mmA[(i-1)*columnsA + j]+mmB[(i-1)*columnsB + j]
20 ENDFOR
21 ENDFOR
22 ENDEXEC
23 ENDMODEL
```

Código Fonte 4.6 – Módulo da biblioteca RLib para soma de matrizes

2. subtractMatrices. Análogo ao sumMatrices, a diferença como o próprio nome indica é que ao invés de somarmos duas matrizes, este modelo subtrai duas matrizes de entrada mmA e mmB e retorna como resultado a matriz mmOut = mmA - mmB. A estrutura do módulo é apresentada no Código Fonte 4.7. Observe que a subtração das matrizes é efetivamente realizada na linha 19, na qual para cada linha e coluna da matriz de saída o elemento resultante vem da operação mmA - mmB da linha e coluna correspondente.

```
1 MODEL subtractMatrices
     INPUT linesA, columnsA, mmA[1..900]
     linesB, columnsB, mmB[1..900]
4
     VAR i, j, c, mmOut[1..900], linesOut, columnsOut
 5
     OUTPUT
 6
      mmOut[1..900], linesOut, columnsOut
     INIT
8
      i := 0, j:= 0, c:= 0, mmOut[1..900]:=0
9
     ENDINIT
    EXEC
     linesOut := linesA, columnsOut := columnsA
14
15
     -- SUBTRAC THE MATRICES
    FOR i:=1 TO linesA DO
18
      FOR j:=1 TO columnsA DO
19
        mmOut[(i-1)*columnsA + j] := mmA[(i-1)*columnsA + j]-mmB[(i-1)*columnsB + j]
20
       ENDFOR
     ENDFOR
21
     ENDEXEC
22
23 ENDMODEL
```

```
Código Fonte 4.7 – Módulo da biblioteca RLib para subtração de matrizes
```

3. *transposeMatrices*. Nesse módulo (Código Fonte 4.8), uma matriz de entrada mmA é passada como parâmetro (linha 2) e a saída (linha 5) corresponde a matriz transposta da entrada ($mmOut = mmA^T$). O número de linhas da matriz de saída corresponde ao número de colunas da matriz de entrada e o número de colunas da matriz de saída recebe o número de linhas da matriz de entrada (linhas 11 e 12). Dois *loops* do tipo **FOR** são criados para varrer as linhas e colunas da matriz de entrada (linhas 17 e 18) e cada elemento da linha *i* e coluna *j* da matriz de entrada é copiado para o elemento da linha *i* e

coluna j da matriz de saída (linha 19).

```
1 MODEL transposeMatrix
2
    INPUT linesA, columnsA, mmA[1..900]
    VAR i, j, mmOut[1..900], linesOut, columnsOut
4
    OUTPUT
5
      mmOut[1..900], linesOut, columnsOut
 6
     TNTT
 7
      i := 0, j:= 0, mmOut[1..900]:=0
8
     ENDINIT
9
     EXEC
     linesOut := columnsA
11
     columnsOut := linesA
12
14
15
    -- TRANSPOSE THE MATRIX
16
    FOR i:=1 TO linesA DO
18
      FOR j:=1 TO columnsA DO
19
        mmOut[(j-1)*columnsOut + i] := mmA[(i-1)*columnsA + j]
20
      ENDFOR
21
    ENDFOR
   ENDEXEC
23 ENDMODEL
```

Código Fonte 4.8 – Módulo da biblioteca RLib para transposição de atrizes

changeMatrizSize. Este modelo realiza a criação de uma submatriz a partir de uma matriz de entrada. Dada uma matriz A_{n×m} e dois números inteiros k ≤ n e j ≤ m. Chamamos a submatriz B_{k×j} de A_{n×m}, uma matriz formada por elementos k linhas e j colunas de A (situadas nas posições correspondentes em A) (LIMA, 2014). No caso específico da biblioteca RLib, apenas as últimas t = n - k linhas e u = m - j colunas são removidas da matriz original A.

Considere o exemplo a seguir. Seja a matriz $C_{4\times 4}$ dada por

$$C = \begin{bmatrix} 1 & 2 & 7 & 0 \\ 4 & 5 & 9 & 1 \\ 3 & 5 & 10 & 1 \\ 10 & 3 & 6 & 4 \end{bmatrix}.$$

A matrix D de dimensão 2×2 é uma submatriz de C dada por

$$D = \begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix}$$

É importante salientar que como a representação de matrizes retangulares é feita de forma indireta por meio de um vetor (Seção 4.1.2), a simples mudança das variáveis que representam os números de linhas e colunas da matriz original não é suficiente para realizar tal

operação. Nesse caso, é necessário que se transporte cada elemento da matriz de origem para a nova matriz reduzida. O Código Fonte 4.9 apresenta o modelo que obtem uma submatriz ($mmOut_{linesOut \times columnsOut}$) a partir de uma matriz de entrada $mmA_{linesA \times columnsA}$. Na linha 2, são passados os parâmetros de entrada do modelo linhas e colunas da matriz original mmA e quantidade de linhas e colunas da matriz de saída mmOut. Nas linhas 12 e 13, a quantidade linhas e colunas da matriz de saída é atualizada e nas linhas 18 e 19 dois *loops* do tipo **FOR** são criados para varrer as linhas e colunas da matriz de saída. A cópia dos valores da matriz de entrada para a matriz de saída é realizada na linha 20. Observe, que cada elemento da mmA é copiado para matriz mmOut só nas linhas e colunas da matriz de saída.

```
1 MODEL changeMatrixSize
    INPUT linesA, columnsA, mmA[1..900],
       newLines, newColumns
   VAR i, j, mmOut[1..900], linesOut, columnsOut
4
   OUTPUT
 6
      mmOut[1..900], linesOut, columnsOut
 7
    INIT
8
      i := 0, j:= 0, mmOut[1..900]:=0
9
    ENDINIT
    EXEC
    linesOut := newLines
   columnsOut := newColumns
14
   -- CHANGE MATRIX SIZE
   FOR i:=1 TO newLines DO
19
      FOR j:=1 TO newColumns DO
20
        mmOut[(i-1)*columnsOut + j] := mmA[(i-1)*columnsA + j]
21
       ENDFOR
22
    ENDFOR
23
   ENDEXEC
  ENDMODEL
2.4
```

Código Fonte 4.9 – Módulo da biblioteca RLib para modificar as dimensões de uma matriz

5. multiplyMatrixScalar. Este módulo (Código Fonte 4.10) realiza a multiplicação de uma matriz de entrada mmA por um escalar scalar (linhas 2 e 3) e retorna uma matriz de saída mmOut = mmA.scalar. Como nos módulos apresentados anteriormente, dois loops do tipo FOR (linhas 18 e 19) para varrer as linhas e colunas da matriz de saída e guardar o resultado da multiplicação de cada elemento da matriz de entrada pelo valor escalar (linha 20).

```
MODEL multiplyMatrixScalar
INPUT linesA, columnsA, mmA[1..900],
scalar
VAR i, j, mmOut[1..900], linesOut, columnsOut
```

```
OUTPUT
6
      mmOut[1..900], linesOut, columnsOut
7
     INIT
8
      i := 0, j:= 0, mmOut[1..900]:=0
9
    ENDINIT
   EXEC
   linesOut := linesA
13
   columnsOut := columnsA
14
15
    -- MULTIPLY THE MATRICES
17
18
    FOR i:=1 TO linesA DO
19
      FOR j:=1 TO columnsA DO
        mmOut[(i-1)*columnsOut + j] := mmA[(i-1)*columnsA + j]*scalar
      ENDFOR
    ENDFOR
23 ENDEXEC
24 ENDMODEL
```

Código Fonte 4.10 – Módulo da biblioteca RLib para multiplicação de uma matriz por escalar

6. *multiplyMatrices*. O módulo que realiza multiplicação de matrizes é aprensetado no Código Fonte 4.11. Este módulo recebe duas matrizes como entrada *mmA* e *mmB* (linhas 2 e 3) e retorna como resultado o produto das duas matrizes *mmOut = mmA mmB*. O matriz de saída possui o número de linhas da matriz *mmA* e o número de colunas da matriz *mmB* (linhas 12 e 13). Dois *loops* do tipo FOR são criados para varrer as linhas e colunas da matriz de saída (linhas 18 e 19). Cada entrada da matriz de saída corresponde ao produto interno da respectiva linha da matriz *mmA* pela coluna da matriz *mmB* (linhas 21, 22 e 23).

```
1 MODEL multiplyMatrices
2
   INPUT linesA, columnsA, mmA[1..900]
 3
        linesB, columnsB, mmB[1..900]
   VAR i, j, c, k, mmOut[1..900], linesOut, columnsOut
4
5
    OUTPUT
6
      mmOut[1..900], linesOut, columnsOut
     INIT
8
      i := 0, j:= 0, c:= 0, k:=0, mmOut[1..900]:=0
9
    ENDINIT
   EXEC
   linesOut := linesA
13
   columnsOut := columnsB
14
15
     -- MULTIPLY THE MATRICES
17
18
    FOR i:=1 TO linesA DO
     FOR j:=1 TO columnsB DO
20
       c := 0
21
          FOR k:=1 TO linesB DO
```

Código Fonte 4.11 – Módulo da biblioteca RLib para multiplicar duas matrizes

7. invertMatrix. O Código Fonte A.1 apresenta o módulo que realiza inversão de matrizes e cálculo de determinantes. Uma forma bastante difundida para o cálculo da inversa de matrizes corresponde a técnica baseada na matriz adjunta (transposta da matriz de cofatores) (STRANG, 2003). Apesar de ser facilmente codificada, a implementação padrão do algoritmo requer a utilização de procedimentos recursivos para o cálculo do determinante das matrizes dos cofatores (PRESS, 2007). Como a linguagem Models não oferece suporte a recursividade, um algoritmo iterativo da (decomposição LU) foi utilizado para cálculo da inversa de uma matriz.

Sendo assim, utilizamos o método da decomposição LU para representar a matriz de entrada A como o produto de duas matrizes triangulares L (inferior) e U (superior) (PRESS, 2007). O método da decomposição LU foi inicialmente proposto pelo matemático inglês Allan Turing em 1948 (TURING, 1948). Além das matrizes L e U, foi utilizada uma matriz de permutação P que é utilizada para diminuir os erros de arredondamento nos cálculos utilizados (TREFETHEN; BAU, 1997). A matrix P possui as mesmas dimensões da matriz a ser invertida e cada linha possui apenas um zero. Tal matriz serve para trocar a ordem das linhas da matriz de entrada de forma que linhas que apresentem números com valores absolutos maiores apareçam nas primeiras posições. Dada uma matriz de entrada A a ser invertida. O primeiro passo do algoritmo consiste em criar uma matriz de pivotamento que troque a ordem das linhas da matriz de entrada conforme descrito acima (linhas 36 a 60 do Código Fonte A.1).

Em seguida, a matriz de pivotamento P é multiplicada pela matriz de entrada A (linhas 65 a 72). O próximo passo consiste em avaliarmos as matrizes L e U que representem a matriz PA (linhas 98 a 119).

$$PA = LU$$

O método Crout (STRANG, 2003; PRESS, 2007) para decomposição LU foi adotado e é apresentado a seguir. Dadas uma matriz B = LU onde L corresponde a uma matriz triangular inferior e U uma matriz triangular superior representadas a seguir.

$$\begin{bmatrix} b_{1,1} & b_{1,2} & \cdots & b_{1,n} \\ b_{2,1} & b_{2,2} & \cdots & b_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n,1} & b_{n,2} & \cdots & b_{n,n} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ l_{2,1} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n,1} & l_{n,2} & \cdots & 1 \end{bmatrix} \begin{bmatrix} u_{1,1} & u_{1,2} & \cdots & u_{1,n} \\ 0 & u_{2,2} & \cdots & u_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{n,n} \end{bmatrix}$$

Os elementos das matrizes U e L são dados pelas Equações 1 e 2.

$$u_{i,j} = b_{i,j} - \sum_{k=1}^{i-1} u_{k,j} \, l_{i,k}, \qquad i \le j \tag{1}$$

$$l_{i,j} = \frac{1}{u_{j,j}} (b_{i,j} - \sum_{k=1}^{j-1} u_{k,j} \, l_{i,k}), \qquad i > j$$
⁽²⁾

A partir desse ponto, pode-se utilizar a seguinte estratégia para se calcular a matriz inversa de *A*. Sabe-se que

$$AA^{-1} = I$$

onde I é a matriz identidade. Portanto, a seguinte expressão também é verdadeira.

$$PAA^{-1} = PI = P$$

dado que PA = LU, então

$$LUA^{-1} = P$$

Seja $UA^{-1} = Z$, então LZ = P. Dado que P e L são conhecidos, a matriz Z pode ser encontrada facilmente utilizando-se a técnica de substituição direta (STRANG, 2003). Uma vez que a matriz Z seja conhecida, pode-se calcular a matriz A^{-1} (referenciada como matriz X no código fonte) pela técnica de substituição reversa (STRANG, 2003). Estes passos são codificados nas linhas 132 a 143 e nas linhas 148 a 159.

4.2.2 Comportamento da Biblioteca RLIB

A implementação da biblioteca RLib está contida no Código Fonte A.2. Os módulos para operações com matrizes (Pacote RLibAux) estão localizados dentro do mesmo arquivo da biblioteca RLib e estão definidos entre as linhas 34 e 361 como submodelos localmente definidos (Seção 4.1.1). O algoritmo para determinação dos elementos do modelos UMEC são apresentados na Seção 2.3.1. As entradas da biblioteca RLib são (linhas 2 a 9):
- **Passo de Simulação** *deltaTime* Δt Passo discreto do processo de simulação (definido no arquivo ATP).
- Matriz de Incidência Nodal *MatrixA*. Corresponde a uma matriz de conexão de nós e ramos do circuito magnético.
- Matriz de Permeâncias *MP*. A matriz de permências corresponde a uma matrix diagonal com as permeâncias de todos os ramos do modelo UMEC.
- Matriz de Número de Espiras em Cada Enrolamento *MatrixN*. Matriz diagonal com o número de espiras de cada enrolamento do reator.
- Matriz de Tensões nos Enrolamentos Matrix V. Matriz coluna com as tensões em cada um dos enrolamentos do reator.
- Matriz de Fluxo Magnético nos Enrolamentos *MatrixO*. Matriz coluna com o fluxo magnético para cada enrolamento do reator.
- Matriz das Correntes da Fonte de Tensão Equivalente de entrada MatrixInsIn. Matriz coluna com as correntes da fonte de tensão equivalente para cada enrolamento no tempo t - Δt.

As saídas da biblioteca RLib são apresentadas a seguir (linhas 31 e 32 do Código Fonte A.2):

- Matriz das Correntes da Fonte de Tensão Equivalente de saída *MatrixIns*. Matriz coluna com as correntes da fonte de tensão equivalente para cada enrolamento no tempo corrent *t*.
- Matriz das Correntes de Saída *MatrixIs*. Matriz coluna com a corrente de saída em cada enrolamento.

A Figura 30 mostra o diagrama de sequência (LOBO,) do funcionamento das chamadas da biblioteca RLib e como as entidades da bibliteca são utilizadas. Na explicação que segue, utilizaremos a figura para explicar a dinâmica de eventos do Código Fonte A.2.

- Inicialização. No início da execução do módulo, as dimensões da matriz de permeância (*MP*) são utilizadas para para criar uma matriz identidade de mesmo tamanho (linhas 373 até 379 - Código Fonte A.2). Esse passo não é mostrado na Figura 30.
- Passo 1. A matrix de permeâncias é multiplicada pela matriz de incidência nodal utilizando o modelo multiplyMatrices (linhas 389 até 401). Observe na Figura 30 que o Modelo RLib utiliza o modelo multiplyMatices passando os respectivos argumentos. O retorno dessa operação (P × A) é passado para o módulo principal da biblioteca RLib.

- Passo 2. Nesse passo, a matriz de incidência nodal é transposta por meio do modelo transposeMatrix. Essa operação é realizada nas linhas 403 a 412 do Código Fonte A.2. Após isso, a matriz A transposta (A^T) é retornada para o módulo principal.
- Passo 3. A matriz de incidência nodal transposta (A^T) é multiplicada pela matriz P × A utilizando o modelo multiplyMatrices (linhas 414 a 426 do Código Fonte A.2). O retorno dessa operação A^T × (P × A) é passado para o módulo principal (RLib).
- **Passo 4**. A matriz $A^T(PA)$ é invertida utilizando o modelo invertMatrix e o resultado $T = (A^T \times (P \times A))^{-1}$ é retornado para o módulo principal (linhas 428 até 437).
- Passo 5. Caso a matriz T avaliada no Passo 4 seja inversível, o modelo multiplyMatrix é utilizado para encontrar o produto das matrizes P × A e T. O resultado dessa operação Q₁ = (P × A) × T é retornado para o módulo principal. Este passo é executado nas linhas 441 até 453 do Código Fonte A.2.
- Passo 6. Nesse ponto, a matriz Q₂ = Q₁ × A^T é avaliada por meio do modelo multiplyMatrices (linhas 455 até 467).
- Passo 7. A matriz identidade I criada na Inicialização é passada junto com Q₂ para o módulo subtractMatrizes. O retorno dessa operação é matriz Q = I Q₂ calculada nas linhas 469 até 481.
- Passo 8. Uma submatriz de Q é calculada (através do módulo changeMatrizSize) para que se obtenha uma matriz quadrada Q_n com número de linhas e colunas dada pelo número de núcleos do reator (linhas 483 até 494).
- Passo 9. Similarmente ao que foi feito com a matriz Q_n, uma nova matriz P_n é encontrada pela mudança das dimensões da matriz de permeâncias. O módulo changeMatrixSize é utilizado e o número de linhas e colunas da matriz P_n corresponde ao número de núcleos do reator (linhas 496 até 507).
- Passo 10. Nesse passo, a inversa da matriz do número de espiras em cada enrolamento (*MatrixN*) é encontrada pelo módulo invertMatrix N⁻¹ = MatrixN⁻¹. Essa operação é efetuada nas linhas 509 até 518 do Código Fonte A.2.
- Passo 11. Caso MatrixN seja inversível, o modelo multiplyMatrixScalar é utilizado para multplicar a matriz N⁻¹ pela metade do intervalo definido na simulação do ATP δ_t. O resultado B = N⁻¹.δ_t/2 é retornado para o módulo principal. Esse passo é executado nas linhas 524 até 534.
- Passo 12. Nesse passo, as matrizes Q_n e P_n são multiplicados utilizando-se o módulo multiplyMatices. O resultado Q_n × P_n é retornado para o módulo principal. As linhas 536 até 548 do Código Fonte A.2 implementam essa multiplicação.

- Passo 13. A matriz Q_n × P_n é multiplicada a matriz do número de espiras em cada enrolamento (*MatrixN* ou simplesmente *N*). O resultado QPN = (Q_n × P_n) × N é retornado para a módulo principal (linhas 550 até 562).
- Passo 14. A matriz QPN é invertida pelo módulo invertMatrices (linhas 564 até 573) e o resultado QPN⁻¹ é retornado para o módulo principal.
- Passo 15. Se a matriz QPN admitir inversa, a matriz QPN⁻¹ é multiplicada é multiplicada a matriz B (Passo 11) e o resultado Y_{ss} = QPN⁻¹ × B é retornado ao módulo principal (linhas 577 até 589).
- Passo 16. O módulo multiplyMatrices é utilizado para multiplicar as matrizes B e V (linhas 591 até 603). O resultado da operação BV = B × V é retornado para o módulo RLib.
- Passo 17. As matrizes BV e O são somadas pelo modelo sumMatrices. O resultado BVO = BV + O é retornado para o módulo principal. As linhas 605 até 617 do Código Fonte A.2.
- Passo 18. Nesse passo, a matriz I_ns é calculada pela multiplicação de QPN⁻¹ por BVO.
 É importante que o resultado I_{ns} = QPN⁻¹ × BVO é uma das saídas da biblioteca RLib.
 O Código Fonte A.2 apresenta esse cálculo nas linhas 619 até 631.
- Passo 19. A matriz Y_{ss} é multiplicada por V e o resulado YV = Y_{ss} × V é retornado para o módulo principal. O trecho das linhas 633 até 645 do Código Fonte A.2 implementa essa multiplicação de matrizes.
- Passo 20. Nesse passo, a segunda e última saída do algoritmo RLib é calculado pela soma da matriz YV e I_{ns}. O cálculo da matriz Is = YV + I_{ns}(δ(t 1)) é realizado nas linhas 647 até 659 do Código Fonte A.2 (a partir da linha 172).

4.2.3 Integração de Modelos de RNS com a Biblioteca RLIB

A integração entre modelos do RNS e a biblioteca RLIB é apresentada na Figura 31. Para utilização da biblioteca é necessário que se prepare as matrizes de entrada do modelo. Em seguida a biblioteca deve ser chamada e o resultado salvo nas respectivas matrizes de saída. A forma de utilização da biblioteca pode ser observada no Código Fonte A.3.

sumMatrices	subtractMatrices	transposeMatrices
i : Integer j : Integer matrixOutput : Real[1n]	i : Integer j : Integer matrixOutput : Real[1n]	i : Integer j : Integer matrixOutput : Real[1n]
sumMatrices(matrixA : Real[1n], matrixB : Real[1n]) : Real[1n]	subtractMatrices(matrixA : Real[1n], matrixB : Real[1n]) : Real[1n]	transposeMatrices(matrixA:Real[1n]):Real[1n]
changeMatrizSize	multiplyMatrixScalar	multiplyMatrices
i : Integer j : Integer matrixOutput : Real[1n]	i : Integer j : Integer matrixOutput : Real[1n]	i : Integer j : Integer matrixOutput : Real[1n]
change Matrix Size(matrixA : Real[1n], newLines, newColumns) : Real[1n]	multiplyMatrixScalar(matrixA : Real[11], scalar: Real) : Real[11]	$eq:multiplyMatrices(matrixA:Real[1n], matrixB:Real[1n]): \\ Real[1n]$
	i: Integer i: Integer matrixOutput: Real[1n] invertMatrix(matrixA: Real[1n]): Real[1n]	

$$\begin{split} & RLib(A:Real[1..n], P:Real[1..n], N:Real[1..n], V:Real[1..n], O\\ & : Real[1..n], I_{ns}: Real[1..n], \delta_t: Real,): (Real[1..n], Real[1..n]) \end{split}$$

 \mathbf{RLib}

utiliza

RLibAux

Figura 30 – Fluxo de chamadas da biblioteca RLib.

5 Estudos de Caso

Neste capítulo, serão mostradas simulações dos reatores descritos no capítulo de modelagem. Os modelos criados foram desenvolvidos utilizando a linguagem MODEL no programa de transitórios ATP.

5.1 RNS monofásico com um enrolamento

Para o reator em questão, foram realizados dois experimentos. Primeiramente, foi analisado um reator com comportamento ideal. Em seguida, foram consideradas perdas nos enrolamentos e fluxos dispersos na simulação do reator.

O reator saturado é composto pelos pontos da curva de magnetização e seus valores são mostrados em anexo no Código Fonte A.3. Este algoritmo mostra como foi construída a modelagem do reator naturalmente saturado sem as perdas, utilizando a linguaguem MODEL no programa de transitórios ATP.

Os dados de entrada de reatores naturalmente saturados são mostrados na Figura 32.

Dados de entrada			
Área do enrolamento (arEnro)	0.454 (m2)		
Área do jugo (arJugo)	0.454 (m2)		
Área de retorno (arReto)	0.454 (m2)		
Comprimento do enrolamento	3.59 (m)		
Comprimento do jugo (compJg)	2.66 (m)		
Comprimento de retorno (compRt)	3.59 (m)		
Número de espiras (nuEspi)	65		
Indutância de dispersão(indDis)	0 (mH)		
Tensão de Entrada (V1)	22KV		

Figura 32 – Dados de Entrada do RNS1.

Fonte: Próprio Autor

A curva $B \times H$ utilizada como entrada para o RNS monofásico com um enrolamento (com e sem perdas) é obtida a partir da descrição do material ferromagnético utilizado no experimento, mostrada na Figura 33.

A Figura 34 apresenta o comportamento da corrente de saída do RNS sem perdas. Os fluxos magnéticos do reator são mostrados na Figura 35, e são identificados por fluxos nos enrolamentos (O1), fluxo no julgo (O2) e fluxo de retorno (O3). Como esperado, o fluxo disperso (representado por O4 e distribuído na cor rosa da figura) tem valor zero, pois este modelo não considera perdas por fluxos dispersos.

Para âmbito de comparação de resultados utilizou-se o componente Indutor não linear (referencial teórico 2.4) representado pelo elemento *TYPE98* da ferramenta *ATP* sem perdas de

Figura 33 – Curva BxH do reator monofásico saturado sem perdas.

Figura 34 – Corrente de saída do reator monofásico saturado sem perdas.

Figura 35 – Fluxos magnéticos do reator monofásico saturado sem perdas.

resistência e indutância de dispersão. Este componente utiliza como entrada apenas a curva $\lambda \times i$ e seu respectivo modelo é mostrado no circuito da Figura 36.

Figura 36 - Circuito indutor não linear no ATPdraw.

Fonte: Próprio Autor

A comparação entre as correntes de saída do modelo RNS monofásico (apresentado na cor verde) e o indutor não linear (apresentado na cor vermelha) é visualizada na Figura 37. Pode-se observar que a diferença entre as duas correntes é quase imperceptível. Portanto, assume-se que os resultados são equivalentes.

Figura 37 – Corrente de saída do modelo *UMEC* do reator monofásico sem perdas X Corrente de saída representado pelo Indutor não linear do *TYPE98*.

Fonte: Próprio Autor

Outra análise realizada para o modelo em questão foi a inclusão das perdas nos enrolamentos (perdas por efeito joule) e as perdas por fluxos dispersos descritos no algoritmo do Código Fonte A.4, através da inclusão do resistor em série nos terminais de entrada dos modelos.

O circuito desenvolvido no ATPdraw para comparação dos resultados do RNS com perdas contem uma resistência e uma indutância em série justamente para caracterizar as perdas (Figura 38). As simulações realizadas no modelo *UMEC* do RNS com perdas são mostradas a seguir. A inclusão das perdas no reator não afetam os fluxos magnéticos do ramo principal,jugo e retorno. Pois, a alteração no código do reator se deu em termos de fluxos dispersos. A Figura 39

Figura 38 – Circuito indutor não linear do ATPdraw com perdas.

Fonte: Próprio Autor

representa os fluxos dispersos de ambas as configurações na qual a linha verde zerada demonstra o reator sem perdas e a curva vermelha o reator com perdas de fluxos dispersos, sendo este comportamento completamente esperado.

Figura 40 – Correntes de reator com perdas e Correntes de reator sem perdas.

Fonte: Próprio Autor

A Figura 40 mostra o comparativo das correntes do reator com perdas (destacado em vermelho) e sem perdas(destacado na cor verde). E como esperado, o reator com perdas tem valor menor de corrente, pois tem menor tensão induzida no RNS e logo menor corrente. Como a curva VxI é acentuada, pequenas variações de tensões importam em grandes variações de corrente.

5.2 RNS monofásico com dois enrolamentos

Para simulação do reator saturado com dois enrolamentos (Figura 21) foram realizadas três análises listadas a seguir:

- Reator com ensaio de curto-circuito em 10% da tensão nominal;
- Reator com ensaio em vazio;
- Reator com ensaio em plena carga

No passo de tempo 1e-5 segundos aplicado em cada caso. As modelagens realizadas para o reator são apresentadas no capítulo anterior e os respectivos códigos fontes (A.5, A.6 e A.7) são mostrados em anexo. Nos dados de entrada Figura 41 foram adicionados as indutâncias de dispersão dos enrolamentos primário e secundário, as tensões nos enrolamentos e as espiras dos mesmos. Os parâmetros utilizados para os ensaios são mostrados na Figura 42 e na Figura 43 o circuito montado no atpdraw, sendo V1 a tensão da fonte, R1 a resistência da fonte e RL a resistência na carga.

Dados de Entrada		
Área do enrolamento (arEnro)	0,454(m2)	
Área do Jugo (arJugo)	0,454(m2)	
Área de retorno (arReto)	0,454(m2)	
Comprimento do enrolamento	3,59 (m)	
Comprimento do Jugo	2,66 (m)	
Comprimento do retorno	3,59 (m)	
Numeros de espiras (N1)	65	
Numeros de espiras (N2)	450	
Indutância de dispersão (inDis1)	0,247167 (mH)	
Indutância de dispersão (inDis2)	11,865 (mH)	
tensão (V1)	16 KV	
tensão (V2)	110KV	

Figura 41 – Dados de Entrada do RNS2.

Os resultados dos modelos UMECs foram comparados com o componente transformador saturável do atpdraw (Figura 44). As formas de ondas das correntes dos enrolamentos primários

Fonte: Próprio Autor

ENSAIO	V1(KV)	RL(Ω)	R1(Ω)
Curto-circuito	1,6	0,0075	0,008
Plena Carga	16	64,5	0,008
Vazio	16	1,00E+06	0,107

Figura 42 – parâmetros de testes utilizados no sistema.

Fonte: Próprio Autor

Figura 43 – Reator monofásico em testes.

Fonte: Próprio Autor

e secundários realizadas através dos ensaios mencionados anteriormente, são mostradas a seguir. Nas Figuras 45 e 46 são visualizadas os gráficos dos ensaios de curto-ciruito realizados pelo RNS (na cor vermelho) e pelo transformador saturável(na cor verde) do atpdraw. Observa-se que ambos se comportam de forma equivalentes.

Figura 44 – Circuito do transformador saturável do atpdraw.

Fonte: Próprio Autor

Nas Figuras 47 e 48 são visualizadas os gráficos dos ensaios em plena carga realizados pelo RNS e pelo transformador saturável do atpdraw. E por fim, as simulações comparativas dos ensaios em vazio realizados pelo RNS (na cor vermelha) e pelo transformador saturável (na cor verde) do atpdraw são mostradas nas Figuras 49 e 50.

Figura 45 – Comparativo de correntes primárias dos ensaios de curto-circuito do RNS e do transformador saturável do atpdraw.

Fonte: Próprio Autor

Figura 46 – Comparativo de correntes secundárias dos ensaios de curto-circuito do RNS e do transformador saturável do atpdraw.

Fonte: Próprio Autor

Figura 47 – Comparativo de correntes primárias dos ensaios de plena carga do RNS e do transformador saturável do atpdraw.

Fonte: Próprio Autor

Figura 48 – Comparativo de correntes psecundárias dos ensaios de plena carga do RNS e do transformador saturável do atpdraw.

Fonte: Próprio Autor

Figura 49 – Comparativo de correntes primárias dos ensaios em vazio do RNS e do transformador saturável do atpdraw.

Figura 50 – Comparativo de correntes secundárias dos ensaios em vazio do RNS e do transformador saturável do atpdraw.

Fonte: Próprio Autor

De acordo com os resultados mostrados nas figuras, fica claro que os comportamentos do RNS e do componente transformador saturável são equivalentes. Demonstrando que o RNS modelado na MODELS possui alto grau de confiabilidade e equivalência nos seus resultados.

5.3 RNS trifásico com seis enrolamentos

O reator trifásico de três núcleos e seis enrolamentos (Figura 23) possui ligação estrelatriângulo sendo modelado com 48 pontos da curva BxH. Primeiro, foi desenvolvido um reator sem perdas de histerese, depois, o laço de histerese foi adicionado, pois este está diretamente relacionado com a largura da curva BxH. A área do ciclo de histerese é representada durante a região de não saturação, e a relutância neste intervalo é praticamente constante. A curva de histerese foi inserida no modelo para ser possível medir perdas no núcleo. O código da modelagem deste reator pode ser visto no anexo em Código Fonte A.9. Os parâmetros de entrada para simulação desse reator é mostrado na Figura 51. As formas de onda das correntes são vistas na Figura 52.

Figura 51 – Parâmetros de entrada do reator de 6 enrolamentos.

Dados de Entrada		
Área do enrolamento (arEnro)	0.0158 (m2)	
Área do Jugo (arJugo)	0.0158 (m2)	
Área de retorno (arReto)	0.0158 (m2)	
Comprimento do enrolamento	3,59 (m)	
Comprimento do Jugo	2,66 (m)	
Comprimento do retorno	3,59 (m)	
Numeros de espiras (N1)	195	
Numeros de espiras (N2)	98	
Indutância de dispersão (inDis1)	3.88E-4 (mH)	
Indutância de dispersão (inDis2)	0.00678 (mH)	
tensão (A,B,C)	2449.5 KV	

Fonte: Próprio Autor

Figura 52 – Corrente trifásica nos enrolamentos primário e secudário do reator trifásico. Fonte: Próprio Autor As tensões trifásicas nos enrolamentos primários e secudários do reator de seis enrolamentos são mostradas na Figura 53. A corrente de fase A é vista na Figura 54 e o laço de histerese na Figura 55. Para âmbito de comparação com este reator, foi utilizado o transformador saturável do atpdraw representado na Figura 56.

A base que norteia a utilização de um recurso pré-existente na plataforma ATP, como já falado, se apoia no fato que a estrutura construtiva de um reator saturado apresenta grande similaridade com a de transformadores.

Figura 53 - Tensão trifásica nos enrolamentos primário e secundário do reator trifásico.

Fonte: Próprio Autor

Figura 54 – Corrente na fase A no enrolamento primário do RNS3YD.

Fonte: Próprio Autor

A Figura 57 apresenta as curvas das correntes nas fases A, B e C do reator trifásico RNS3YD com seis enrolamentos e as correntes do transformador saturável. Os resultados mostraram uma diferença mínima de 4,14% das correntes na fase A, 4,06% nas correntes de fase B e 3,85% nas correntes de fase C. Isso de deu a presença do retorno no UMEC. Demonstrando que o modelo desenvolvido neste trabalho é equivalente e possui resultados satisfatórios.

5.4 RNS trifásico com nove enrolamentos

O reator naturalmente saturado com três núcleos e nove enrolamentos (Figura 25) foi configurado na ligação zigazague-delta como mostra o anexo de Código Fonte A.11. Também

Fonte: Próprio Autor

Fonte: Próprio Autor

Figura 57 - Corrente de fase A dos RNS3YD X Transformador saturável do ATPdraw.

Fonte: Próprio Autor

foi considerado os efeitos da histerese neste reator e possui os mesmos 48 pontos da curva BxH utilizado na configuração anterior. Os dados de entrada utilizados para a modelagem deste reator é mostrado na Figura 58.

O reator em questão contêm a mesma quantidade de núcleos do reator de seis enrolamentos, acrescentando um enrolamento para cada fase, totalizando 9 enrolamentos. O acréscimo de enrolamentos dentro do mesmo núcleo, não modificam amplitudes de corrente ou tensão.

Dados de Entrada			
Área do enrolamento (arEnro)	0.0158 (m2)		
Área do Jugo (arJugo)	0.0158 (m2)		
Área de retorno (arReto)	0.0158 (m2)		
Comprimento do enrolamento 1	0.29 (m)		
Comprimento do enrolamento 2	0.154 (m)		
Comprimento do enrolamento 3	0.27 (m)		
Comprimento do Jugo	0.3608 (m)		
Comprimento do retorno	0,8 (m)		
Numeros de espiras (N1)	145		
Numeros de espiras (N2)	77		
Numeros de espiras (N3)	98		
Indutância de dispersão (inDis1)	5.119E-5 (mH)		
Indutância de dispersão (inDis2)	1.279E-4 (mH)		
Indutância de dispersão (inDis3)	0.0108 (mH)		
tensão (A,B,C)	2449.5 KV		

Figura 58 – Parâmetros de entrada do reator RNS9.

Fonte: Próprio Autor

Figura 59 – Corrente de fase A dos reatores trifásicos RNS9 e o RNS3YD.

Fonte: Próprio Autor

As modificações se dão nas defasagens angulares, pois para o reator de 6 enrolamentos as forças eletromotrizes são defasadas em $\pi/6$ uma das outras. Para o reator de 9 enrolamentos esta desafasagem é $\pi/9$. A diferença angular entre os dois reatores representando a cor vermelha o reator com nove enrolamentos e na cor verde o de seis enrolamentos é visualizada na Figura 59. Como esperado, o reator proposto se desenvolveu como deveria com as respectivas defasagens e mesma amplitudade. Concluindo que o modelo é válido e se comporta de forma satisfatória.

5.5 RNS trifásico em Monobloco com Doze Enrolamentos

O reator proposto possui configuração em Monobloco contendo 6 núcleos (I,II,III,IV,V,VI) e 12 enrolamentos (Figura 27). Nesta montagem existe duas unidades trifásicas independentes: A primeira compreende os núcleos I, II e III a segunda compreende os outros

três núcleos, operando em paralelo (Figura 60).

Figura 60 – Reator com ligação paralela dos enrolamentos.

Nesta configuração as FMM's possui uma defasagem de $\pi/6$ radianos, isto acarretará a ocorrência de saturação de um núcleo para cada unidade trifásica simultaneamente. Para atender a exigência, cada núcleo permanece saturado por um período de $\pi/3$ radianos.

A cada semiciclo da tensão de alimentação, a saturação atinge uma vez qualquer um desses núcleos, nesse momento um pulso de corrente percorre o enrolamento montado no mesmo. Esta mesma corrente circulará em outro enrolamento de mesma fase pertencente ao núcleo que deveria operar isento de saturação. Seguindo esta linha de raciocínio, todas as fases terão correntes em formas de pulso.

As correntes obtidas através da soma das contribuições das duas unidades trifásicas para a fase A, assinala a Figura 61. As tensões nos enrolamentos primários (V1A,V1B,V1C,V1D,V1E e V1F) do reator é mostrado na Figura 62. Observando as figuras, conclui-se que seus comportamentos estão conforme esperado para este tipo de reator.

Figura 61 – Corrente da fase A do RNS em Monobloco.

Figura 62 – Tensões nos enrolamentos de entrada do RNS em Monobloco.

Fonte: Própria

6 Conclusão

O programa computacional ATP muito utilizado na engenharia e academia para simulações de transitórios eletromagnéticos em sistemas elétricos é uma ferramenta importante para análises de componentes não lineares, tais como, reatores saturados. O ATP possui uma biblioteca de componentes que podem ser utilizados diretamente pelo usuário para modelagem de circuitos elétricos. Contudo, é impossível representar todos os componentes elétricos existentes. Portanto, o programa ATP permite também que os usuários criem seus próprios modelos utilizando a linguagem MODELS na qual pode-se especificar e modificar os valores de parâmetros (numéricos e/ou analógicos) para controlar operação de componentes elétricos do sistema simulado. Na linguagem MODELS, é possível implementar grandezas magnéticas essenciais para análises de diversos componentes, tais como, fluxos magnéticos, permeâncias, intensidade de campo magnético, densidade magnética.

O processo de compensação de reativos é muito utilizado nos dias de hoje para encontrar a conformidade e qualidade dos padrões de tensão no sistema elétrico de potência. Algumas soluções, como compensadores eletrônicos são utilizados, porém, com custo bastante elevado e pouco tempo de vida. Uma outra alternativa para a compensação de reativos, seria a utilização de reatores naturalmente saturados, eles são mais baratos, possuem manutenção de baixo custo, elevada confiabilidade e equipamento de alta resistência a intempéries. No entanto, por se tratar de um componentes altamente especializado este componente não representa um componente pré-existente na biblioteca do ATP.

No intuito de se criar um modelo para reatores naturalmente saturados para o ATP, este trabalho propôs uma biblioteca de suporte a criação de reatores naturalmente saturados utilizando modelos de circuito equivalente magnético unificado (UMEC). Este modelo de circuito calcula o fluxo magnético no ramo em cada etapa de tempo, que determina a admitância equivalente que é adicionado com uma derivação entre os terminais do circuito equivalente de Norton para representar as perdas no núcleo magnético.

As contribuições do trabalho são listadas a seguir. Foi apresentado uma visão geral e importância das ferramentas ATP e linguagem MODELS. Além disso, foram destacados conceitos importantes relacionados aos reatores naturalmente saturados e como trabalhar com sua natureza não linear (método da linearização por trechos). A descrição matemática utilizando modelagem UMEC foi apresentada para diferentes tipos de RNSs. Uma vez apresentada a modelagem matemática dos reatores, foi descrito o código da biblioteca proposta e sua ligação com o referencial teórico. Por fim, um conjunto de estudos de caso foram apresentados para demonstrar a viabilidade da solução proposta.

6.1 Sugestões para trabalhos futuros

Com a crescente demanda de aplicações de reatores saturados para compensação de linhas de transmissão em grandes eixos de transferências de potência, esse assunto é muito estudado na busca de resultados mais eficientes. Algumas sugestões para trabalhos futuros são indicadas a seguir:

- Expandir a modelagem de UMECs utilizando a linguaguem MODELS para projetar reatores com números genéricos de núcleos, diversos enrolamentos e diferentes configurações. Beneficiando-se da agilidade que a biblioteca desenvolvida neste trabalho proporciona para os projetos.
- Realizar uma análise ampla dos reatores, observando o comportamento das forças eletromotrizes e seus respectivos harmônicos.
- Aperfeiçoar a biblioteca desenvolvida na linguaguem MODELS, para ampliação de simulação dos reatores saturados.
- Adaptar a biblioteca proposta para a linguagem C e comparar aspectos de performance na simulação de reatores entre a biblioteca proposta e sua respectiva versão escrita na linguagem C.

Referências

ARAUJO, A. E. D.; NEVES, W. L. *Cálculos de transitórios eletromagnéticos em sistemas de energia*. [S.l.]: Editora UFMG, 2005. Citado 2 vezes nas páginas 15 e 36.

BARBOSA, J. Modelagem e Análise de Desempenho Transitório e Dinâmico de Compensadores Estáticos de Reativos Utilizando Reatores Saturados. 2009. Citado na página 17.

BARBOSA, J. et al. Proposta e validação de modelagem de reatores a núcleo saturado no simulador atp. 2010. Citado na página 17.

BRASIL, D. d. O. C. do. *Aplicação de reatores saturados em sistemas de transmissão*. 1996. Citado 2 vezes nas páginas 15 e 16.

COGO, J.; OLIVEIRA, A. de. Aplicação do método de integração trapezoidal em sistemas elétricos. *Seminário de Pesquisa EFEI*, 1983. Citado 2 vezes nas páginas 28 e 34.

DELFIN, C. G. *Modelagem de reatores naturalemnte saturados usando circuito equivalente magnético unificado em rotina da MODELS no ATP*. Tese (Doutorado) — Dissertação de Mestrado. Universidade Federal de Pernambuco, 2014. Citado na página 16.

DUBÉ, L. Users guide to models in atp. *Bonneville Power Administration*, 1996. Citado 6 vezes nas páginas 22, 24, 27, 60, 61 e 63.

FONTE, L. da. *Desenvolvimento de Reatores com Saturação Natural para Aplicação em Sistemas de Potência, Dr.* Tese (Doutorado) — UFPE, Recife, Brazil, 2004. Citado na página 17.

FONTE, L. M. D. *Reatores Saturados: Alguns Aspectos Operacionais e de Projeto*. 1997. Citado 3 vezes nas páginas 14, 17 e 90.

FREITAS, F. E. F. Aplicação série de reatores naturalmente saturados em sistemas de potência. Universidade Federal de Pernambuco, 2010. Citado na página 17.

HERMANN, W. D. On modelling iron core nonlinearities. *IEEE Transactions on Power Systems*, v. 8, n. 2, 1993. Citado 2 vezes nas páginas 17 e 29.

HORITA, M. A. B. *Reatores controlados por saturação para compensação de reativos*. Tese (Doutorado) — Universidade de São Paulo. Citado na página 31.

KRAUSE, P.; AMBLER, S.; FOX, J. *ATP user manual*. [S.1.], 1993. Citado 2 vezes nas páginas 19 e 22.

LIMA, T. *Lições de álgebra linear, 2^a Edição*. [s.n.], 2014. (Ensino). ISBN 9789892608549. Disponível em: <https://books.google.com.br/books?id=qXaMCwAAQBAJ>. Citado na página 67.

LOBO, E. *Guia prático de engenharia de software*. Universo dos Livros Editora. ISBN 9788578730369. Disponível em: https://books.google.com.br/books?id=QMkSI0jtLV8C. Citado 2 vezes nas páginas 65 e 72.

MAIA, M. J. et al. Aplicação no sistema chesf da tecnologia de reatores saturados para limitação de corrente de curto-circuito: Simulações e ensaios. *IV Simpósio Brasileiro de Sistemas Elétricos*, 2012. Citado na página 15.

PACHECO, J. et al. Projeto e análise desempenho de um reator saturado de 570 kvar e 13, 8 kv para regulação de tensão. In: *VII Conferência Brasileira sobre Qualidade da Energia Elétrica–CBQEE, Santos-SP, Brasil.* [S.l.: s.n.], 2007. Citado na página 17.

PRESS, W. *Numerical Recipes 3rd Edition: The Art of Scientific Computing*. Cambridge University Press, 2007. ISBN 9780521880688. Disponível em: https://books.google.com.br/books?id=1aAOdzK3FegC. Citado na página 70.

PRIKLER, L.; HOILDALEN, H. Atpdraw users' manual. *SINTEF Energy Research*, 2002. Citado 2 vezes nas páginas 20 e 22.

STRANG, G. *Introduction to Linear Algebra*. Wellesley-Cambridge Press, 2003. ISBN 9780961408893. Disponível em: ">https://books.google.com.br/books?id=Gv4pCVyoUVYC>. Citado 2 vezes nas páginas 70 e 71.

SWIFT, G. W. Power transformer core behavior under transient conditions. *IEEE Transactions* on *Power Apparatus and Systems*, IEEE, n. 5, p. 2206–2210, 1971. Citado na página 27.

TREFETHEN, L.; BAU, D. *Numerical Linear Algebra*. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), 1997. ISBN 9780898719574. Disponível em: https://books.google.com.br/books?id=JaPtxOytY7kC. Citado na página 70.

TURING, A. M. Rounding-off errors in matrix processes. *The Quarterly Journal of Mechanics and Applied Mathematics*, Oxford Univ Press, v. 1, n. 1, p. 287–308, 1948. Citado na página 70.

WATSON JOS ARRILLAGA, L. U. K. N. *Power Systems Electromagnetic Transients Simulation*. [S.1.]: Published by The Institution of Engineering and Technology, 2007. Citado 2 vezes nas páginas 29 e 30.

A Código Fonte da biblioteca RLIB

A.1 Código Fonte do Modelo para Inversão de Matrizes

```
MODEL invertMatrix
 2
     INPUT matrixInput[1..900], matrixDimension
     VAR y[1..900], size, P[1..900], matrixI[1..900], i, j, k
     matrixPivot[1..900], max_i, elem1, elem2, swap1, swap2, c
 4
     matrixPA[1..900], L[1..900], U[1..900], s, determinant,
 6
     Z[1..900],X[1..900], linesOut, columnsOut
 7
 8
     OUTPUT
 9
      X[1..900], linesOut, columnsOut, determinant
     EXEC
11
     linesOut := matrixDimension
13
     columnsOut := matrixDimension
14
     y[1..900] := matrixInput[1..900]
16
     size:=matrixDimension
17
18
     matrixI[1..900] := 0
19
     matrixPA[1..900] := 0
20
     Z[1..900] := 0
21
     X[1..900] := 0
     L[1..900] := 0
     U[1..900] := 0
23
24
25
26
27
     -- CREATE IDENTITY MATRIX
     FOR i:=1 TO size DO
      matrixI[(i-1)*size + i]:=1
31
     ENDFOR
     -- CREATE PIVOT MATRIX
     matrixPivot[1..900] := matrixI[1..900]
37
     FOR j :=1 TO size DO
38
39
      max_i := j
40
41
       FOR i := j TO size DO
42
        elem1 := abs(y[(i-1)*size + j])
43
         elem2 := abs(y[(max_i-1)*size + j])
44
         IF elem1 > elem2 THEN
45
46
          max_i := i
47
         ENDIF
48
       ENDFOR
49
       i := j
51
```

```
52
       IF i <> max_i THEN
         FOR k :=1 TO size DO
54
           swap1 := matrixPivot[(i-1)*size + k]
55
           swap2 := matrixPivot[(max_i-1)*size + k]
           matrixPivot[(max_i-1)*size + k] := swap1
57
          matrixPivot[(i-1)*size+ k] := swap2
58
         ENDFOR
59
       ENDIF
60
     ENDFOR
61
62
63
      -- MULTIPLY PIVOT BY THE INPUT MATRIX
64
65
     FOR i:=1 TO size DO
       FOR j:=1 TO size DO
66
67
         c := 0
68
           FOR k:=1 TO size DO
69
             c := c + matrixPivot[(i-1)*size + k]*y[(k-1)*size + j]
           ENDFOR
 71
       matrixPA[(i-1)*size + j] := c
       ENDFOR
 73
     ENDFOR
 74
 75
76
      -- PREPARE MATRICES L AND U
78
     FOR i:=1 TO size DO
79
        FOR j:=1 TO size DO
80
         IF i = j THEN L[(i-1)*size + j]:=1 ELSE L[(i-1)*size + j]:=0
81
         ENDIF
82
       ENDFOR
83
     ENDFOR
84
85
86
      -- PREPARE MATRICES L AND U
87
88
     FOR i:=1 TO size DO
89
       FOR j:=1 TO size DO
90
         IF i = j THEN U[(i-1)*size + j]:=1 ELSE U[(i-1)*size + j]:=0
91
         ENDIF
92
       ENDFOR
93
     ENDFOR
94
95
96
      -- Calculate L AND U
97
98
     FOR j := 1 TO size DO
99
       FOR i :=1 TO size DO
         IF i <= j THEN
101
           s := 0
           IF j > 1 THEN
             FOR k:=1 TO j - 1 DO
104
               s := s + U[(k-1)*size + j]*L[(i-1)*size + k]
105
             ENDFOR
           ENDIF
107
           U[(i-1)*size + j] := matrixPA[(i-1)*size + j] - s
108
         ENDIF
         IF i > j THEN
110
          s := 0
          IF i > 1 THEN
```

```
FOR k:=1 TO i - 1 DO
113
                s := s + U[(k-1)*size + j]*L[(i-1)*size + k]
              ENDFOR
114
            ENDIF
              L[(i-1)*size + j] := (matrixPA[(i-1)*size + j] - s)/U[(j-1)*size + j]
117
          ENDIF
118
        ENDFOR
119
     ENDFOR
      -- Find the determinant
124
125
     determinant := 1
     FOR i:=1 TO size DO
       determinant := determinant * L[(i-1)*size + i]
       determinant := determinant * U[(i-1)*size + i]
     ENDFOR
131
     IF determinant <> 0 THEN
        -- Calculating the matrix Z
134
135
        FOR i:=1 TO size DO
         FOR j:=1 TO size DO
137
           s := 0
           FOR k:=1 TO size DO
139
             s := s + L[(i-1)*size + k]*Z[(k-1)*size + j]
140
            ENDFOR
           Z[(i-1)*size + j] := (matrixPivot[(i-1)*size + j] - s)/L[(i-1)*size + i];
141
142
         ENDFOR
143
       ENDFOR
144
145
146
        -- Calculating the matrix X
147
148
       FOR j:=1 TO size DO
         X[(size-1)*size + j] := Z[(size-1)*size + j]/U[(size-1)*size + size];
149
150
         IF size > 1 THEN
           FOR i:=size-1 TO 1 BY (-1) DO
151
152
             s := 0
153
              FOR k:=i+1 TO size DO
                s := s + U[(i-1)*size + k]*X[(k-1)*size + j]
155
              ENDFOR
156
              X[(i-1)*size + j] := (Z[(i-1)*size + j] - s)/U[(i-1)*size + i];
157
            ENDFOR
158
          ENDIF
159
        ENDFOR
160
     ENDIF
161
     ENDEXEC
162 ENDMODEL
```

Código Fonte A.1 - Módulo da biblioteca RLib para inversão de matrizes

A.2 Código Fonte da Biblioteca RLib

```
1 MODEL RNSMatrix
```

```
2 INPUT deltaTime,
   lMatrixA, cMatrixA, MatrixA[1..900],
 4
    1MP, cMP, MP[1..900]
    lMatrixN, cMatrixN, MatrixN[1..900]
 5
 6
   lMatrixV, cMatrixV, MatrixV[1..900]
 7
   lMatrixO, cMatrixO, MatrixO[1..900],
 8 | MatrixInsIn, cMatrixInsIn, MatrixInsIn[1..900]
 9 VAR mSize, dt, determnt, aux,
10 | 1MatrixP, cMatrixP, MatrixP[1..900]
11 | 1MatrixI, cMatrixI, MatrixI[1..900]
12 IMatrixPA, cMatrixPA, MatrixPA[1..900]
13 | MatrixTA, cMatrixTA, MatrixTA[1..900]
14
    IMatrixTAPA, cMatrixTAPA, MatrixTAPA[1..900]
    IMatrixITAPA, cMatrixITAPA, MatrixITAPA[1..900]
   lMatrixQ1, cMatrixQ1, MatrixQ1[1..900]
  lMatrixQ2, cMatrixQ2, MatrixQ2[1..900]
18 | MatrixQ, cMatrixQ, MatrixQ[1..900]
19 | 1MatrixINss, cMatrixINss, MatrixINss[1..900]
20 | MatrixTemp1, cMatrixTemp1, MatrixTemp1[1..900]
21 | MatrixQP, cMatrixQP, MatrixQP[1..900]
22 | MatrixQPN, cMatrixQPN, MatrixQPN[1..900]
23
   lMatrixTemp2, cMatrixTemp2, MatrixTemp2[1..900]
24
    lMatrixYss, cMatrixYss, MatrixYss[1..900]
25
    lMatrixT1V, cMatrixT1V, MatrixT1V[1..900]
    IMatrixT1VF, cMatrixT1VF, MatrixT1VF[1..900]
26
27
    lMatrixIns, cMatrixIns, MatrixIns[1..900]
28
   lMatrixYssV, cMatrixYssV, MatrixYssV[1..900]
29 | MatrixIs, cMatrixIs, MatrixIs[1..900]
30 OUTPUT
31
   lMatrixIns, cMatrixIns, MatrixIns[1..900]
   lMatrixIs, cMatrixIs, MatrixIs[1..900]
   MODEL sumMatrices
     INPUT linesA, columnsA, mmA[1..900]
     linesB, columnsB, mmB[1..900]
37
     VAR i, j, c, mmOut[1..900], linesOut, columnsOut
     OUTPUT
      mmOut[1..900], linesOut, columnsOut
40
     INIT
      i := 0, j:= 0, c:= 0, mmOut[1..900]:=0
41
42
     ENDINIT
43
     EXEC
44
45
     linesOut := linesA, columnsOut := columnsA
46
47
48
     -- SUM THE MATRICES
49
50
     FOR i:=1 TO linesA DO
       FOR j:=1 TO columnsA DO
52
        mmOut[(i-1)*columnsA + j] := mmA[(i-1)*columnsA + j]+mmB[(i-1)*columnsB + j]
53
      ENDFOR
54
    ENDFOR
    ENDEXEC
55
56 ENDMODEL
58 MODEL subtractMatrices
59
    INPUT linesA, columnsA, mmA[1..900]
    linesB, columnsB, mmB[1..900]
60
61 VAR i, j, c, mmOut[1..900], linesOut, columnsOut
```

```
62
      OUTPUT
 63
        mmOut[1..900], linesOut, columnsOut
 64
      INIT
       i := 0, j:= 0, c:= 0, mmOut[1..900]:=0
 65
 66
      ENDINIT
      EXEC
 67
 68
 69
      linesOut := linesA, columnsOut := columnsA
 71
      -- SUM THE MATRICES
 74
     FOR i:=1 TO linesA DO
       FOR j:=1 TO columnsA DO
 76
         mmOut[(i-1)*columnsA + j] := mmA[(i-1)*columnsA + j]-mmB[(i-1)*columnsB + j]
 77
       ENDFOR
 78
     ENDFOR
     ENDEXEC
80 ENDMODEL
81
82 MODEL transposeMatrix
83
      INPUT linesA, columnsA, mmA[1..900]
84
      VAR i, j, mmOut[1..900], linesOut, columnsOut
85
      OUTPUT
86
       mmOut[1..900], linesOut, columnsOut
87
      INIT
88
       i := 0, j:= 0, mmOut[1..900]:=0
89
      ENDINIT
90
      EXEC
 91
 92
     linesOut := columnsA
93
      columnsOut := linesA
94
 95
 96
      -- MULTIPLY THE MATRICES
97
98
     FOR i:=1 TO linesA DO
99
       FOR j:=1 TO columnsA DO
         mmOut[(j-1)*columnsOut + i] := mmA[(i-1)*columnsA + j]
       ENDFOR
102
    ENDFOR
103 ENDEXEC
104 ENDMODEL
106 MODEL changeMatrixSize
     INPUT linesA, columnsA, mmA[1..900],
        newLines, newColumns
108
109
     VAR i, j, mmOut[1..900], linesOut, columnsOut
110
     OUTPUT
111
       mmOut[1..900], linesOut, columnsOut
     INIT
       i := 0, j:= 0, mmOut[1..900]:=0
114
     ENDINIT
115
      EXEC
116
117
     linesOut := newLines
118
     columnsOut := newColumns
119
121 -- MULTIPLY THE MATRICES
```

```
123
     FOR i:=1 TO newLines DO
       FOR j:=1 TO newColumns DO
124
         mmOut[(i-1)*columnsOut + j] := mmA[(i-1)*columnsA + j]
       ENDFOR
127
     ENDFOR
128 ENDEXEC
129 ENDMODEL
130
131 MODEL multiplyMatrixScalar
132
     INPUT linesA, columnsA, mmA[1..900],
        scalar
134
     VAR i, j, mmOut[1..900], linesOut, columnsOut
135
     OUTPUT
      mmOut[1..900], linesOut, columnsOut
    INIT
138
      i := 0, j:= 0, mmOut[1..900]:=0
139
     ENDINIT
140
     EXEC
141
142
     linesOut := linesA
143
     columnsOut := columnsA
144
145
146
      -- MULTIPLY THE MATRICES
147
148
     FOR i:=1 TO linesA DO
149
      FOR j:=1 TO columnsA DO
150
         mmOut[(i-1)*columnsOut + j] := mmA[(i-1)*columnsA + j]*scalar
151
       ENDFOR
152
    ENDFOR
153 ENDEXEC
154 ENDMODEL
155
156 MODEL printMatrix
157
     INPUT linesA, columnsA, mmA[1..900]
     VAR i, j
159 EXEC
160 write("********")
161 FOR i:=1 TO linesA DO
162
      FOR j:=1 TO columnsA DO
163
         write(mmA[(i-1)*columnsA + j])
       ENDFOR
164
       write("-----")
165
166
    ENDFOR
    ENDEXEC
167
168 ENDMODEL
169
171 MODEL multiplyMatrices
172 INPUT linesA, columnsA, mmA[1..900]
173
         linesB, columnsB, mmB[1..900]
174 VAR i, j, c, k, mmOut[1..900], linesOut, columnsOut
175
     OUTPUT
176
       mmOut[1..900], linesOut, columnsOut
177
     INIT
       i := 0, j:= 0, c:= 0, k:=0, mmOut[1..900]:=0
178
179
     ENDINIT
180
     EXEC
181
```

```
182
     linesOut := linesA
183
      columnsOut := columnsB
184
185
186
      -- MULTIPLY THE MATRICES
187
188
      FOR i:=1 TO linesA DO
189
      FOR j:=1 TO columnsB DO
190
         c := 0
           FOR k:=1 TO linesB DO
191
192
             c := c + mmA[(i-1)*columnsA + k]*mmB[(k-1)*columnsB + j]
193
           ENDFOR
194
       mmOut[(i-1)*columnsB + j] := c
195
       ENDFOR
196
     ENDFOR
     ENDEXEC
197
198 ENDMODEL
199
200 MODEL invertMatrix
201
     INPUT matrixInput[1..900], matrixDimension
     VAR y[1..900], size, P[1..900], matrixI[1..900], i, j, k
      matrixPivot[1..900], max_i, elem1, elem2, swap1, swap2, c
204
      matrixPA[1..900], L[1..900], U[1..900], s, determinant,
      Z[1..900],X[1..900], linesOut, columnsOut
207
      OUTPUT
208
       X[1..900], linesOut, columnsOut, determinant
209
     EXEC
210
211
    linesOut := matrixDimension
212
     columnsOut := matrixDimension
      y[1..900] := matrixInput[1..900]
214
215
     size:=matrixDimension
216
     matrixI[1..900] := 0
218 matrixPA[1..900] := 0
219
     Z[1..900] := 0
220 X[1..900] := 0
     L[1..900] := 0
     U[1..900] := 0
222
2.2.4
      -- CREATE IDENTITY MATRIX
227
228
      FOR i:=1 TO size DO
229
      matrixI[(i-1)*size + i]:=1
230
     ENDFOR
231
      -- CREATE PIVOT MATRIX
234
      matrixPivot[1..900] := matrixI[1..900]
235
236
237
     FOR j :=1 TO size DO
238
       max_i := j
239
240
      FOR i := j TO size DO
241
        elem1 := abs(y[(i-1)*size + j])
```

```
242
         elem2 := abs(y[(max_i-1)*size + j])
243
244
         IF elem1 > elem2 THEN
2.4.5
          max_i := i
246
        ENDIF
       ENDFOR
247
248
249
       i := j
251
       IF i <> max_i THEN
252
         FOR k :=1 TO size DO
253
           swap1 := matrixPivot[(i-1)*size + k]
254
           swap2 := matrixPivot[(max_i-1)*size + k]
255
           matrixPivot[(max_i-1)*size + k] := swap1
256
           matrixPivot[(i-1)*size+ k] := swap2
         ENDFOR
2.57
258
       ENDIF
      ENDFOR
260
261
262
      -- MULTIPLY PIVOT BY THE INPUT MATRIX
263
264
      FOR i:=1 TO size DO
265
       FOR j:=1 TO size DO
266
         c := 0
267
           FOR k:=1 TO size DO
268
             c := c + matrixPivot[(i-1)*size + k]*y[(k-1)*size + j]
269
           ENDFOR
270
      matrixPA[(i-1)*size + j] := c
271
       ENDFOR
272
     ENDFOR
273
274
275
      -- PREPARE MATRICES L AND U
276
277
     FOR i:=1 TO size DO
278
       FOR j:=1 TO size DO
279
        IF i = j THEN L[(i-1)*size + j]:=1 ELSE L[(i-1)*size + j]:=0
280
         ENDIF
281
       ENDFOR
282
      ENDFOR
283
284
285
      -- PREPARE MATRICES L AND U
286
287
      FOR i:=1 TO size DO
288
       FOR j:=1 TO size DO
2.89
         IF i = j THEN L[(i-1)*size + j]:=1 ELSE L[(i-1)*size + j]:=0
290
         ENDIF
291
       ENDFOR
292
      ENDFOR
293
294
295
      -- Calculate L AND U
296
297
     FOR j := 1 TO size DO
298
       FOR i :=1 TO size DO
299
        IF i <= j THEN
          s := 0
301
          IF j > 1 THEN
```

```
FOR k:=1 TO j - 1 DO
                s := s + U[(k-1)*size + j]*L[(i-1)*size + k]
              ENDFOR
304
            ENDIF
306
            U[(i-1)*size + j] := matrixPA[(i-1)*size + j] - s
          ENDIF
308
          IF i > j THEN
309
           s := 0
            IF i > 1 THEN
              FOR k:=1 TO i - 1 DO
               s := s + U[(k-1)*size + j]*L[(i-1)*size + k]
313
              ENDFOR
314
            ENDIF
            L[(i-1)*size + j] := (matrixPA[(i-1)*size + j] - s)/U[(j-1)*size + j]
          ENDIF
        ENDFOR
317
318
      ENDFOR
319
      -- Find the determinant
324
      determinant := 1
325
      FOR i:=1 TO size DO
       determinant := determinant * L[(i-1)*size + i]
327
       determinant := determinant * U[(i-1)*size + i]
328
      ENDFOR
329
      IF determinant <> 0 THEN
        -- Calculating the matrix \ensuremath{\mathtt{Z}}
333
       FOR i:=1 TO size DO
335
         FOR j:=1 TO size DO
336
            s := 0
           FOR k:=1 TO size DO
             s := s + L[(i-1)*size + k]*Z[(k-1)*size + j]
           ENDFOR
340
            Z[(i-1)*size + j] := (matrixPivot[(i-1)*size + j] - s)/L[(i-1)*size + i];
         ENDFOR
341
342
        ENDFOR
343
345
        -- Calculating the matrix X
346
347
        FOR j:=1 TO size DO
         X[(size-1)*size + j] := Z[(size-1)*size + j]/U[(size-1)*size + size];
349
          IF size > 1 THEN
           FOR i:=size-1 TO 1 BY (-1) DO
              s := 0
352
              FOR k:=i+1 TO size DO
353
                s := s + U[(i-1)*size + k]*X[(k-1)*size + j]
              ENDFOR
              X[(i-1)*size + j] := (Z[(i-1)*size + j] - s)/U[(i-1)*size + i];
            ENDFOR
          ENDIF
        ENDFOR
358
359
      ENDIF
360
      ENDEXEC
361 ENDMODEL
```

362

```
363
364
      EXEC
     mSize:=900
367 dt := deltaTime
368
369 | MatrixP := 1MP
370 cMatrixP := cMP
371
     MatrixP[1..mSize] := MP[1..mSize]
372
     lMatrixI := lMatrixP
373
374
      cMatrixI := lMatrixI
375
     MatrixI[1..mSize]:=0
376
377
     FOR i:=1 TO cMatrixI DO
378
      MatrixI[(i-1)*cMatrixI + i]:=1
379
      ENDFOR
380
381
      lMatrixIns := lMatrixO
382
      cMatrixIns := cMatrixO
      MatrixIns[1..900] := 0
384
385
      lMatrixIs := lMatrixO
386
      cMatrixIs := cMatrixO
387
     MatrixIs[1..900] := 0
388
389
      USE multiplyMatrices as mm2
390
     INPUT
391 linesA := lMatrixP,
392 columnsA := cMatrixP,
393
     mmA[1..mSize] := MatrixP[1..mSize]
394
     linesB := lMatrixA,
395
      columnsB := cMatrixA,
      mmB[1..mSize] := MatrixA[1..mSize]
397
      OUTPUT
     lMatrixPA := linesOut,
398
      cMatrixPA:= columnsOut,
400
     MatrixPA[1..mSize] := mmOut[1..mSize]
401
      ENDUSE
402
403
      USE transposeMatrix as tml
404
      INPUT
405
      linesA := lMatrixA,
406
      columnsA := cMatrixA,
407
      mmA[1..mSize] := MatrixA[1..mSize]
408
      OUTPUT
409
      lMatrixTA := linesOut,
410
      cMatrixTA:= columnsOut,
411
      MatrixTA[1..mSize] := mmOut[1..mSize]
412
      ENDUSE
413
414
      USE multiplyMatrices as mm2
415
      INPUT
416
     linesA := lMatrixTA,
417
     columnsA := cMatrixTA,
     mmA[1..mSize] := MatrixTA[1..mSize]
418
419
     linesB := lMatrixPA,
420
     columnsB := cMatrixPA,
421 mmB[1..mSize] := MatrixPA[1..mSize]
```

```
422
      OUTPUT
423
      lMatrixTAPA := linesOut,
42.4
      cMatrixTAPA:= columnsOut,
42.5
      MatrixTAPA[1..mSize] := mmOut[1..mSize]
426
      ENDUSE
427
428
      USE invertMatrix as iml
429
      INPUT
430
      matrixInput[1..mSize] := MatrixTAPA[1..mSize],
      matrixDimension := lMatrixTAPA
431
432
      OUTPUT
433
      lMatrixITAPA := linesOut,
434
      cMatrixITAPA:= columnsOut,
435
      MatrixITAPA[1..mSize] := X[1..mSize],
436
      determnt := determinant
      ENDUSE
437
438
439
      IF determnt <> 0 THEN
        --write("Calculou! 1", lMatrixITAPA, cMatrixITAPA)
440
441
       USE multiplyMatrices as mm3
442
       INPUT
443
       linesA := lMatrixPA,
444
       columnsA := cMatrixPA,
445
       mmA[1..mSize] := MatrixPA[1..mSize]
446
       linesB := lMatrixITAPA,
447
       columnsB := cMatrixITAPA,
448
       mmB[1..mSize] := MatrixITAPA[1..mSize]
449
       OUTPUT
450
       lMatrixQ1 := linesOut,
451
       cMatrixQ1:= columnsOut,
452
       MatrixQ1[1..mSize] := mmOut[1..mSize]
453
       ENDUSE
454
455
       USE multiplyMatrices as mm4
456
        INPUT
457
       linesA := lMatrixQ1,
458
       columnsA := cMatrixQ1,
459
       mmA[1..mSize] := MatrixQ1[1..mSize]
460
       linesB := lMatrixTA,
       columnsB := cMatrixTA,
461
       mmB[1..mSize] := MatrixTA[1..mSize]
462
463
       OUTPUT
464
       lMatrixQ2 := linesOut,
       cMatrixQ2:= columnsOut,
465
466
       MatrixQ2[1..mSize] := mmOut[1..mSize]
467
       ENDUSE
468
469
       USE subtractMatrices as sml
470
       INPUT
471
       linesA := lMatrixI,
472
       columnsA := cMatrixI,
473
       mmA[1..mSize] := MatrixI[1..mSize]
474
       linesB := lMatrixQ2,
475
       columnsB := cMatrixQ2,
476
        mmB[1..mSize] := MatrixQ2[1..mSize]
477
       OUTPUT
478
       lMatrixQ := linesOut,
479
       cMatrixQ:= columnsOut,
       MatrixQ[1..mSize] := mmOut[1..mSize]
480
       ENDUSE
481
```

482

```
483
          USE changeMatrixSize as cms1
484
        INPUT
485
        linesA := lMatrixQ,
486
        columnsA := cMatrixQ,
487
        mmA[1..mSize] := MatrixQ[1..mSize]
488
       newLines := lMatrixN,
489
       newColumns := lMatrixN,
       OUTPUT
490
491
       lMatrixQ := linesOut,
492
       cMatrixQ:= columnsOut,
493
       MatrixQ[1..mSize] := mmOut[1..mSize]
494
        ENDUSE
495
496
       USE changeMatrixSize as cms2
497
       INPUT
498
       linesA := lMatrixP,
499
       columnsA := cMatrixP,
500
       mmA[1..mSize] := MatrixP[1..mSize]
       newLines := lMatrixN,
502
       newColumns := lMatrixN,
503
       OUTPUT
504
       lMatrixP := linesOut,
505
        cMatrixP:= columnsOut,
506
       MatrixP[1..mSize] := mmOut[1..mSize]
        ENDUSE
508
509
       USE invertMatrix as im2
       INPUT
511
       matrixInput[1..mSize] := MatrixN[1..mSize],
512
       matrixDimension := lMatrixN
513
       OUTPUT
514
       lMatrixINss := linesOut,
515
       cMatrixINss:= columnsOut,
       MatrixINss[1..mSize] := X[1..mSize],
517
       determnt := determinant
       ENDUSE
518
519
520
        IF determnt <> 0 THEN
521
          --write("Calculou! 2", lMatrixINss, cMatrixINss)
         aux := dt/2
522
523
524
          USE multiplyMatrixScalar as me1
525
          INPUT
526
          linesA := lMatrixINss,
527
          columnsA := cMatrixINss,
528
          mmA[1..mSize] := MatrixINss[1..mSize]
529
          scalar := aux
530
          OUTPUT
531
          lMatrixTemp1 := linesOut,
532
          cMatrixTemp1:= columnsOut,
533
          MatrixTemp1[1..mSize] := mmOut[1..mSize]
534
          ENDUSE
535
536
          USE multiplyMatrices as mm5
          INPUT
538
          linesA := lMatrixQ,
539
          columnsA := cMatrixQ,
          mmA[1..mSize] := MatrixQ[1..mSize]
540
541
          linesB := lMatrixP,
```
```
542
          columnsB := cMatrixP,
543
          mmB[1..mSize] := MatrixP[1..mSize]
544
          OUTPUT
545
          lMatrixQP := linesOut,
546
          cMatrixQP:= columnsOut,
547
          MatrixQP[1..mSize] := mmOut[1..mSize]
548
          ENDUSE
549
550
          USE multiplyMatrices as mm6
551
          INPUT
552
          linesA := lMatrixQP,
553
          columnsA := cMatrixQP,
554
          mmA[1..mSize] := MatrixQP[1..mSize]
          linesB := lMatrixN,
556
         columnsB := cMatrixN,
557
         mmB[1..mSize] := MatrixN[1..mSize]
         OUTPUT
559
         lMatrixQPN := linesOut,
560
          cMatrixQPN:= columnsOut,
561
          MatrixQPN[1..mSize] := mmOut[1..mSize]
562
          ENDUSE
563
564
          USE invertMatrix as im3
565
          INPUT
566
          matrixInput[1..mSize] := MatrixQPN[1..mSize],
567
          matrixDimension := lMatrixQPN
568
          OUTPUT
569
         lMatrixTemp2 := linesOut,
570
          cMatrixTemp2:= columnsOut,
571
         MatrixTemp2[1..mSize] := X[1..mSize],
572
          determnt := determinant
573
         ENDUSE
574
575
          IF determnt <> 0 THEN
576
            --write("Calculou!")
577
            USE multiplyMatrices as mm7
            INPUT
578
579
           linesA := lMatrixTemp2,
580
           columnsA := cMatrixTemp2,
581
           mmA[1..mSize] := MatrixTemp2[1..mSize]
           linesB := lMatrixTemp1,
582
583
           columnsB := cMatrixTemp1,
           mmB[1..mSize] := MatrixTemp1[1..mSize]
584
            OUTPUT
586
            lMatrixYss := linesOut,
587
            cMatrixYss:= columnsOut,
588
            MatrixYss[1..mSize] := mmOut[1..mSize]
589
            ENDUSE
590
591
           USE multiplyMatrices as mm8
592
            INPUT
593
           linesA := lMatrixTemp1,
594
            columnsA := cMatrixTemp1,
595
            mmA[1..mSize] := MatrixTemp1[1..mSize]
596
            linesB := lMatrixV,
597
            columnsB := cMatrixV,
            mmB[1..mSize] := MatrixV[1..mSize]
598
599
            OUTPUT
600
            lMatrixT1V := linesOut,
601
            cMatrixT1V:= columnsOut,
```

```
602
            MatrixT1V[1..mSize] := mmOut[1..mSize]
603
            ENDUSE
604
605
            USE sumMatrices as sml
            INPUT
606
607
            linesA := lMatrixT1V,
608
            columnsA := cMatrixT1V,
609
            mmA[1..mSize] := MatrixT1V[1..mSize]
610
            linesB := lMatrixO,
611
            columnsB := cMatrixO,
612
            mmB[1..mSize] := MatrixO[1..mSize]
613
            OUTPUT
614
            lMatrixT1VF := linesOut,
615
            cMatrixT1VF:= columnsOut,
            MatrixT1VF[1..mSize] := mmOut[1..mSize]
616
            ENDUSE
617
618
619
            USE multiplyMatrices as mm8
            INPUT
620
621
            linesA := lMatrixTemp2,
62.2
            columnsA := cMatrixTemp2,
            mmA[1..mSize] := MatrixTemp2[1..mSize]
623
624
            linesB := lMatrixT1VF,
625
            columnsB := cMatrixT1VF,
626
            mmB[1..mSize] := MatrixT1VF[1..mSize]
627
            OUTPUT
628
            lMatrixIns := linesOut,
629
            cMatrixIns:= columnsOut,
630
            MatrixIns[1..mSize] := mmOut[1..mSize]
631
            ENDUSE
632
633
            USE multiplyMatrices as mm9
            INPUT
634
635
            linesA := lMatrixYss,
636
            columnsA := cMatrixYss,
637
            mmA[1..mSize] := MatrixYss[1..mSize]
638
            linesB := lMatrixV,
639
            columnsB := cMatrixV,
640
            mmB[1..mSize] := MatrixV[1..mSize]
641
            OUTPUT
            lMatrixYssV := linesOut,
642
643
            cMatrixYssV:= columnsOut,
644
            MatrixYssV[1..mSize] := mmOut[1..mSize]
645
            ENDUSE
646
647
            USE sumMatrices as sm2
648
            INPUT
649
            linesA := lMatrixYssV,
650
            columnsA := cMatrixYssV,
651
            mmA[1..mSize] := MatrixYssV[1..mSize]
652
            linesB := lMatrixInsIn,
653
            columnsB := cMatrixInsIn,
654
            mmB[1..mSize] := MatrixInsIn[1..mSize]
655
            OUTPUT
656
            lMatrixIs := linesOut,
657
            cMatrixIs:= columnsOut,
            MatrixIs[1..mSize] := mmOut[1..mSize]
658
659
            ENDUSE
660
         ENDIF
661
        ENDIF
```

662 ENDIF
 663 ENDEXEC
 664 ENDMODEL

A.3 Codigo de Reatores Naturalmente Saturados

```
BEGIN NEW DATA CASE
 1
  C ---
 3 C Generated by ATPDRAW novembro, sábado 7, 2015
 4 C A Bonneville Power Administration program
 5 C by H. K. Hidalen at SEFAS/NTNU - NORWAY 1994-2009
 6
  C ---
  POWER FREQUENCY
                                        60.
  C dT >< Tmax >< Xopt >< Copt ><Epsiln>
 8
 9
     1.E-5 .05
                        1 1 1
                                                0
       500
                1
                                                        0
                                                                  1
                                                                          0
11 /MODELS
12 MODELS
13 INPUT
14 MM0001 {v(XX0001)}
15 MM0002 {v(XX0002)}
16 OUTPUT
    XX0002
  MODEL RNS1
   INPUT inpuV1
                         -- Tensao de Entrada V1
19
         inpuV2
                         -- Tensao de Entrada V2
21
   DATA arEnro
                          -- Area Enrolamento
        arJugo
                         -- Area do Jugo
2.3
        arReto
                         -- Area de Retorno
24
                         -- Numero de Espiras
        nuEspi
25
                         -- Comprimento do Braco de Enrolamento
        compEr
                         -- Comprimento do Braco do Jugo
        compJg
27
        compRt
                         -- Comprimento do Braco de Retorno
        indDis
                         -- Indutancia de dispersao
29
   VAR B[1..10]
                         -- Campo magnetico dos nove trechos
       H[1..10]
                         -- Densidade magnetica para os nove trechos
       BN[1..3]
                         -- Campo magnetico para o ramo principal, jugo e retorno
       HN[1..3]
                         -- Densidade Magnetica para o ramo principal, jugo e retorno
       BN1, BN2, BN3
                         -- Valores finais para campo magnetico para o ramo principal, jugo e reterno
       HN1, HN2, HN3
                         -- Valores finais para densidade Magnetica para o ramo principal, jugo e retorno
34
       1[1..9]
                         -- Indutancias para os nove trechos
                         -- Indutancias linhas (l') para os nove trechos
       lp[2..9]
                             -- Variaveis intermediarias para facilitar o calculo de H e B
       х, у
38
       P1,P2,P3,P4
                         -- Permeancias do UMEC
                          -- Fluxos do UMEC (Ramo Principal, Jugo, Jugo e dispersao)
39
       01,02,03,04
40
       m2a,m2b,m2c,dm2
                         -- Variaveis intermediarias das matrizes
       m311,m312,m321
                         -- Variaveis intermediarias das matrizes
41
42
       m322,m511,m512
                         -- Variaveis intermediarias das matrizes
43
       m11,y211,y311,y11 -- Variaveis intermediarias das matrizes
44
       Ins1
                         -- Corrente da fonte de corrente do Equivalente de Norton
45
       Iout
                          -- Corrente de saida
46
       vl1
                         -- Tensao acumulada na entrada 1
47
                         -- Tensao acumulada na entrada 2
       v12
                          -- Diferenca de vl1 - vl2
48
       vl
49
            -- Essa parte corresponde as entidades da biblioteca RLib
```

```
50
             m, dt, determnt, aux,
             IMtrxA, cMtrxA, MtrxA[1..900]
             IMtrxP, cMtrxP, MtrxP[1..900]
 52
             IMtrxN, cMtrxN, MtrxN[1..900]
53
            lMtrxV, cMtrxV, MtrxV[1..900]
            lMtrxO, cMtrxO, MtrxO[1..900]
55
56
            lMtrxI, cMtrxI, MtrxI[1..900]
            IMtrxInsIn, cMtrxInsIn, MtrxInsIn[1..900]
58
            lMtrxIns, cMtrxIns, MtrxIns[1..900]
59
            lMtrxIs, cMtrxIs, MtrxIs[1..900]
60 $INCLUDE ./RLib.m
61
    OUTPUT Iout
 62
    INIT
63
     BN1:=0.01, BN2:=0.01, BN3:=0.01 -- Inicialização dos valores do campo magnetico
     HN1:=0.01, HN2:=0.01, HN3:=0.01 -- Inicializacao dos valores da densidade magnetica
64
     HN[1..3]:=0.01, BN[1..3]:=0.01 -- Inicializacao dos valores do campo magnetico e densidade magnetica
65
     integral(inpuV1):=0
66
67
     integral(inpuV2):=0
68
     histdef(integral(inpuV1)):=0
69
     histdef(integral(inpuV2)):=0
     Ins1:=0
 71
     Iout:=0
     m := 900
     IMtrxP := 4,
 74
     cMtrxP := 4,
     MtrxP[1..m]:=0
 76
    ENDINIT
 77
    EXEC
 78
      H[1]:=0
                                    -- Definicao da curva BxH do material ferro magnetico
 79
      B[1]:=0
80
      H[2]:=20.292
      B[2]:=0.9
81
      H[3]:=24.987
82
83
      B[3]:=1.2
      H[4]:=37.242
85
      B[4]:=1.45
86
      H[5]:=58.887
87
      B[5]:=1.58
88
      H[6]:=119.366
89
      B[6]:=1.68
90
      H[7]:=226.796
91
      B[7]:=1.74
92
      H[8]:=612.747
      B[8]:=1.81
93
94
       H[9]:=1193.662
 95
      B[9]:=1.86
96
      H[10]:=10000
97
      B[10]:=1.97
98
99
      -- Metodo de aproximacao linear por trechos
       -- Esse loop calcula a indutancia de cada trecho
      FOR i:=1 TO 9 DO
102
           l[i]:=(B[i+1]-B[i])/(H[i+1]-H[i])
      ENDFOR
105
       -- Metodo de aproximacao linear por trechos parte 2
       -- Segundo loop para calcular o l' para cada trecho
       -- Utilizar Lp' para criar indutores equivalentes que facam
       -- o mesmo efeito na indutancia total.
109
```

```
FOR i:=2 TO 9 DO
111
           lp[i]:=1/((1/l[i])-(1/l[i-1]))
       ENDFOR
113
114
       -- Calculo do campo magnetico no ramo principal
115
      vl1:=integral(inpuV1)
      vl2:=integral(inpuV2)
117
      BN[1]:=(vl1-vl2)/(arEnro*nuEspi*(0.96))
118
       IF BN[1]>=0 THEN
119
                                    -- Calculo de H para os trechos do sistema
                    HN[1]:=BN[1]/1[1]
                    FOR i:=2 TO 9 DO
                            IF BN[1]>B[i] THEN
123
                                    HN[1]:=HN[1]+((BN[1]-B[i])/lp[i])
                            ENDIF
                    ENDFOR
126
       ELSE
                    HN[1]:=BN[1]/1[1]
                    FOR i:=2 TO 9 DO
128
129
                            IF BN[1]<-B[i] THEN
                                    HN[1]:=HN[1]+((BN[1]+B[i])/lp[i])
                            ENDIF
132
                    ENDFOR
       ENDIF
134
135
       P1:=(BN[1]/HN[1])*arEnro/compEr
                                               -- Permeancia do ramo principal
136
       O1:=BN[1]*arEnro
                                                -- Fluxo no ramo principal
137
       P4:=2*indDis/(nuEspi*nuEspi)
                                                -- Permeancia de dispersao
138
       O4:=P4*(HN[1]*compEr+(O1/P1))
                                                -- Fluxo de dispersao
       03:=01-04
                                                -- Fluxo no Jugo
140
       02:=03
                                                 -- Fluxo no retorno
       BN[3]:=O3/arJugo
141
                                                 -- Campo magnetico no Jugo
       BN[2]:=O2/arReto
142
                                                 -- Campo magnetigo de retorno
143
144
     FOR i:=2 TO 3 DO
145
        IF BN[i]>=0 THEN
                                   -- Calculo de H para os trechos do sistema
146
                    HN[i]:=BN[i]/l[1]
147
                    FOR j:=2 TO 9 DO
148
                            IF BN[i]>B[j] THEN
149
                                    HN[i]:=HN[i]+((BN[i]-B[j])/lp[j])
                            ENDIF
150
151
                    ENDFOR
152
            ELSE
                    HN[i]:=BN[i]/1[1]
153
154
                    FOR j:=2 TO 9 DO
155
                            IF BN[i]<-B[j] THEN
156
                                    HN[i]:=HN[i]+((BN[i]+B[j])/lp[j])
157
                            ENDIF
158
                    ENDFOR
159
            ENDIF
160
      ENDFOR
161
162
      P3:=(BN[3]/HN[3])*arJugo/compJg
      P2:=(BN[2]/HN[2])*arReto/compRt
163
164
165
     HN1:=HN[1]
166
     BN1:=BN[1]
167
     HN2:=HN[2]
168
      BN2:=BN[2]
169
      HN3:=HN[3]
```

```
170 BN3:=BN[3]
171
172
     -- Essa parte corresponde ao calculo das matrizes RLib
173
     m:=900
174
     lMtrxA := 4
175 cMtrxA := 2
176 MtrxA[1..m]:=0
177 MtrxA[1..cMtrxA]
                                  :=[1, -1]
178 MtrxA[cMtrxA+1..2*cMtrxA]
                                  :=[0, 1]
179 MtrxA[2*cMtrxA+1..3*cMtrxA] :=[-1, 0]
180 MtrxA[3*cMtrxA+1..4*cMtrxA] :=[-1, 1]
181
182
     lMtrxN := 1
183
     cMtrxN := 1
184
     MtrxN[1..m]:=0
     MtrxN[0*cMtrxN+1] := nuEspi
185
186
187 | 1MtrxV := 1
188 cMtrxV := 1
189 MtrxV[1..m]:= 0
190
     MtrxV[0*cMtrxV+1] := (inpuV1-inpuV2)
191
192
     lMtrxO := 1
193
     cMtrxO := 1
194
     Mtrx0[1..m]:=0
195
     MtrxO[0*cMtrxO+1] := 01
196
197
198 | 1MtrxInsIn := 1
199 cMtrxInsIn := 1
200 MtrxInsIn[1..m]:=0
201 MtrxInsIn[0*cMtrxInsIn+1] := Ins1
     dt := timestep
204
     MtrxP[0*cMtrxP + 1] := P1
206
     MtrxP[1*cMtrxP + 2] := P2
     MtrxP[2*cMtrxP + 3] := P3
208
     MtrxP[3*cMtrxP + 4] := P4
     USE RNSMatrix as RNSM1
210
211
     INPUT
212
          deltaTime := dt,
213
214
          lMatrixA := lMtrxA,
           cMatrixA := cMtrxA,
216
          MatrixA[1..m] := MtrxA[1..m]
217
218
          IMP := IMtrxP,
219
          cMP := cMtrxP,
          MP[1..900]:= MtrxP[1..m]
222
          lMatrixN := lMtrxN,
           cMatrixN := cMtrxN,
224
           MatrixN[1..m] := MtrxN[1..m]
225
           lMatrixV := lMtrxV,
           cMatrixV := cMtrxV,
228
           MatrixV[1..m] := MtrxV[1..m]
```

```
lMatrixO := lMtrxO,
231
          cMatrixO := cMtrxO,
         MatrixO[1..m] := MtrxO[1..m]
233
234
         lMatrixInsIn := lMtrxInsIn,
235
         cMatrixInsIn := cMtrxInsIn,
236
         MatrixInsIn[1..m] := MtrxInsIn[1..m]
237 OUTPUT
238
         MtrxIns[1..m] := MatrixIns[1..m],
         MtrxIs[1..m] := MatrixIs[1..m]
239
240 ENDUSE
241
     Ins1 := MtrxIns[1]
242
       Iout := MtrxIs[1]
243
244
    ENDEXEC
245 ENDMODEL
246 RECORD
247 RNS1.HN1 AS HN1
248 RNS1.HN2 AS HN2
249 RNS1.HN3 AS HN3
250
    RNS1.BN1 AS BN1
     RNS1.BN2 AS BN2
     RNS1.BN3 AS BN3
253
     RNS1.P1 AS P1
254
     RNS1.P2 AS P2
255
     RNS1.P3 AS P3
256
    RNS1.P4 AS P4
257
    RNS1.01 AS 01
258 RNS1.02 AS 02
259 RNS1.03 AS 03
260 RNS1.04 AS 04
    RNS1.m11 AS m11
261
    RNS1.y11 AS y11
263
     RNS1.inpuV1 AS inpuV1
264
     RNS1.inpuV2 AS inpuV2
265
     RNS1.vl AS vl
     RNS1.Ins1 AS Ins1
267
     RNS1.Iout AS Iout
    RNS1.vl1 AS vl1
269
    RNS1.vl2 AS vl2
270 USE RNS1 AS RNS1
271 INPUT
272
   inpuV1:= MM0001
273 inpuV2:= MM0002
274 DATA
275
    arEnro:=
              0.454
             0.454
    arJugo:=
276
277
   arReto:= 0.454
278 nuEspi:= 65.
279 compEr:=
               3.59
280 compJg:=
             2.66
281 compRt:=
             3.59
282 indDis:=
                0.0
283 OUTPUT
284
    XX0002:=Iout
285 ENDUSE
286 ENDMODELS
287 C 1
                   2
                        3
                                    4
                                             5
                                                      6
                                                               7
289 /BRANCH
```

8

```
290 C < n1 >< n2 ><ref1><ref2>< R >< L >< C >
291 C < n1 >< n2 ><ref1><ref2>< R >< A >< B ><Lenq><>>0
     XX0001
                                                                              0
2.92
                               1.
293
     XX0002
                              .001
                                                                              1
294 / SOURCE
295 C < n 1><>< Ampl. >< Freq. ><Phase/T0>< A1 >< T1 >< TSTART >< TSTOP >
296 14XX0001 2.2E4 60.
                                                                 -1. 100.
297 60XX0002-1
                                                                           1.E3
298 /OUTPUT
299 BLANK MODELS
300 BLANK BRANCH
301 BLANK SWITCH
302 BLANK SOURCE
303 BLANK OUTPUT
304 BLANK PLOT
305 BEGIN NEW DATA CASE
306 BLANK
```

Código Fonte A.3 – Código ATP para reator naturalmente saturado com 1 enrolamento sem perdas

```
1 BEGIN NEW DATA CASE
 2 C -----
 3 C Generated by ATPDRAW abril, sexta-feira 12, 2013
 4
  C A Bonneville Power Administration program
  C by H. K. Hidalen at SEFAS/NTNU - NORWAY 1994-2009
 6
  c -----
  POWER FREQUENCY
                                      60.
  C dT >< Tmax >< Xopt >< Copt ><Epsiln>
 8
 9
     1.E-5 .05
                      1 1 1 0
      500
               1
                                                    0
                                                            1
                                                                     0
11 /MODELS
12 MODELS
13 INPUT
14 MM0001 {v(XX0001)}
15 MM0002 {v(XX0002)}
16 OUTPUT
17
    XX0002
18 MODEL RNS1
19 INPUT inpuV1
                       -- Tensao de Entrada V1
20
        inpuV2
                       -- Tensao de Entrada V2
                       -- Area Enrolamento
  DATA arEnro
21
22
       arJuqo
                        -- Area do Jugo
23
                        -- Area de Retorno
        arReto
2.4
                        -- Numero de Espiras
        nuEspi
        compEr
                        -- Comprimento do Braco de Enrolamento
26
                        -- Comprimento do Braco do Jugo
        compJg
27
        compRt
                        -- Comprimento do Braco de Retorno
28
        indDis
                        -- Indutancia de dispersao
   VAR B[1..10]
29
                        -- Campo magnetico dos nove trechos
       H[1..10]
                       -- Densidade magnetica para os nove trechos
31
       BN[1..3]
                       -- Campo magnetico para o ramo principal, jugo e retorno
       HN[1..3]
                       -- Densidade Magnetica para o ramo principal, jugo e retorno
33
       BN1, BN2, BN3
                       -- Valores finais para campo magnetico para o ramo principal, jugo e reterno
34
       HN1, HN2, HN3
                       -- Valores finais para densidade Magnetica para o ramo principal, jugo e retorno
                        -- Indutancias para os nove trechos
       1[1..9]
       lp[2..9]
                        -- Indutancias linhas (l') para os nove trechos
                            -- Variaveis intermediarias para facilitar o calculo de H e B
       х, у
       P1,P2,P3,P4
                       -- Permeancias do UMEC
```

```
01,02,03,04
                          -- Fluxos do UMEC (Ramo Principal, Jugo, Jugo e dispersao)
        m2a,m2b,m2c,dm2 -- Variaveis intermediarias das matrizes
40
41
        m311,m312,m321
                          -- Variaveis intermediarias das matrizes
                          -- Variaveis intermediarias das matrizes
42
        m322.m511.m512
43
        m11,y211,y311,y11 -- Variaveis intermediarias das matrizes
44
        Ins1
                         -- Corrente da fonte de corrente do Equivalente de Norton
45
                          -- Corrente de saida
        Iout
46
        vl1
                          -- Tensao acumulada na entrada 1
47
        vl2
                          -- Tensao acumulada na entrada 2
48
        v1
                          -- Diferenca de vll - vl2
        v1
                          -- Tensao de entrada no Reator = inpuV1 - ResistenciaInterna*Iout
49
50
            m, dt, determnt, aux,
51
            IMtrxA, cMtrxA, MtrxA[1..900]
            lMtrxP, cMtrxP, MtrxP[1..900]
53
            lMtrxN, cMtrxN, MtrxN[1..900]
            lMtrxV, cMtrxV, MtrxV[1..900]
54
            IMtrxO, cMtrxO, MtrxO[1..900]
56
            lMtrxI, cMtrxI, MtrxI[1..900]
57
            lMtrxIns, cMtrxIns, MtrxIns[1..900]
58
            IMtrxInsIn, cMtrxInsIn, MtrxInsIn[1..900]
59
            lMtrxIs, cMtrxIs, MtrxIs[1..900]
60 $INCLUDE ./RLib.m
61
   OUTPUT Iout
62
    INIT
63
     BN1:=0.01, BN2:=0.01, BN3:=0.01 -- Inicialização dos valores do campo magnetico
     HN1:=0.01, HN2:=0.01, HN3:=0.01 -- Inicializacao dos valores da densidade magnetica
64
     HN[1..3]:=0.01, BN[1..3]:=0.01 -- Inicializacao dos valores do campo magnetico e densidade magnetica
65
66
     integral(v1):=0
67
    integral(inpuV2):=0
68
    histdef(integral(v1)):=0
69
    histdef(integral(inpuV2)):=0
    Ins1:=0
71
    Iout:=0
     v1:=0
    ENDINIT
74
   EXEC
     H[1]:=0
                                   -- Definicao da curva BxH do material ferro magnetico
     B[1]:=0
77
     H[2]:=20.292
78
     B[2]:=0.9
79
     H[3]:=24.987
80
     B[3]:=1.2
81
      H[4]:=37.242
      B[4]:=1.45
82
83
      H[5]:=58.887
84
      B[5]:=1.58
85
      H[6]:=119.366
86
      B[6]:=1.68
87
     H[7]:=226.796
88
      B[7]:=1.74
89
      H[8]:=612.747
90
      B[8]:=1.81
91
      H[9]:=1193.662
92
      B[9]:=1.86
93
      H[10]:=10000
94
      B[10]:=1.97
95
96
      -- Metodo de aproximacao linear por trechos
97
      -- Esse loop calcula a indutancia de cada trecho
98
      FOR i:=1 TO 9 DO
```

```
99
            l[i]:=(B[i+1]-B[i])/(H[i+1]-H[i])
100
       ENDFOR
       -- Metodo de aproximacao linear por trechos parte 2
       -- Segundo loop para calcular o l' para cada trecho
       -- Utilizar Lp' para criar indutores equivalentes que facam
104
       -- o mesmo efeito na indutancia total.
106
       FOR i:=2 TO 9 DO
108
          lp[i]:=1/((1/1[i])-(1/1[i-1]))
       ENDFOR
111
       -- Calculo do campo magnetico no ramo principal
112
       v1:=inpuV1-0.17*Iout
       vl1:=integral(v1)
114
       vl2:=integral(inpuV2)
      BN[1]:=(vl1-vl2)/(arEnro*nuEspi*(0.96))
115
116
       IF BN[1]>=0 THEN
                                    -- Calculo de H para os trechos do sistema
118
                    HN[1]:=BN[1]/1[1]
                    FOR i:=2 TO 9 DO
119
                            IF BN[1]>B[i] THEN
                                    HN[1]:=HN[1]+((BN[1]-B[i])/lp[i])
                            ENDIF
                    ENDFOR
124
       ELSE
                    HN[1]:=BN[1]/1[1]
                    FOR i:=2 TO 9 DO
127
                            IF BN[1]<-B[i] THEN
128
                                    HN[1]:=HN[1]+((BN[1]+B[i])/lp[i])
129
                            ENDIF
                    ENDFOR
       ENDIE
133
           P1:=(BN[1]/HN[1])*arEnro/compEr
                                                             -- Permeancia do ramo principal
134
        O1:=BN[1] *arEnro
                                                                    -- Fluxo no ramo principal
           P4:=2*indDis/(nuEspi*nuEspi)
                                                             -- Permeancia de dispersao
136
        O4:=P4*(HN[1]*compEr+(O1/P1))
                                                             -- Fluxo de dispersao
137
       03:=01-04
                                                                             -- Fluxo no Jugo
138
       02:=03
                                                                                     -- Fluxo no retorno
139
       BN[3]:=O3/arJugo
                                                                     -- Campo magnetico no Jugo
140
       BN[2]:=02/arReto
                                                                     -- Campo magnetigo de retorno
141
      FOR i:=2 TO 3 DO
142
143
        IF BN[i]>=0 THEN
                              -- Calculo de H para os trechos do sistema
144
                    HN[i]:=BN[i]/1[1]
145
                    FOR j:=2 TO 9 DO
146
                            IF BN[i]>B[j] THEN
147
                                   HN[i]:=HN[i]+((BN[i]-B[j])/lp[j])
148
                            ENDIF
149
                    ENDFOR
150
            ELSE
151
                    HN[i]:=BN[i]/l[1]
152
                    FOR j:=2 TO 9 DO
153
                            IF BN[i]<-B[j] THEN
154
                                    HN[i]:=HN[i]+((BN[i]+B[j])/lp[j])
                            ENDIF
155
156
                    ENDFOR
            ENDIF
158
      ENDFOR
```

```
159
160
     P3:=(BN[3]/HN[3]) *arJugo/compJg
161
     P2:=(BN[2]/HN[2]) *arReto/compRt
162
     HN1:=HN[1]
163
     BN1:=BN[1]
164 HN2:=HN[2]
165 BN2:=BN[2]
166 HN3:=HN[3]
167 BN3:=BN[3]
169
     --Calculos das matrizes
170 m:=900
171
     lMtrxA := 4
172
     cMtrxA := 2
173
    MtrxA[1..m]:=0
174 MtrxA[1..cMtrxA]
                                                  :=[1, -1]
175 MtrxA[cMtrxA+1..2*cMtrxA] :=[0, 1]
176 MtrxA[2*cMtrxA+1..3*cMtrxA] :=[-1, 0]
177 MtrxA[3*cMtrxA+1..4*cMtrxA] :=[-1, 1]
178
179 | 1MtrxN := 1
180
     cMtrxN := 1
181
     MtrxN[1..m]:=0
182
     MtrxN[0*cMtrxN+1] := nuEspi
183
184
     lMtrxV := 1
185 cMtrxV := 1
186 MtrxV[1..m]:= 0
187 MtrxV[0*cMtrxV+1] := (v1-inpuV2)
188
189 | 1MtrxO := 1
190 cMtrxO := 1
191 Mtrx0[1..m]:=0
192
     Mtrx0[0*cMtrx0+1] := 01
193
194
195 | 1MtrxInsIn := 1
196 cMtrxInsIn := 1
197 MtrxInsIn[1..m]:=0
198 MtrxInsIn[0*cMtrxInsIn+1] := Ins1
199
200 dt := timestep
     lMtrxP := 4,
202
     cMtrxP := 4,
     MtrxP[1..m]:=0
204
205
     MtrxP[0*cMtrxP + 1] := P1
206
    MtrxP[1*cMtrxP + 2] := P2
207 MtrxP[2*cMtrxP + 3] := P3
208 MtrxP[3*cMtrxP + 4] := P4
209
210 USE RNSMatrix as RNSM1
211
     INPUT
          deltaTime := dt,
214
          lMatrixA := lMtrxA,
215
           cMatrixA := cMtrxA,
216
          MatrixA[1..m] := MtrxA[1..m]
          IMP := IMtrxP,
```

```
cMP := cMtrxP,
220
           MP[1..900]:= MtrxP[1..m]
           lMatrixN := lMtrxN,
           cMatrixN := cMtrxN,
          MatrixN[1..m] := MtrxN[1..m]
224
225
226
          lMatrixV := lMtrxV,
          cMatrixV := cMtrxV,
          MatrixV[1..m] := MtrxV[1..m]
228
          lMatrixO := lMtrxO,
230
           cMatrixO := cMtrxO,
232
           MatrixO[1..m] := MtrxO[1..m]
234
          lMatrixInsIn := lMtrxInsIn,
           cMatrixInsIn := cMtrxInsIn,
          MatrixInsIn[1..m] := MtrxInsIn[1..m]
237
     OUTPUT
238
          MtrxIns[1..m] := MatrixIns[1..m],
          MtrxIs[1..m] := MatrixIs[1..m]
239
    ENDUSE
241
      Ins1 := MtrxIns[1]
242
        Iout := MtrxIs[1]
243
244
     ENDEXEC
245 ENDMODEL
246 RECORD
247
     RNS1.HN1 AS HN1
248 RNS1.HN2 AS HN2
249 RNS1.HN3 AS HN3
250
     RNS1.BN1 AS BN1
251
     RNS1.BN2 AS BN2
      RNS1.BN3 AS BN3
253
      RNS1.P1 AS P1
254
      RNS1.P2 AS P2
      RNS1.P3 AS P3
255
256
      RNS1.P4 AS P4
      RNS1.01 AS 01
257
258
     RNS1.02 AS 02
259
    RNS1.03 AS 03
260
     RNS1.04 AS 04
2.61
     RNS1.ml1 AS ml1
      RNS1.y11 AS y11
262
263
      RNS1.v1 AS v1
264
      RNS1.inpuV1 AS inpuV1
265
      RNS1.inpuV2 AS inpuV2
      RNS1.vl AS vl
     RNS1.Ins1 AS Ins1
268 RNS1.Iout AS Iout
269 RNS1.vl1 AS vl1
270
     RNS1.vl2 AS vl2
271 USE RNS1 AS RNS1
272 INPUT
273
     inpuV1:= MM0001
274 inpuV2:= MM0002
275 DATA
               0.454
276 arEnro:=
               0.454
277
    arJugo:=
278 arReto:= 0.454
```

```
279
     nuEspi:=
                65.
280
     compEr:=
               3.59
281
    compJg:=
               2.66
282
    compRt:=
               3.59
283
    indDis:= 1.236E-4
284 OUTPUT
285 XX0002:=Iout
286 ENDUSE
287 ENDMODELS
288 C
         1
                  2.
                          3
                                  4
                                           5
                                                   6
                                                             7
                                                                      8
290 /BRANCH
291 C < n1 >< n2 ><ref1><ref2>< R >< L >< C >
292 C < n1 >< n2 ><ref1><ref2>< R >< A >< B ><Leng><><>0
293
    XX0001
                                                                      0
                            1.
294
   XX0002
                           .001
                                                                      1
295 / SOURCE
296 C < n 1><>< Ampl. >< Freq. ><Phase/T0>< A1 >< T1 >< TSTART >< TSTOP >
297 14XX0001 2.2E4
                        60.
                                                           -1.
                                                                 100.
298 60XX0002-1
                                                                   1.E3
299 /OUTPUT
300 BLANK MODELS
301 BLANK BRANCH
302 BLANK SWITCH
303 BLANK SOURCE
304 BLANK OUTPUT
305 BLANK PLOT
306 BEGIN NEW DATA CASE
307 BLANK
```

Código Fonte A.4 - Código ATP para reator naturalmente saturado com 1 enrolamento e perdas

```
1 BEGIN NEW DATA CASE
 2
  c ---
  C Generated by ATPDRAW novembro, sabado 7, 2015
 4 C A Bonneville Power Administration program
 5 C by H. K. Hoidalen at SEFAS/NTNU - NORWAY 1994-2009
 6 C -----
 7
  POWER FREQUENCY
                                      60.
  C dT >< Tmax >< Xopt >< Copt ><Epsiln>
 8
 9
     1.E-5 .05
                     1 1 1 0
       500
               1
                                                     0
                                                              1
                                                                       0
11 /MODELS
12 MODELS
  INPUT
14 MM0001 {v(XX0001)}
15 MM0002 {i(XX0003)}
16 OUTPUT
17
   XX0002
18 MODEL RNS2
19 INPUT inputV
                                 -- Tensao de Entrada
20
                                 -- Corrente na Carga
         iCarga
21
                                 -- Area Enrolamento
   DATA arEnro
        arJugo
                                 -- Area do Jugo
23
        nuEsp1
                                 -- Numero de Espiras enrolamento 1
2.4
        nuEsp2
                                 -- Numero de Espiras enrolamento 2
        compEr
                                 -- Comprimento do Braco de Enrolamento
                        -- Comprimento do Braco do Jugo
        compJg
27
        Ld1
                                        -- Indutancia de dispersao no enrolamento 1
        Ld2
                                         -- Indutancia de dispersao no enrolamento 2
```

29	rFonte Resistencia da fonte
30	VAR B[110] Campo magnetico dos nove trechos
31	H[110] Densidade magnetica para os nove trechos
32	HN[13]
33	BN[13]
34	HN1
35	BN1
36	HN2
37	BN2
38	BN3
39	HN3
40	<pre>l[19] Indutancias para os nove trechos</pre>
41	<pre>lp[29] Indutancias linhas (l') para os nove trechos</pre>
42	x, y, z, w, x1, y1
43	dl
44	d2
45	
46	P2
4 /	P3
40	24 DS
50	01
51	02
52	03
53	04
54	05
55	insl
56	ins2
57	i1
58	i2
59	v2
60	dy1
61	vll
62	V12
63	101
65	2C
66	Pc
67	ilp
68	v2p
69	vlp
70	iolc
71	ZL
72	e2
73	el
74	vl
75	m, dt, determnt, aux,
76	lMtrxA, cMtrxA, MtrxA[1900]
77	lMtrxP, cMtrxP, MtrxP[1900]
78	IMTrxN, cMtrxN, MtrxN[1900]
79	IMTrxV, CMTrXV, MTrXV[1900]
8U 01	IMETRU, CMETRU, METRU[1.900]
01 82	INTERIAL CHURAL, MULALLI2001
02 83	MtrxIns. (MtrxIns MtrxIns[1 900]
84	lMtrxIs, cMtrxIs, MtrxIs[1900]
85	OUTPUT v2
86	\$INCLUDE ./RLib.m
87	INIT
88	HN1:=0

	DN10
0.9	BNI0
90	HN2:=0
91	BN2:=0
92	HN3:=0
93	BN3:=0
94	HN[13]:=0
95	BN[13]:=0
96	ing1.=0
07	ins1. 0
51	
98	11:=0
99	i2:=0.01
100	v2:=0.01
101	e2:=0
102	e1:=0
103	02:=0
104	P2:=0.01
105	P3:=0.01
106	io1:=0
107	
100	
100	
109	integral(VI):=0
110	<pre>integral(v2):=0</pre>
111	<pre>histdef(integral(v1)):=0</pre>
112	<pre>histdef(integral(v2)):=0</pre>
113	iLp:=0.1
114	v2p:=0.1
115	v1p:=0.1
116	iolc:=0
117	7c:=0
± ± /	
1101	
118	
118 119	EXEC
118 119 120	ENDINIT EXEC H[1]:=11.937
118 119 120 121	EXEC H[1]:=11.937 B[1]:=0.4
118 119 120 121 122	EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292
118 119 120 121 122 123	EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9
118 119 120 121 122 123 124	ENDINIT EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9 H[3]:=24.987
118 119 120 121 122 123 124 125	ENDINIT EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9 H[3]:=24.987 B[3]:=1.2
118 119 120 121 122 123 124 125 126	ENDINIT EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9 H[3]:=24.987 B[3]:=1.2 H[4]:=37.242
118 119 120 121 122 123 124 125 126 127	ENDINIT EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9 H[3]:=24.987 B[3]:=1.2 H[4]:=37.242 B[4]:=1.45
118 119 120 121 122 123 124 125 126 127 128	ENDINIT EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9 H[3]:=24.987 B[3]:=1.2 H[4]:=37.242 B[4]:=1.45 H[5]:=58.887
118 119 120 121 122 123 124 125 126 127 128 129	ENDINIT EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9 H[3]:=24.987 B[3]:=1.2 H[4]:=37.242 B[4]:=1.45 H[5]:=58.887 B[5]:=1.58
118 119 120 121 122 123 124 125 126 127 128 129	ENDINIT EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9 H[3]:=24.987 B[3]:=1.2 H[4]:=37.242 B[4]:=1.45 H[5]:=58.887 B[5]:=1.58 H[6]:=119.366
118 119 120 121 122 123 124 125 126 127 128 129 130	ENDINIT EXEC H [1]:=11.937 B [1]:=0.4 H [2]:=20.292 B [2]:=0.9 H [3]:=24.987 B [3]:=1.2 H [4]:=37.242 B [4]:=1.45 H [5]:=58.887 B [5]:=1.58 H [6]:=119.366 B [6]:=1.68
118 119 120 121 122 123 124 125 126 127 128 129 130 131	ENDINIT EXEC H [1] :=11.937 B [1] :=0.4 H [2] :=20.292 B [2] :=0.9 H [3] :=24.987 B [3] :=1.2 H [4] :=37.242 B [4] :=1.45 H [5] :=58.887 B [5] :=1.58 H [6] :=119.366 B [6] :=1.68 H [2] :=0.9
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132	ENDINIT EXEC H [1] :=11.937 B [1] :=0.4 H [2] :=20.292 B [2] :=0.9 H [3] :=24.987 B [3] :=1.2 H [4] :=37.242 B [4] :=1.45 H [5] :=58.887 B [5] :=1.58 H [6] :=119.366 B [6] :=1.68 H [7] :=226.796 E [2] = 0.9
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133	ENDINIT EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9 H[3]:=24.987 B[3]:=1.2 H[4]:=37.242 B[4]:=1.45 H[5]:=58.887 B[5]:=1.58 H[6]:=119.366 B[6]:=1.68 H[7]:=226.796 B[7]:=1.74
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134	ENDINIT EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9 H[3]:=24.987 B[3]:=1.2 H[4]:=37.242 B[4]:=1.45 H[5]:=58.887 B[5]:=1.58 H[6]:=119.366 B[6]:=1.68 H[7]:=226.796 B[7]:=1.74 H[8]:=612.747
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135	EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9 H[3]:=24.987 B[3]:=1.2 H[4]:=37.242 B[4]:=1.45 H[5]:=58.887 B[5]:=1.58 H[6]:=119.366 B[6]:=1.68 H[7]:=226.796 B[7]:=1.74 H[8]:=612.747 B[8]:=1.81
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136	EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9 H[3]:=24.987 B[3]:=1.2 H[4]:=37.242 B[4]:=1.45 H[5]:=58.887 B[5]:=1.58 H[6]:=119.366 B[6]:=1.68 H[7]:=226.796 B[7]:=1.74 H[8]:=612.747 B[8]:=1.81 H[9]:=1193.662
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137	EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9 H[3]:=24.987 B[3]:=1.2 H[4]:=37.242 B[4]:=1.45 H[5]:=58.887 B[5]:=1.58 H[6]:=119.366 B[6]:=1.68 H[7]:=226.796 B[7]:=1.74 H[8]:=612.747 B[8]:=1.81 H[9]:=1193.662 B[9]:=1.86
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138	EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9 H[3]:=24.987 B[3]:=1.2 H[4]:=37.242 B[4]:=1.45 H[5]:=58.887 B[5]:=1.58 H[6]:=119.366 B[6]:=1.68 H[7]:=226.796 B[7]:=1.74 H[8]:=612.747 B[8]:=1.81 H[9]:=1193.662 B[9]:=1.86 H[10]:=10000
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9 H[3]:=24.987 B[3]:=1.2 H[4]:=37.242 B[4]:=1.45 H[5]:=58.887 B[5]:=1.58 H[6]:=119.366 B[6]:=1.68 H[7]:=226.796 B[7]:=1.74 H[8]:=612.747 B[8]:=1.81 H[9]:=1193.662 B[9]:=1.86 H[10]:=10000 B[10]:=1.97
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140	EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9 H[3]:=24.987 B[3]:=1.2 H[4]:=37.242 B[4]:=1.45 H[5]:=58.887 B[5]:=1.58 H[6]:=119.366 B[6]:=1.68 H[7]:=226.796 B[7]:=1.74 H[8]:=612.747 B[8]:=1.81 H[9]:=1193.662 B[9]:=1.86 H[10]:=10000 B[10]:=1.97
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141	EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9 H[3]:=24.987 B[3]:=1.2 H[4]:=37.242 B[4]:=1.45 H[5]:=58.887 B[5]:=1.58 H[6]:=119.366 B[6]:=1.68 H[7]:=226.796 B[7]:=1.74 H[8]:=612.747 B[8]:=1.81 H[9]:=1193.662 B[9]:=1.86 H[10]:=10000 B[10]:=1.97
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141	EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9 H[3]:=24.987 B[3]:=1.2 H[4]:=37.242 B[4]:=1.45 H[5]:=58.887 B[5]:=1.58 H[6]:=119.366 B[6]:=1.68 H[7]:=226.796 B[7]:=1.74 H[8]:=612.747 B[8]:=1.81 H[9]:=1193.662 B[9]:=1.86 H[10]:=10000 B[10]:=1.97 Metodo de aproximação linear por trechos Metodo de aproximação linear por trechos
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142	EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9 H[3]:=24.987 B[3]:=1.2 H[4]:=37.242 B[4]:=1.45 H[5]:=58.887 B[5]:=1.58 H[6]:=119.366 B[6]:=1.68 H[7]:=226.796 B[7]:=1.74 H[8]:=612.747 B[8]:=1.81 H[9]:=1193.662 B[9]:=1.86 H[10]:=10000 B[10]:=1.97 Metodo de aproximacao linear por trechos Esse loop calcula a indutancia de cada trecho
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143	EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9 H[3]:=24.987 B[3]:=1.2 H[4]:=37.242 B[4]:=1.45 H[5]:=58.887 B[5]:=1.58 H[6]:=119.366 B[6]:=1.68 H[7]:=226.796 B[7]:=1.74 H[8]:=612.747 B[8]:=1.81 H[9]:=1193.662 B[9]:=1.86 H[10]:=1.97 Metodo de aproximacao linear por trechos Esse loop calcula a indutancia de cada trecho FOR i:=1 TO 9 DO
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144	<pre>ENDINIT EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9 H[3]:=24.987 B[3]:=1.2 H[4]:=37.242 B[4]:=1.45 H[5]:=58.887 B[5]:=1.58 H[6]:=119.366 B[6]:=1.68 H[7]:=226.796 B[7]:=1.74 H[8]:=612.747 B[8]:=1.81 H[9]:=1193.662 B[9]:=1.86 H[10]:=10000 B[10]:=1.97 Metodo de aproximacao linear por trechos Esse loop calcula a indutancia de cada trecho FOR i:=1 TO 9 DO</pre>
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144	<pre>EXEC H[1]:=11.937 B[1]:=0.4 H[2]:=20.292 B[2]:=0.9 H[3]:=24.987 B[3]:=1.2 H[4]:=37.242 B[4]:=1.45 H[5]:=58.887 B[5]:=1.58 H[6]:=119.366 B[6]:=1.68 H[7]:=226.796 B[7]:=1.74 H[8]:=612.747 B[8]:=1.81 H[9]:=1193.662 B[9]:=1.86 H[10]:=10000 B[10]:=1.97 Metodo de aproximacao linear por trechos Esse loop calcula a indutancia de cada trecho FOR i:=1 TO 9 DO</pre>
 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 	<pre>EXEC H(1):=11.937 B(1):=0.4 H(2):=20.292 B(2):=0.9 H(3):=24.987 B(3):=1.2 H(4):=37.242 B(4):=1.45 H(5):=58.887 B(5):=1.58 H(6):=119.366 B(6):=1.68 H(7):=226.796 B(7):=1.74 H(8):=612.747 B(8):=1.81 H(9):=1193.662 B(9):=1.86 H(10):=10000 B(10):=1.97 Metodo de aproximacao linear por trechos Esse loop calcula a indutancia de cada trecho FOR i:=1 TO 9 DO I(1):=(B[i+1]-B[i])/(H[i+1]-H[i]) ENDFOR</pre>
 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 	<pre>EXEC H(1):=11.937 B(1):=0.4 H(2):=20.292 B(2):=0.9 H(3):=24.987 B(3):=1.2 H(4):=37.242 B(4):=1.45 H(5):=58.887 B(5):=1.58 H(6):=119.366 B(6):=1.68 H(7):=226.796 B(7):=1.74 H(8):=612.747 B(8):=1.81 H(9):=1193.662 B(9):=1.86 H(10):=10000 B(10):=1.97 Metodo de aproximacao linear por trechos Esse loop calcula a indutancia de cada trecho FOR i:=1 TO 9 DO 1[i]:=(B[i+1]-B[i])/(H[i+1]-H[i]) ENDFOR Metodo de aproximacao linear por trechos parte 2</pre>

```
149
       -- Utilizar Lp' para criar indutores equivalentes que facam
150
       -- o mesmo efeito na indutancia total.
151
152
       FOR i:=2 TO 9 DO
            lp[i]:=1/((1/l[i])-(1/l[i-1]))
       ENDFOR
154
155
156
      d1:=arEnro*nuEsp1*(0.96)
157
      d2:=arEnro*nuEsp2*(0.96)
158
      P4:=Ld1/(nuEsp1*nuEsp1)
      P5:=Ld2/(nuEsp2*nuEsp2)
       v1:=inputV-rFonte*i1
161
       v2:=(nuEsp2/nuEsp1)*v1
162
163
      IF t=1e-5 THEN
164
       v1p:=v1/cos(376.99*t)
165
      ENDIF
166
      IF t=1e-5 THEN
167
       iLp:=iCarga/cos(376.99*t)
168
      ENDIF
169
      IF t=1e-5 THEN
170
       v2p:=v2/cos(376.99*t)
171
       ENDIF
172
       ZL:=v2p/iLp
173
174
       BN[1]:=integral(v1)
175
       BN[1]:=BN[1]/d1
176
       BN[2]:=integral(v2)
177
       BN[2]:=BN[2]/d2
178
179
            FOR i:=1 TO 2 DO
180
                    IF BN[i]>=0 THEN
                                                     -- Calculo de H para os trechos do sistema
181
                             HN[i]:=BN[i]/1[1]
182
                             FOR j:=2 TO 9 DO
183
                                     IF BN[i]>B[j] THEN
184
                                            HN[i]:=HN[i]+((BN[i]-B[j])/lp[j])
185
                                     ENDIF
186
                             ENDFOR
                    ELSE
187
188
                             HN[i]:=BN[i]/l[1]
189
                             FOR j:=2 TO 9 DO
190
                                     IF BN[i]<-B[j] THEN
191
                                             HN[i]:=HN[i]+((BN[i]+B[j])/lp[j])
                                     ENDIF
193
                             ENDFOR
194
                    ENDIF
195
            ENDFOR
196
197
198
            P1:=(BN[1]/HN[1])*arEnro/compEr
199
        P2:=(BN[2]/HN[2])*arEnro/compEr
        O1:=BN[1]*arEnro
201
        O2:=BN[2]*arEnro
        O4:=P4*(HN[1]*compEr+(O1/P1))
        O5:=P5*(HN[2]*compEr+(O2/P2))
204
        03:=01-04
        BN[3]:=03/arJugo
            IF BN[3]>=0 THEN
                                             -- Calculo de H para os trechos do sistema
208
                    HN[3]:=BN[3]/1[1]
```

```
FOR i:=2 TO 9 DO
210
                             IF BN[3]>B[i] THEN
                                     HN[3]:=HN[3]+((BN[3]-B[i])/lp[i])
212
                             ENDIF
213
                    ENDFOR
            ELSE
214
215
                    HN[3]:=BN[3]/1[1]
216
                    FOR i:=2 TO 9 DO
                             IF BN[3]<-B[i] THEN
218
                                     HN[3]:=HN[3]+((BN[3]+B[i])/lp[i])
219
                             ENDIF
                    ENDFOR
            ENDIF
222
      IF HN[3] <> 0 THEN
2.2.4
           P3:=(BN[3]/HN[3])*arJugo/compJg
            e2:=i2*ZL
            el:=v1
228
2.2.9
            HN1:=HN[1]
            BN1:=BN[1]
231
            HN2:=HN[2]
            BN2:=BN[2]
            HN3:=HN[3]
234
            BN3:=BN[3]
235
            -- Essa parte corresponde ao calculo das matrizes RLib
237
            m:=900
238
            lMtrxA := 5
            cMtrxA := 2
239
240
            MtrxA[1..m]:=0
241
            MtrxA[1..cMtrxA]
                                                      :=[1, -1]
242
            MtrxA[cMtrxA+1..2*cMtrxA]
                                             :=[0, 1]
243
            MtrxA[2*cMtrxA+1..3*cMtrxA]
                                             :=[-1, 0]
244
            MtrxA[3*cMtrxA+1..4*cMtrxA]
                                             :=[-1, 1]
2.4.5
            MtrxA[4*cMtrxA+1..5*cMtrxA]
                                            :=[0, -1]
246
247
            lMtrxN := 2
248
            cMtrxN := 2
            MtrxN[1..m]:=0
249
            MtrxN[0*cMtrxN+1] := nuEsp1
2.51
            MtrxN[1*cMtrxN+2] := nuEsp2
252
253
            lMtrxV := 2
            cMtrxV := 1
254
255
            MtrxV[1..m]:= 0
            MtrxV[0*cMtrxV+1] := (e1)
257
            MtrxV[1*cMtrxV+1] := (e2)
258
259
            lMtrxO := 2
260
            cMtrxO := 1
261
            Mtrx0[1..m]:=0
            MtrxO[0*cMtrxO+1] := 01
263
            Mtrx0[1*cMtrx0+1] := 02
264
            lMtrxInsIn := 2
265
            cMtrxInsIn := 1
267
            MtrxInsIn[1..m]:=0
268
            MtrxInsIn[0*cMtrxInsIn+1] := Ins1
```

```
269
            MtrxInsIn[1*cMtrxInsIn+1] := Ins2
270
271
            dt := timestep
272
273
            1MtrxP := 5,
274
            cMtrxP := 5,
275
            MtrxP[1..m]:=0
276
            MtrxP[(1-1) * cMtrxP + 1] := P1
277
            MtrxP[(2-1) * cMtrxP + 2] := P2
            MtrxP[(3-1)*cMtrxP + 3] := P3
            MtrxP[(4-1)*cMtrxP + 4] := P4
280
            MtrxP[(5-1)*cMtrxP + 5] := P5
281
282
            USE RNSMatrix as RNSM1
283
            INPUT
            deltaTime := dt,
285
286
           lMatrixA := lMtrxA,
           cMatrixA := cMtrxA,
287
288
            MatrixA[1..m] := MtrxA[1..m]
2.89
            IMP := IMtrxP,
291
            cMP := cMtrxP,
292
            MP[1..900]:= MtrxP[1..m]
293
294
            lMatrixN := lMtrxN,
295
            cMatrixN := cMtrxN,
296
            MatrixN[1..m] := MtrxN[1..m]
297
298
           lMatrixV := lMtrxV,
299
            cMatrixV := cMtrxV,
            MatrixV[1..m] := MtrxV[1..m]
            lMatrixO := lMtrxO,
            cMatrixO := cMtrxO,
304
            MatrixO[1..m] := MtrxO[1..m]
            lMatrixInsIn := lMtrxInsIn,
307
            cMatrixInsIn := cMtrxInsIn,
308
            MatrixInsIn[1..m] := MtrxInsIn[1..m]
309
            OUTPUT
            MtrxIns[1..m] := MatrixIns[1..m],
311
           MtrxIs[1..m] := MatrixIs[1..m]
           ENDUSE
            Ins1 := MtrxIns[1]
314
            Ins2 := MtrxIns[2]
            i1 := MtrxIs[1]
316
            i2 := MtrxIs[2]
317
318
            x := ((1/P1) * ((1/P3) + (1/P4) + (1/P5)) + ((1/P4) * ((1/P3) + (1/P5))))
319
            Pc:=1/(x/((1/P3)+(1/P4)+(1/P5)))
            Xc:=376.99*nuEsp1*nuEsp1*Pc
            Zc:=Xc/2
                                                              -- Zc corresponde a impedancia do transformador
            i1:=(i1+(v1p/Zc))*sin(376.99*t)
            i2:= i2 + i1*(nuEsp1/nuEsp2)
324
      ENDIF
32.6
     ENDEXEC
327 ENDMODEL
328 RECORD
```

329	RNS2.HN1 AS HN1
330	RNS2.HN2 AS HN2
331	RNS2.HN3 AS HN3
332	RNS2.BN1 AS BN1
333	RNS2.BN2 AS BN2
334	RNS2.BN3 AS BN3
335	RNS2.INS1 AS INS1
336	RNS2.INS2 AS INS2
337	RNS2.P1 AS P1
338	RNS2.P2 AS P2
339	RNS2.P3 AS P3
340	RNS2.P4 AS P4
341	RNS2.P5 AS P5
342	RNS2.01 AS 01
343	RNS2.02 AS 02
344	RNS2.03 AS 03
345	RNS2.04 AS 04
346	RNS2.05 AS 05
347	RNS2.v1 AS v1
348	RNS2.v2 AS v2
349	RNS2.e2 AS e2
350	RNS2.el AS el
351	RNS2.vl1 AS vl1
352	RNS2.vl2 AS vl2
353	RNS2.i1 AS i1
354	RNS2.i2 AS i2
355	RNS2.iol AS iol
356	RNS2.iolc AS iolc
357	RNS2.iCarga AS iCarga
358	RNS2.ZL AS ZL
359	RNS2.Zc AS Zc
360	USE RNS2 AS RNS2
361	INPUT
362	inputV:= MM0001
363	iCarga:= MM0002
364	DATA
365	arEnro:= 0.454
366	arJugo:= 0.454
367	nuEsp1:= 65.
368	nuEsp2:= 450.
369	compEr:= 3.59
370	compJg:= 2.66
371	Ld1:= 2.472E-4
372	Ld2:= 0.011846
373	
	rFonte:= 0.008
374	OUTPUT
374 375	rFonte:= 0.008 OUTPUT XX0002:=v2
374 375 376	rFonte:= 0.008 OUTPUT XX0002:=v2 ENDUSE
374 375 376 377	<pre>rFonte:= 0.008 OUTPUT XX0002:=v2 ENDUSE ENDMODELS</pre>
374 375 376 377 378	rFonte:= 0.008 OUTPUT XX0002:=v2 ENDUSE ENDMODELS C 1 2 3 4 5 6 7 8 C 2457000000000000000000000000000000000000
374 375 376 377 378 379	rFonte:= 0.008 OUTPUT XX0002:=v2 ENDUSE ENDMODELS C 1 2 3 4 5 6 7 8 C 345678901234567890
374 375 376 377 378 379 380	rFonte:= 0.008 OUTPUT XX0002:=v2 ENDUSE ENDMODELS C 1 2 3 4 5 6 7 8 C 345678901234567890
374 375 376 377 378 379 380 381	<pre>rFonte:= 0.008 OUTPUT XX0002:=v2 ENDUSE ENDMODELS C 1 2 3 4 5 6 7 8 C 345678901234567890 /BRANCH C < n1 >< n2 >< ref1><ref2>< R >< L >< C ></ref2></pre>
374 375 376 377 378 379 380 381 382	<pre>rFonte:= 0.008 OUTPUT XX0002:=v2 ENDUSE ENDMODELS C 1 2 3 4 5 6 7 8 C 345678901234567890 /BRANCH C < n1 >< n2 ><ref1><ref2>< R >< L >< C > C < n1 >< n2 ><ref1><ref2>< R >< A >< B ><leng><>>0 vv0001 vv0001 vv0001 vv0001 vv0001 vv0001 vv0001 vv0001<vv0001 pre="" vv0001<vv0001<vv0001<vv0001<vv0001<vv0001<vv0001<vv0001<vv0001<vv0001<vv0001<vv0001<vv0001<vv0001<vv0001<vv0001<vv0001<vv0001<vv0001<vv0001<vv0001<vv0001<vv0001<=""></vv0001></leng></ref2></ref1></ref2></ref1></pre>
374 375 376 377 378 379 380 381 382 383 384	<pre>rFonte:= 0.008 OUTPUT XX0002:=v2 ENDUSE ENDMODELS C 1 2 3 4 5 6 7 8 C 345678901234567890 /BRANCH C < n1 >< n2 ><ref1><ref2>< R >< L >< C > C < n1 >< n2 ><ref1><ref2>< R >< A >< B ><leng><>>0 XX0001 0 VM0002XY0003 0075 2 </leng></ref2></ref1></ref2></ref1></pre>
374 375 376 377 378 379 380 381 382 383 384 385	<pre>rFonte:= 0.008 OUTPUT XX0002:=v2 ENDUSE ENDMODELS C 1 2 3 4 5 6 7 8 C 3456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 /BRANCH C < n1 >< n2 ><ref1><ref2>< R >< L >< C > C < n1 >< n2 ><ref1><ref2>< R >< A >< B ><leng><>>0 XX0001 0.01 0 XX0002XX0003 .0075 3 </leng></ref2></ref1></ref2></ref1></pre>
374 375 376 377 378 379 380 381 382 383 384 385 386	<pre>rFonte:= 0.008 OUTPUT XX0002:=v2 ENDUSE ENDMODELS C 1 2 3 4 5 6 7 8 C 34567890123456789012345678901234567890123456789012345678901234567890 /BRANCH C < n1 >< n2 ><ref1><ref2>< R >< L >< C > C < n1 >< n2 ><ref1><ref2>< R >< A >< B ><leng><>>0 XX0001 .01 0 XX0002XX0003 .0075 3 /SWITCH C < n l>< n ll l l l l l l l l l l l l l l l l l</leng></ref2></ref1></ref2></ref1></pre>
 374 375 376 377 378 379 380 381 382 383 384 385 386 387 	rFonte:= 0.008 OUTPUT XX0002:=v2 ENDUSE ENDMODELS C 1 2 3 4 5 6 7 8 C 34567890123456789013 0 0 0 0 0 0 0 0 0 3 0 3 0 3 0 0 0 3 0 0 3 0 0
 374 375 376 377 378 380 381 382 383 384 385 386 387 388 	rFonte:= 0.008 OUTPUT XX0002:=v2 ENDUSE ENDMODELS C 1 2 3 4 5 6 7 8 C 345678901234567890130003 0 XX00001 0 XX00003 0 XX0003 -1 1 1 XX0003 -1 1 1 1 1 1

389	C < n 1><>< Ampl. >< Freq. > <phase t0=""><</phase>	Al ><	Τ1	>< TSTART >< TSTOP >
390	14XX0001 1600. 60.			-1. 100.
391	60XX0002 0			1.E3
392	/OUTPUT			
393	BLANK MODELS			
394	BLANK BRANCH			
395	BLANK SWITCH			
396	BLANK SOURCE			
397	BLANK OUTPUT			
398	BLANK PLOT			
399	BEGIN NEW DATA CASE			
400	BLANK			

Código Fonte A.5 – Código ATP para reator naturalmente saturado com 2 enrolamentos em curto e sem perdas

```
1 BEGIN NEW DATA CASE
 2 C -----
 3 C Generated by ATPDRAW novembro, sabado 7, 2015
 4 C A Bonneville Power Administration program
 5 C by H. K. Hidalen at SEFAS/NTNU - NORWAY 1994-2009
 6 C -----
 7
  POWER FREQUENCY
                                       60.
  C dT >< Tmax >< Xopt >< Copt ><Epsiln>
 8
 9
     1.E-5 .05
                      1 1 1
       500
                1
                                               0
                                                        0
                                                                1
                                                                        0
11 /MODELS
12 MODELS
13 INPUT
14 MM0001 {v(XX0001)}
15 MM0002 {i(XX0003)}
16 OUTPUT
17
   XX0002
18 MODEL RNS2
19 INPUT inputV
                                  -- Tensao de Entrada
20
         iCarga
                                  -- Corrente na Carga
21
   DATA arEnro
                                  -- Area Enrolamento
        arJugo
                                  -- Area do Jugo
                                  -- Numero de Espiras enrolamento 1
2.3
        nuEspl
24
                                  -- Numero de Espiras enrolamento 2
        nuEsp2
25
        compEr
                                  -- Comprimento do Braco de Enrolamento
26
                        -- Comprimento do Braco do Jugo
        compJg
27
        Ld1
                                         -- Indutancia de dispersao no enrolamento 1
28
        Ld2
                                          -- Indutancia de dispersao no enrolamento 2
2.9
        rFonte
                                  -- Resistencia da fonte
   VAR B[1..10]
                          -- Campo magnetico dos nove trechos
         H[1..10]
                             -- Densidade magnetica para os nove trechos
       HN[1..3]
       BN[1..3]
       HN1
       BN1
36
       HN2
37
       BN2
38
       BN3
39
       HN 3
40
                        -- Indutancias para os nove trechos
       1[1..9]
                 -- Indutancias linhas (l') para os nove trechos
41
       lp[2..9]
42
       x, y, z, w, x1, y1
43
       d1
```

44	d2
45	P1
46	Ρ2
47	P3
48	P 4
49	P5
50	01
51	02
52	03
53	04
54	05
55	insl
56	ins2
57	il
58	i2
59	v2
60	dy1
61	vll
62	vl2
63	iol
64	Zc
65	Хс
66	Pc
67	iLp
68	v2p
69	vlp
70	iolc
71	ZL
72	e2
73	el
74	v1
75	m, dt, determnt, aux,
76	lMtrxA, cMtrxA, MtrxA[1900]
77	<pre>lMtrxP, cMtrxP, MtrxP[1900]</pre>
78	IMTrxN, CMTrxN, MtrxN[1900]
/9	IMTrxV, cMtrxV, MtrxV[1900]
80	IMTrxO, CMTrXO, MTrXO[1900]
0.0	IMTRAL, CMURXI, MURXI[I900]
02	IMTERIAL ON TRADE AND A DEPARTMENT IN TRADICIONAL
со 0 Л	IMERATION, CMERATION, MERATINS [1900]
85	
86	SINCLIDE /RLib m
87	INIT
88	HN1:=0
89	BN1:=0
90	HN2:=0
91	BN2:=0
92	HN3:=0
93	BN3:=0
94	HN[13]:=0
95	BN[13]:=0
96	ins1:=0
97	ins2:=0
98	i1:=0
99	i2:=0.01
100	v2:=0.01
101	e2:=0
102	e1:=0
103	02:=0

```
104
    P2:=0.01
105
     P3:=0.01
     io1:=0
     ZL:=0
     v1:=0
109
     integral(v1):=0
110 integral(v2):=0
111 histdef(integral(v1)):=0
112 histdef(integral(v2)):=0
113 iLp:=0.1
114
     v2p:=0.1
     v1p:=0.1
116
     io1c:=0
117
     Zc:=0
118 ENDINIT
119 EXEC
120 H[1]:=11.937
121
     B[1]:=0.4
122 H[2]:=20.292
123
    B[2]:=0.9
     H[3]:=24.987
      B[3]:=1.2
126
      H[4]:=37.242
      B[4]:=1.45
128
      H[5]:=58.887
129
      B[5]:=1.58
     H[6]:=119.366
130
131
     B[6]:=1.68
132 H[7]:=226.796
133
     B[7]:=1.74
134
     H[8]:=612.747
      B[8]:=1.81
135
      H[9]:=1193.662
      B[9]:=1.86
138
      H[10]:=10000
139
      B[10]:=1.97
140
141
      -- Metodo de aproximacao linear por trechos
142
      -- Esse loop calcula a indutancia de cada trecho
143
      FOR i:=1 TO 9 DO
           l[i]:=(B[i+1]-B[i])/(H[i+1]-H[i])
144
145
      ENDFOR
146
147
      -- Metodo de aproximacao linear por trechos parte 2
148
       -- Segundo loop para calcular o l' para cada trecho
149
       -- Utilizar Lp' para criar indutores equivalentes que facam
150
      -- o mesmo efeito na indutancia total.
151
152
      FOR i:=2 TO 9 DO
153
           lp[i]:=1/((1/l[i])-(1/l[i-1]))
154
       ENDFOR
155
156
      d1:=arEnro*nuEsp1*(0.96)
157
      d2:=arEnro*nuEsp2*(0.96)
158
      P4:=Ld1/(nuEsp1*nuEsp1)
159
      P5:=Ld2/(nuEsp2*nuEsp2)
160
      v1:=inputV-rFonte*i1
161
      v2:=(nuEsp2/nuEsp1)*v1
162
163
      IF t=1e-5 THEN
```

```
164
        v1p:=v1/cos(377*t)
165
       ENDIF
166
       IF t=1e-5 THEN
167
       iLp:=iCarga/cos(377*t)
168
       ENDIF
       IF t=1e-5 THEN
170
       v2p:=v2/cos(377*t)
171
       ENDIF
172
       ZL:=v2p/iLp
173
174
       BN[1]:=integral(v1)
175
       BN[1]:=BN[1]/d1
176
       BN[2]:=integral(v2)
177
       BN[2]:=BN[2]/d2
178
            FOR i:=1 TO 2 DO
179
                    IF BN[i]>=0 THEN
180
                                                      -- Calculo de H para os trechos do sistema
181
                             HN[i]:=BN[i]/1[1]
182
                             FOR j:=2 TO 9 DO
183
                                     IF BN[i]>B[j] THEN
184
                                             HN[i]:=HN[i]+((BN[i]-B[j])/lp[j])
185
                                     ENDIF
186
                             ENDFOR
187
                     ELSE
188
                             HN[i]:=BN[i]/1[1]
189
                             FOR j:=2 TO 9 DO
190
                                     IF BN[i]<-B[j] THEN
191
                                              HN[i]:=HN[i]+((BN[i]+B[j])/lp[j])
192
                                     ENDIF
193
                             ENDFOR
194
                     ENDIF
            ENDFOR
195
196
197
198
            P1:=(BN[1]/HN[1])*arEnro/compEr
199
        P2:=(BN[2]/HN[2])*arEnro/compEr
        O1:=BN[1]*arEnro
201
        O2:=BN[2]*arEnro
        O4:=P4*(HN[1]*compEr+(O1/P1))
        O5:=P5*(HN[2]*compEr+(O2/P2))
        03:=01-04
204
        BN[3]:=03/arJugo
            IF BN[3]>=0 THEN
207
                                              -- Calculo de H para os trechos do sistema
208
                     HN[3]:=BN[3]/1[1]
209
                     FOR i:=2 TO 9 DO
210
                             IF BN[3]>B[i] THEN
                                     HN[3]:=HN[3]+((BN[3]-B[i])/lp[i])
                             ENDIF
213
                     ENDFOR
214
            ELSE
215
                     HN[3]:=BN[3]/1[1]
216
                     FOR i:=2 TO 9 DO
                             IF BN[3]<-B[i] THEN
218
                                     HN[3]:=HN[3]+((BN[3]+B[i])/lp[i])
219
                             ENDIF
                     ENDFOR
            ENDIF
      IF HN[3] < 0 OR HN[3] > 0 THEN
```

```
224
            P3:=(BN[3]/HN[3])*arJugo/compJg
225
            HN1:=HN[1]
            BN1:=BN[1]
            HN2:=HN[2]
            BN2:=BN[2]
            HN3:=HN[3]
231
            BN3:=BN[3]
            -- Essa parte corresponde ao calculo das matrizes RLib
234
            m := 900
235
            lMtrxA := 5
236
            cMtrxA := 2
237
            MtrxA[1..m]:=0
238
            MtrxA[1..cMtrxA]
                                                     :=[1, -1]
            MtrxA[cMtrxA+1..2*cMtrxA]
                                            :=[0, 1]
240
            MtrxA[2*cMtrxA+1..3*cMtrxA]
                                            :=[-1, 0]
241
            MtrxA[3*cMtrxA+1..4*cMtrxA]
                                            :=[-1, 1]
242
            MtrxA[4*cMtrxA+1..5*cMtrxA]
                                            :=[0, -1]
243
           lMtrxN := 2
2.4.4
            cMtrxN := 2
245
246
            MtrxN[1..m]:=0
247
            MtrxN[0*cMtrxN+1] := nuEsp1
248
            MtrxN[1*cMtrxN+2] := nuEsp2
249
            lMtrxV := 2
251
            cMtrxV := 1
252
            MtrxV[1..m]:= 0
253
            MtrxV[0*cMtrxV+1] := (e1)
254
            MtrxV[1*cMtrxV+1] := (e2)
255
256
            lMtrxO := 2
257
            cMtrxO := 1
258
            Mtrx0[1..m]:=0
259
            MtrxO[0*cMtrxO+1] := 01
            MtrxO[1*cMtrxO+1] := 02
261
262
            lMtrxInsIn := 2
263
            cMtrxInsIn := 1
264
            MtrxInsIn[1..m]:=0
            MtrxInsIn[0*cMtrxInsIn+1] := Ins1
            MtrxInsIn[1*cMtrxInsIn+1] := Ins2
267
268
            dt := timestep
269
270
            1MtrxP := 5,
271
            cMtrxP := 5,
            MtrxP[1..m]:=0
273
            MtrxP[(1-1) * cMtrxP + 1] := P1
274
            MtrxP[(2-1)*cMtrxP + 2] := P2
275
            MtrxP[(3-1) * cMtrxP + 3] := P3
276
            MtrxP[(4-1)*cMtrxP + 4] := P4
277
            MtrxP[(5-1)*cMtrxP + 5] := P5
278
279
            USE RNSMatrix as RNSM1
            INPUT
280
281
            deltaTime := dt,
282
283
            lMatrixA := lMtrxA,
```

```
284
            cMatrixA := cMtrxA,
285
            MatrixA[1..m] := MtrxA[1..m]
286
287
            IMP := IMtrxP,
            cMP := cMtrxP,
289
           MP[1..900]:= MtrxP[1..m]
290
291
           lMatrixN := lMtrxN,
292
           cMatrixN := cMtrxN,
           MatrixN[1..m] := MtrxN[1..m]
293
294
            lMatrixV := lMtrxV,
295
296
            cMatrixV := cMtrxV,
297
           MatrixV[1..m] := MtrxV[1..m]
298
           lMatrixO := lMtrxO,
299
           cMatrixO := cMtrxO,
           MatrixO[1..m] := MtrxO[1..m]
           lMatrixInsIn := lMtrxInsIn,
           cMatrixInsIn := cMtrxInsIn,
           MatrixInsIn[1..m] := MtrxInsIn[1..m]
306
            OUTPUT
307
            MtrxIns[1..m] := MatrixIns[1..m],
308
           MtrxIs[1..m] := MatrixIs[1..m]
309
           ENDUSE
310
           Ins1 := MtrxIns[1]
           Ins2 := MtrxIns[2]
           il := MtrxIs[1]
313
           i2 := MtrxIs[2]
314
           i1 := i1 + (iCarga*nuEsp2/nuEsp1)
315
316
            i2:= i2 + iCarga
317
318
      ENDIF
319
      ENDEXEC
320 ENDMODEL
321 RECORD
322 RNS2.HN1 AS HN1
323
     RNS2.HN2 AS HN2
     RNS2.HN3 AS HN3
324
     RNS2.BN1 AS BN1
      RNS2.BN2 AS BN2
32.6
      RNS2.BN3 AS BN3
328
      RNS2.INS1 AS INS1
      RNS2.INS2 AS INS2
329
      RNS2.P1 AS P1
      RNS2.P2 AS P2
      RNS2.P3 AS P3
     RNS2.P4 AS P4
334
     RNS2.P5 AS P5
      RNS2.01 AS 01
      RNS2.02 AS 02
337
      RNS2.03 AS 03
      RNS2.04 AS 04
338
339
      RNS2.05 AS 05
340
      RNS2.v1 AS v1
341
      RNS2.v2 AS v2
342
      RNS2.e2 AS e2
343
      RNS2.el AS el
```

```
344
     RNS2.vl1 AS vl1
345
     RNS2.vl2 AS vl2
346
     RNS2.i1 AS i1
347
     RNS2.i2 AS i2
348
     RNS2.io1 AS io1
    RNS2.iolc AS iolc
349
   RNS2.iCarga AS iCarga
    RNS2.ZL AS ZL
352
    RNS2.Zc AS Zc
353 USE RNS2 AS RNS2
354 INPUT
    inputV:= MM0001
356
    iCarga:= MM0002
357 DATA
358
    arEnro:=
             0.454
359 arJugo:=
             0.454
360 nuEsp1:=
             65.
361 nuEsp2:= 450.
            3.59
362 compEr:=
            2.66
363 compJg:=
   Ld1:= 2.472E-4
   Ld2:= 0.011846
    rFonte:= 0.008
367 OUTPUT
368
    XX0002:=v2
369 ENDUSE
370 ENDMODELS
              2
                    3
371 C 1
                               4 5
                                                    6
                                                            7
                                                                    8
373 /BRANCH
374 C < n1 >< n2 ><ref1><ref2>< R >< L >< C >
375 C < n1 >< n2 ><ref1><ref2>< R >< A >< B ><Leng><><>0
376
   XX0001
                          .01
                                                                    0
377 XX0002XX0003
                         64.5
                                                                   3
378 /SWITCH
379 C < n 1>< n 2>< Tclose ><Top/Tde >< Ie ><Vf/CLOP >< type >
380 XX0003 -1. 1.E3
                                                                    1
381 / SOURCE
382 C < n 1><>< Ampl. >< Freq. ><Phase/T0>< A1 >< T1 >< TSTART >< TSTOP >
383 14XX0001 1.6E4 60.
                                                          -1. 100.
384 60XX0002 0
                                                                  1.E3
385 /OUTPUT
386 BLANK MODELS
387 BLANK BRANCH
388 BLANK SWITCH
389 BLANK SOURCE
390 BLANK OUTPUT
391 BLANK PLOT
392 BEGIN NEW DATA CASE
393 BLANK
```

Código Fonte A.6 – Código ATP para reator naturalmente saturado com 2 enrolamentos com plena carga e sem perdas

```
1 BEGIN NEW DATA CASE
2 C -----
3 C Generated by ATPDRAW novembro, sabado 7, 2015
4 C A Bonneville Power Administration program
5 C by H. K. Hidalen at SEFAS/NTNU - NORWAY 1994-2009
```

```
6 c -----
                            60.
 7 POWER FREQUENCY
8 C dT >< Tmax >< Xopt >< Copt ><Epsiln>
    1.E-5 .05
9
     500
               1
                     1 1 1 0 0 1
                                                                     0
11 /MODELS
12 MODELS
13 INPUT
14 MM0001 {v(XX0001)}
15 MM0002 {i(XX0003)}
16 OUTPUT
17
   XX0002
18 MODEL RNS2
19
  INPUT inputV
                                 -- Tensao de Entrada
20
    iCarga
                                 -- Corrente na Carga
21 DATA arEnro
                                 -- Area Enrolamento
                                 -- Area do Jugo
      arJugo
23
       nuEspl
                                 -- Numero de Espiras enrolamento 1
24
                                 -- Numero de Espiras enrolamento 2
       nuEsp2
25
        compEr
                                -- Comprimento do Braco de Enrolamento
                     -- Comprimento do Braco do Jugo
26
        compJg
27
        Ld1
                                        -- Indutancia de dispersao no enrolamento 1
28
        Ld2
                                        -- Indutancia de dispersao no enrolamento 2
29
        rFonte
                                 -- Resistencia da fonte
   VAR B[1..10]
                         -- Campo magnetico dos nove trechos
       H[1..10]
                           -- Densidade magnetica para os nove trechos
       HN[1..3]
       BN[1..3]
34
       HN1
       BN1
       HN2
       BN2
       BN3
39
       HN3
                -- Indutancias para os nove trechos
-- Indutancias linhas (l') para os nove trechos
40
       1[1..9]
41
       lp[2..9]
42
       x, y, z, w, x1, y1
43
       d1
44
       d2
45
       Ρ1
46
       P2
47
       РЗ
48
       Р4
       Р5
49
50
       01
51
       02
       03
53
       04
54
       05
       ins1
56
       ins2
57
       i1
58
       i2
59
       v2
60
       dy1
61
       vl1
62
       vl2
63
       io1
64
       Zc
65
       Хc
```

66	Pc
67	iLp
68	v2p
69	vlp
70	iolc
71	ZL
72	e2
73	el
74	vl
75	m, dt, determnt, aux,
76	<pre>lMtrxA, cMtrxA, MtrxA[1900]</pre>
77	<pre>lMtrxP, cMtrxP, MtrxP[1900]</pre>
78	<pre>lMtrxN, cMtrxN, MtrxN[1900]</pre>
79	<pre>lMtrxV, cMtrxV, MtrxV[1900]</pre>
80	lMtrxO, cMtrxO, MtrxO[1900]
81	IMtrxI, cMtrxI, MtrxI[1900]
82	IMtrxinsin, cMtrxinsin, Mtrxinsin[1900]
83	IMTrxins, CMtrxins, Mtrxins[1900]
84	IMTTXIS, CMTTXIS, MTTXIS[1900]
80	CINCLUDE /DIth m
00	JINCLODE ./RLID.M
88	HN1 ·=0
89	BN1 := 0
90	HN2:=0
91	BN2:=0
92	HN3:=0
93	BN3:=0
94	HN[13]:=0
95	BN[13]:=0
96	ins1:=0
97	ins2:=0
98	il:=0
99	i2:=0.01
100	v2:=0.01
101	e2:=0
102	e1:=0
103	02:=0
104	P2:=0.01
105	P3:=0.01
107	101:=0
102	210 v1.=0
109	integral(v1):=0
110	integral(v2) := 0
111	<pre>histdef(integral(v1)):=0</pre>
112	<pre>histdef(integral(v2)):=0</pre>
113	iLp:=0.1
114	v2p:=0.1
115	v1p:=0.1
116	iolc:=0
117	Zc:=0
118	ENDINIT
119	EXEC
120	H[1]:=11.937
121	B[1]:=0.4
122	H[2]:=20.292
123	B[2]:=0.9
124	H[3]:=24.987
125	B[3]:=1.2

```
H[4]:=37.242
127
       B[4]:=1.45
128
      H[5]:=58.887
129
      B[5]:=1.58
      H[6]:=119.366
     B[6]:=1.68
     H[7]:=226.796
133
     B[7]:=1.74
      H[8]:=612.747
      B[8]:=1.81
136
      H[9]:=1193.662
137
      B[9]:=1.86
138
      H[10]:=10000
139
      B[10]:=1.97
140
141
      -- Metodo de aproximacao linear por trechos
142
       -- Esse loop calcula a indutancia de cada trecho
143
      FOR i:=1 TO 9 DO
           l[i]:=(B[i+1]-B[i])/(H[i+1]-H[i])
144
145
       ENDFOR
146
147
       -- Metodo de aproximacao linear por trechos parte 2
148
       -- Segundo loop para calcular o l' para cada trecho
149
       -- Utilizar Lp' para criar indutores equivalentes que facam
150
       -- o mesmo efeito na indutancia total.
151
      FOR i:=2 TO 9 DO
152
153
           lp[i]:=1/((1/1[i])-(1/1[i-1]))
154
       ENDFOR
155
      d1:=arEnro*nuEsp1*(0.96)
157
      d2:=arEnro*nuEsp2*(0.96)
158
      P4:=Ld1/(nuEsp1*nuEsp1)
159
      P5:=Ld2/(nuEsp2*nuEsp2)
       v1:=inputV-rFonte*i1
161
      v2:=(nuEsp2/nuEsp1)*v1
162
163
      IF t=1e-5 THEN
164
       v1p:=v1/cos(376.99*t)
165
       ENDIF
      IF t=1e-5 THEN
166
167
       iLp:=iCarga/cos(376.99*t)
168
      ENDIF
      IF t=1e-5 THEN
169
170
       v2p:=v2/cos(376.99*t)
       ENDIF
171
172
      ZL:=v2p/iLp
173
174
      BN[1]:=integral(v1)
175
       BN[1]:=BN[1]/d1
176
       BN[2]:=integral(v2)
177
       BN[2]:=BN[2]/d2
178
179
            FOR i:=1 TO 2 DO
180
                    IF BN[i]>=0 THEN
                                                     -- Calculo de H para os trechos do sistema
181
                            HN[i]:=BN[i]/1[1]
182
                            FOR j:=2 TO 9 DO
183
                                    IF BN[i]>B[j] THEN
184
                                            HN[i]:=HN[i]+((BN[i]-B[j])/lp[j])
185
                                    ENDIF
```

186	ENDFOR
187	ELSE
188	HN[i]:=BN[i]/1[1]
189	FOR j:=2 TO 9 DO
190	IF BN[i]<-B[j] THEN
191	HN[i]:=HN[i]+((BN[i]+B[j])/lp[j])
192	ENDIF
193	ENDFOR
194	ENDIF
195	ENDFOR
196	
197	
198	P1:=(BN[1]/HN[1])*arEnro/compEr
199	P2:=(BN[2]/HN[2])*arEnro/compEr
200	Ol:=BN[1]*arEnro
201	O2:=BN[2]*arEnro
202	O4:=P4*(HN[1]*compEr+(O1/P1))
203	05:=P5*(HN[2]*compEr+(02/P2))
204	03:=01-04
205	BN[3]:=03/arJugo
200	TE DN[2]>_0 murn
207	LE DN[5]/-U INEN Calculo de n para os trechos do sistema
200	$\mathbf{FOR} \mathbf{j} = 2 \mathbf{TO} 9 \mathbf{DO}$
210	TF BN[3]>B[i] THEN
211	HN[3] := HN[3] + ((BN[3] - B[i]) / [p[i])
212	
213	ENDFOR
214	ELSE
215	HN[3]:=BN[3]/1[1]
216	FOR i:=2 TO 9 DO
217	IF BN[3]<-B[i] THEN
218	HN[3]:=HN[3]+((BN[3]+B[i])/lp[i])
219	ENDIF
220	ENDFOR
221	ENDIF
222	
223	1F HN[3] < 0 OR HN[3] > 0 THEN
224	$F_{3} = (BN[3] / BN[3]) * arougo/ compog$
225	$\operatorname{RN1} \cdot = \operatorname{RN}[1]$
227	HN2 := HN[2]
228	BN2:=BN[2]
229	HN3:=HN[3]
230	BN3:=BN[3]
231	
232	Essa parte corresponde ao calculo das matrizes RLib
233	m:=900
234	lMtrxA := 5
235	cMtrxA := 2
236	MtrxA[1m]:=0
237	MtrxA[1cMtrxA] :=[1, -1]
238	MtrxA[cMtrxA+12*cMtrxA] :=[0, 1]
239	MtrxA[2*cMtrxA+13*cMtrxA] := [-1, 0]
240	MtrxA[3*cMtrxA+14*cMtrxA] := [-1, 1]
241	MTXA[4*CMTXA+15*CMTXA] := [0, -1]
242	M + r v M + - 2
243	cMtrxN := 2
245	MtrxN[1m]:=0

```
246
            MtrxN[0*cMtrxN+1] := nuEsp1
247
            MtrxN[1*cMtrxN+2] := nuEsp2
248
249
            lMtrxV := 2
            cMtrxV := 1
           MtrxV[1..m] := 0
            MtrxV[0*cMtrxV+1] := (v1)
253
           MtrxV[1*cMtrxV+1] := (v2)
254
255
           lMtrxO := 2
256
            cMtrxO := 1
257
            Mtrx0[1..m]:=0
            Mtrx0[0*cMtrxO+1] := 01
259
            Mtrx0[1*cMtrx0+1] := 02
260
           lMtrxInsIn := 2
2.61
262
           cMtrxInsIn := 1
263
            MtrxInsIn[1..m]:=0
264
           MtrxInsIn[0*cMtrxInsIn+1] := Ins1
265
           MtrxInsIn[1*cMtrxInsIn+1] := Ins2
267
            dt := timestep
268
269
            lMtrxP := 5,
270
            cMtrxP := 5,
271
            MtrxP[1..m]:=0
272
            MtrxP[(1-1) * cMtrxP + 1] := P1
273
            MtrxP[(2-1)*cMtrxP + 2] := P2
274
            MtrxP[(3-1)*cMtrxP + 3] := P3
275
            MtrxP[(4-1) * cMtrxP + 4] := P4
276
           MtrxP[(5-1) * cMtrxP + 5] := P5
277
            USE RNSMatrix as RNSM1
278
279
            INPUT
280
            deltaTime := dt,
281
            lMatrixA := lMtrxA,
282
283
            cMatrixA := cMtrxA,
284
            MatrixA[1..m] := MtrxA[1..m]
285
           IMP := IMtrxP,
286
287
           cMP := cMtrxP,
            MP[1..900]:= MtrxP[1..m]
289
290
            lMatrixN := lMtrxN,
291
            cMatrixN := cMtrxN,
292
            MatrixN[1..m] := MtrxN[1..m]
2.9.3
294
            lMatrixV := lMtrxV,
295
            cMatrixV := cMtrxV,
296
            MatrixV[1..m] := MtrxV[1..m]
297
298
            lMatrixO := lMtrxO,
299
            cMatrixO := cMtrxO,
            MatrixO[1..m] := MtrxO[1..m]
            lMatrixInsIn := lMtrxInsIn,
303
            cMatrixInsIn := cMtrxInsIn,
            MatrixInsIn[1..m] := MtrxInsIn[1..m]
            OUTPUT
305
```

```
MtrxIns[1..m] := MatrixIns[1..m],
           MtrxIs[1..m] := MatrixIs[1..m]
308
           ENDUSE
309
          Ins1 := MtrxIns[1]
310
          Ins2 := MtrxIns[2]
          il := MtrxIs[1]
312
          i2 := MtrxIs[2]
314 ENDIF
315 ENDEXEC
316 ENDMODEL
317 RECORD
318
      RNS2.HN1 AS HN1
319
      RNS2.HN2 AS HN2
      RNS2.HN3 AS HN3
     RNS2.BN1 AS BN1
322
     RNS2.BN2 AS BN2
323
     RNS2.BN3 AS BN3
324
    RNS2.INS1 AS INS1
     RNS2.INS2 AS INS2
     RNS2.P1 AS P1
      RNS2.P2 AS P2
328
      RNS2.P3 AS P3
329
      RNS2.P4 AS P4
      RNS2.P5 AS P5
      RNS2.01 AS 01
     RNS2.02 AS 02
333
    RNS2.03 AS 03
334
    RNS2.04 AS 04
335 RNS2.05 AS 05
336 RNS2.v1 AS v1
     RNS2.v2 AS v2
338
     RNS2.e2 AS e2
339
      RNS2.el AS el
340
      RNS2.vll AS vll
341
      RNS2.vl2 AS vl2
      RNS2.i1 AS i1
342
343
     RNS2.i2 AS i2
344
     RNS2.iol AS iol
345
    RNS2.iolc AS iolc
    RNS2.iCarga AS iCarga
346
347
     RNS2.ZL AS ZL
348
     RNS2.Zc AS Zc
349 USE RNS2 AS RNS2
350 INPUT
351
     inputV:= MM0001
     iCarga:= MM0002
353 DATA
354 arEnro:= 0.454
               0.454
355 arJugo:=
356 nuEsp1:=
              65.
357 nuEsp2:=
              450.
358 compEr:=
               3.59
               2.66
359 compJg:=
    Ld1:= 2.472E-4
360
361
    Ld2:= 0.011846
362
     rFonte:= 0.107
363 OUTPUT
364 XX0002:=v2
365 ENDUSE
```

```
366 ENDMODELS
           2 3 4 5 6 7
367 C 1
                                                            8
369 /BRANCH
370 C < n1 >< n2 ><ref1><ref2>< R >< L >< C >
371 C < n1 >< n2 ><ref1><ref2>< R >< A >< B ><Leng><>>0
372 XX0001
                      .01
                                                            0
373 XX0002XX0003
                                                            3
                     1.E6
374 /SWITCH
375 C < n 1>< n 2>< Tclose ><Top/Tde >< Ie ><Vf/CLOP >< type >
376 XX0003 -1. 1.E3
                                                            1
377 / SOURCE
378 C < n 1><>< Ampl. >< Freq. ><Phase/T0>< A1 >< T1 >< TSTART >< TSTOP >
379 14XX0001 1.6E4 60.
                                                  -1. 100.
380 60XX0002 0
                                                         1.E3
381 /OUTPUT
382 BLANK MODELS
383 BLANK BRANCH
384 BLANK SWITCH
385 BLANK SOURCE
386 BLANK OUTPUT
387 BLANK PLOT
388 BEGIN NEW DATA CASE
389 BLANK
```

Código Fonte A.7 – Código ATP para reator naturalmente saturado com 2 enrolamentos em vazio e sem perdas

```
1 BEGIN NEW DATA CASE
 2 c -----
 3 C Generated by ATPDRAW dezembro, quinta-feira 3, 2015
 4 C A Bonneville Power Administration program
5 C by H. K. Hoidalen at SEFAS/NTNU - NORWAY 1994-2009
6 C -----
 7 POWER FREQUENCY
                                  60.
 8
  C dT >< Tmax >< Xopt >< Copt ><Epsiln>
    5.E-6 .05 60. 1.E-180
500 1 1 1 1
                                          0
                                              0
                                                        1
                                                                0
11 /MODELS
12 MODELS
13 INPUT
14 M0001A {v(X0002A)}
15 M0001B {v(X0002B)}
16 M0001C {v(X0002C)}
17 OUTPUT
18
   X0001A
   X0001B
20
   X0001C
21 MODEL RNS6Yd
22 INPUT v[1..3]
23 DATA Aw
24
       Ay
25
       Ar
26
       NO
27
       NЗ
28
       Lw1
29
       Lw2
       Ly
       Lr
```

32	LdO	
33	Ld3	
34	VAR B[148]	Campo magnetico dos nove trechos
35	H[148]	Densidade magnetica para os nove trechos
30	HN[112]	
30	עם כמם כמם 1מם	1/ UNI5 UNI6 UNI7 UNI0 UNI0 UNI11 UNI10
30	RN1 RN2 RN3 RN	(4, nn), nn0, nn7, nn0, nn9, nn10, nn11, nn12
40][1 47]	Indutancias para os nove trechos
41	10[2 47]	Indutancias linhas (1') para os nove trechos
42	X	
43	V	
44	d1	
45	d2	
46	d3	
47	d4	
48	d5	
49	d6	
50	P1	
51	Ρ2	
52	P3	
53	P4	
54	P5	
55	P6	
56	P7	
58	P0 P9	
59	P10	
60	P11	
61	P12	
62	P13	
63	P14	
64	P15	
65	P16	
66	P17	
67	P18	
60	01	
70	03	
71	04	
72	05	
73	06	
74	07	
75	08	
76	09	
77	010	
78	011	
79	012	
80	013	
81	014	
82	015	
83	017	
04 25	018	
86	a1[1 6]	
87	a2[16]	
88	a3[16]	
89	a4[16]	
90	a5[16]	
91	a6[16]	

92	f1[16]
93	f2[16]
94	f3[16]
95	f4[16]
96	f5[16]
97	f6[16]
98	j1[17]
99	j2[17]
100	i3[17]
101	i4[17]
102	15[17]
103	i6[17]
104	
105	j,[±,] 11[1 6]
106	112[1 6]
107	u2[10]
100	u3[10]
100	u4[10]
110	u5[10]
111	uo[10]
110	ral[1/]
112	ra2[1/]
113	ra3[1/]
114	ra4[17]
115	ra5[1/]
116	ra6[17]
117	ra/[1/]
118	g1[16]
119	g2[16]
120	g3[16]
121	g4[16]
122	g5[16]
123	g6[16]
124	m1[16]
125	m2[16]
126	m3[16]
127	m4[16]
128	m5[16]
129	m6[16]
130	q11
131	q22
132	q33
133	q44
134	q55
135	q66
136	insl
137	ins2
138	ins3
139	ins4
140	ins5
141	ins6
142	ilA
143	i2A
144	i1B
145	i2B
146	i1C
147	i2C
148	i1[13]
149	i2[13]
150	vlA
151	v2A

152	v1B
153	v2B
154	vlC
155	v2C
156	v1[13]
157	v2[13]
158	vllp
159	v12p
160	v13p
161	v21p
162	v22p
163	v23p
164	vlp
165	v2p
166	v3p
167	iL1p
168	iL2p
169	iL3p
170	ZL1
171	ZL2
172	ZL3
173	iolA
174	io2A
175	iolB
176	io2B
177	iolC
178	io2C
179	e2[13]
180	Pcl
181	Pc2
182	PC3
104	XCI X-2
105	XCZ
100	XC3
187	7.02
1.8.8	703
189	×1
190	x2
191	v1
192	y 2
193	e11
194	e21
195	e22
196	e23
197	e1[13]
198	e12[13]
199	ip
200	e121
201	Zc
202	vn
203	in
204	j71
205	j72
206	j73
207	j74
208	j75
209	j76
210	j77
211	xla
```
212
        xlb
213
        xlc
214
        Z
215
            m, dt, determnt, aux,
216
            lMtrxA, cMtrxA, MtrxA[1..900]
217
           lMtrxP, cMtrxP, MtrxP[1..900]
           lMtrxN, cMtrxN, MtrxN[1..900]
219
           lMtrxV, cMtrxV, MtrxV[1..900]
           lMtrxO, cMtrxO, MtrxO[1..900]
           lMtrxI, cMtrxI, MtrxI[1..900]
222
           lMtrxInsIn, cMtrxInsIn, MtrxInsIn[1..900]
223
           lMtrxIns, cMtrxIns, MtrxIns[1..900]
224
            lMtrxIs, cMtrxIs, MtrxIs[1..900]
225 OUTPUT v2[1..3]
226 $INCLUDE ./RLib.m
227 INIT
228 HN1:=0
229 BN1:=0
230 BN3:=0
231 HN3:=0
232 BN5:=0
233
     HN5:=0
234
     BN7:=0
235
     HN7:=0
     BN8:=0
237
     HN8:=0
238
     HN[1..12]:=0
239 BN[1..12]:=0
240 ins1:=0.01
241 ins2:=0.01
242 ins3:=0.01
243 ins4:=0.01
244
    ins5:=0.01
245
     ins6:=0.01
246
     i1[1..3]:=0.01
247
     i2[1..3]:=0.01
    v2[1..3]:=0.01
248
249 i1A:=0.01
250 i2A:=0.01
251 i1B:=0.01
252 i2B:=0.01
253 i1C:=0.01
254
    i2C:=0.01
255
     v1A:=0.01
256
     v2A:=0.01
257
     v1B:=0.01
258
     v2B:=0.01
259
     v1C:=0.01
260 v2C:=0.01
261 e21:=0.01
262 e22:=0.01
263 e23:=0.01
264 v1[1..3]:=0.01
265 P1:=0.01
    P2:=0.01
267
     P3:=0.01
268
     P4:=0.01
269 P5:=0.01
270
    P6:=0.01
271 P13:=0.01
```

272	P14:=0.01
273	P15:=0.01
274	P16:=0.01
275	P17:=0.01
276	P18:=0.01
277	m1[16]:=0
278	m2[16]:=0
279	m3[16]:=0
280	m4[1 6]:=0
281	m5[1 6]:-0
282	m6[1 6]:-0
202	$\pm 1 \begin{bmatrix} 1 & 7 \end{bmatrix} \cdot = 0 0 \end{bmatrix}$
200	$\frac{1}{2}$
204	$\frac{1}{2}$
200	3[17] = 0.01
200	J4[1/]:-0.01
287]5[1/]:=0.01
288]6[1/]:=0.01
289]/[1/]:=0.01
290	vlp:=0
291	v2p:=0
292	v3p:=0
293	v11p:=0
294	v12p:=0
295	v13p:=0
296	iL1p:=0
297	iL2p:=0
298	iL3p:=0
299	v21p:=0
300	v22p:=0
301	v23p:=0
302	io1A:=0
303	io2A:=0
304	io1B:=0
305	io2B:=0
306	io1C:=0
307	io2C:=0
308	q11:=0.01
309	q22:=0.01
310	q33:=0.01
311	q44:=0.01
312	q55:=0.01
313	q66:=0.01
314	in:=0
315	vn:=0
316	xla:=0
317	xlb:=0
318	xlc:=0
319	ENDINIT
320	EXEC
321	H[1]:=11.937
322	B[1]:=0.4
323	H[2]:=13.608
324	B[2]:=0.499999
325	H[3]:=15.358
326	B[3]:=0.599998
327	H[4]:=17.109
328	B[4]:=0.699997
329	H[5]:=18.701
330	B[5]:=0.799995
331	H[6]:=20.292

332	B[6]:=0.899994
333	H[7]:=21.168
224	DI71. 0 00000
334	B[/]:=0.999992
335	H[8]:=21.884
336	B[8]:=1.049991
337	H[9]·=22 839
557	
338	B[9]:=1.099991
220	u[10],-22 625
555	11[10]25.055
340	B[10]:=1.14999
2/1	TT[11]24 007
241	n[11]24.907
342	B[11]:=1.19999
242	TT[10] . 0C 40
343	H[12]:=26.42
344	B[12]:=1.24999
0.45	
345	H[13]:=28.17
346	B[13]:=1.29999
347	H[14]:=30.637
348	B[14]:=1.349991
~	
349	H[15]:=33.025
350	B[15].=1 399992
550	
351	H[16]:=37.242
350	B[16] .=1 //0005
J J Z	D[10]. 1.11/050
353	H[17]:=42.972
351	B[171.=1 /00000
355	H[18]:=45.757
356	B[18]:=1.52
0.5.7	
357	H[19]:=48.94
358	B[19]:=1.540003
350	H[20152 217
555	11[20]33.317
360	B[20]:=1.560006
361	H[21] ·= 58 887
001	
362	B[21]:=1.580011
363	H[22]:=66.049
200	
364	B[22]:=1.600016
365	H[23]:=76.394
200	DI001 1 C0000F
300	B[23]:=1.620025
367	H[24]:=85.944
200	D[24] - 1 (40022
200	B[24]:-1.040033
369	H[25]:=103.451
370	B[25]1 660048
570	D[25]1.000040
371	H[26]:=119.366
372	B[26]·=1 680062
572	D[20]: 1:000002
373	H[27]:=147.218
374	B[27]:=1.700087
	H1001 100 101
3/5	н[28]:=163.134
376	B[28]:=1.710101
277	11(20) - 170 040
3//	H[29]:=1/9.049
378	B[29]:=1.720115
270	TI 201 - 202 022
575	11[30]202.923
380	B[30]:=1.730136
3.8.1	H[31] ·= 226 796
50 I	11[31]. 220.750
382	B[31]:=1.740157
38.3	H[321:=259.423
201	D[20]. 1 750100
384 	B[32]:=1./50186
385	H[33]:=282.5
201	D[2211 70007
200	D[JJ]:-1./0020/
387	H[34]:=334.225
388	B[34]·=1 770253
	D[01]. 1.//0200
389	H[35]:=377.993
390	B[35]:=1.780292
201	TT [] (] (] (] (] (] (] (] (] (]

392	B[36] -1 700352
202	B[30]1.730332
393	H[37]:=501.538
394	B[3/]:=1.800402
395	H[38]:=612.747
396	B[38]:=1.810502
397	H[39]:=700.282
398	B[39]:=1.82058
399	H[40]:=835.564
400	B[40]:=1.830701
401	H[41]:=954.93
402	B[41]:=1.840808
403	H[42]:=1114.085
404	B[42]:=1.850951
405	H[43]:=1193.662
406	B[43]:=1.861022
407	H[44] := 1392.606
408	B[44] = 1 871201
409	H[45] = 1591 549
110	$P[45] = -1 \ 991270$
410	B[45] = -1.001579
411	n[40] = -2500
412	B[46]:=1.922194
413	H[47]:=5000
414	B[4/]:=1.964438
415	H[48]:=10000
416	B[48]:=1.978929
417	
418	Metodo de aproximacao linear por trechos
419	Esse loop calcula a indutancia de cada trecho
420	FOR i:=1 TO 47 DO
101	
4ZI	T[1]:=(R[1+1]-R[1])/(H[1+1]-H[1])
421	ENDFOR
421 422 423	L[1]:=(B[1+1]-B[1])/(H[1+1]-H[1]) ENDFOR
421 422 423 424	<pre>I[1]:=(B[1+1]-B[1])/(H[1+1]-H[1]) ENDFOR Metodo de aproximacao linear por trechos parte 2</pre>
421 422 423 424 425	<pre>I[1]:=(B[1+1]-B[1])/(H[1+1]-H[1]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho</pre>
421 422 423 424 425 426	<pre>ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam</pre>
421 422 423 424 425 426 427	<pre>I[1]:=(B[1+1]-B[1])/(H[1+1]-H[1]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total.</pre>
421 422 423 424 425 426 427 428	<pre>I[1]:=(B[1+1]-B[1])/(H[1+1]-H[1]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total.</pre>
421 422 423 424 425 426 427 428 429	<pre>I[1]:=(B[1+1]-B[1])/(H[1+1]-H[1]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
 421 422 423 424 425 426 427 428 429 430 	<pre>I[i]:=(B[i+1]-B[i])/(H[i+1]-H[i]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO lp[i]:=1/((1/1[i])-(1/1[i-1]))</pre>
421 422 423 424 425 426 427 428 429 430 431	<pre>I[i]:=(B[i+1]-B[i])/(H[i+1]-H[i]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO lp[i]:=1/((1/1[i])-(1/1[i-1])) ENDFOR</pre>
421 422 423 424 425 426 427 428 429 430 431 432	<pre>I[i]:=(B[i+1]-B[i])/(H[i+1]-H[i]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO lp[i]:=1/((1/1[i])-(1/1[i-1])) ENDFOR</pre>
421 422 423 424 425 426 427 428 429 430 431 432 433	<pre>I[i]:=(B[i+1]-B[i])/(H[i+1]-H[i]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
421 422 423 424 425 426 427 428 429 430 431 432 433 434	<pre>I[i]:=(B[i+1]-B[i])/(H[i+1]-H[i]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO lp[i]:=1/((1/1[i])-(1/1[i-1])) ENDFOR dl:=Aw*N0*0.96 d2:=Aw*N3*0.96</pre>
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435	<pre>I[i]:=(B[i+1]-B[i])/(H[i+1]-H[i]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO lp[i]:=1/((1/1[i])-(1/1[i-1])) ENDFOR d1:=Aw*N0*0.96 d2:=Aw*N3*0.96 d3:=Aw*N0*0.96</pre>
421 422 423 424 425 426 427 428 429 430 431 432 433 433 434 435 436	<pre>I[i]:=(B[i+1]-B[i])/(H[i+1]-H[i]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437	<pre>I[i]:=(B[i+1]-B[i])/(H[i+1]-H[i]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438	<pre>I[i]:=(B[i+1]-B[i])/(H[i+1]-H[i]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439	<pre>I[i]:=(B[i+1]-B[i])/(H[i+1]-H[i]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
421 422 423 424 425 426 427 428 429 430 431 432 433 434 434 435 436 437 438 439 440	<pre>I[i]:=(B[i+1]-B[i])/(H[i+1]-H[i]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441	<pre>I[1]:=(B[1+1]-B[1])/(H[1+1]-H[1]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442	<pre>I[1]:=(B[1+1]-B[1])/(H[1+1]-H[1]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO lp[i]:=1/((1/1[i])-(1/1[i-1])) ENDFOR d1:=Aw*N0*0.96 d2:=Aw*N3*0.96 d3:=Aw*N0*0.96 d5:=Aw*N0*0.96 d5:=Aw*N3*0.96 P7:=Ld0/(N0*N0) P10:=Ld3/(N3*N3) P10:=Ld3/(N3*N3)</pre>
422 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443	<pre>I[1]:=(B[1+1]-B[1])/(H[1+1]-H[1]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO lp[i]:=1/((1/1[i])-(1/1[i-1])) ENDFOR d1:=Aw*N0*0.96 d2:=Aw*N3*0.96 d3:=Aw*N0*0.96 d5:=Aw*N0*0.96 d5:=Aw*N3*0.96 P7:=Ld0/(N0*N0) P10:=Ld3/(N3*N3) P11:=Ld0/(N0*N0)</pre>
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444	<pre>I(1):=(B(1+1)-B(1))/(H(1+1)-H(1)) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 439 439 449 441 442 443 444 444	<pre>I[1]:=(B[1+1]-B[1])/(H[1+1]-H[1]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO lp[i]:=1/((1/1[i])-(1/1[i-1])) ENDFOR d1:=Aw*N0*0.96 d2:=Aw*N3*0.96 d3:=Aw*N0*0.96 d5:=Aw*N0*0.96 d5:=Aw*N0*0.96 d5:=Aw*N0*0.96 d6:=Aw*N3*0.96 P7:=Ld0/(N0*N0) P10:=Ld3/(N3*N3) P11:=Ld0/(N0*N0) P12:=Ld3/(N3*N3) IF t=5p=5 THEN</pre>
421 422 423 424 425 426 427 428 429 430 431 432 433 434 433 434 435 436 437 438 439 440 441 442 443 444 445 446	<pre>III]:=(B[1+1]-B[1])/(H[1+1]-H[1]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO lp[i]:=1/((1/1[i])-(1/1[i-1])) ENDFOR d1:=Aw*N0*0.96 d2:=Aw*N3*0.96 d3:=Aw*N0*0.96 d5:=Aw*N0*0.96 d5:=Aw*N0*0.96 d6:=Aw*N3*0.96 P7:=Ld0/(N0*N0) P10:=Ld3/(N3*N3) P11:=Ld0/(N0*N0) P12:=Ld3/(N3*N3) IIF t=5e-5 THEN vlo:=vl11/cos(377*t)</pre>
421 422 423 424 425 426 427 428 429 430 431 432 433 434 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447	<pre>III]:=(B[1+1]-B[1])/(H[1+1]-H[1]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO lp[i]:=1/((1/1[i])-(1/1[i-1])) ENDFOR d1:=Aw*N0*0.96 d2:=Aw*N3*0.96 d3:=Aw*N0*0.96 d5:=Aw*N0*0.96 d6:=Aw*N3*0.96 P7:=Ld0/(N0*N0) P8:=Ld3/(N3*N3) P1:=Ld0/(N0*N0) P12:=Ld3/(N3*N3) P1:=Ld0/(N0*N0) P12:=Ld3/(N3*N3) IF t=5e-5 THEN vlp:=v[1]/cos(377*t) v2p:=v[2]/cos(377*t)</pre>
421 422 423 424 425 426 427 428 429 430 431 432 433 434 433 434 435 436 437 438 439 440 441 442 443 444 445 444 445	<pre>II[1]:=(B[1+1]-B[1])/(H[1+1]-H[1]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
421 422 423 424 425 426 427 428 429 430 431 432 433 434 433 434 433 434 433 434 433 434 434 442 443 444 445 446 447 448	<pre>II]:=(B[1+1]-B[1])/(H[1+1]-H[1]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO lp[i]:=1/((1/1[i])-(1/1[i-1])) ENDFOR dl:=Aw*N0*0.96 d2:=Aw*N3*0.96 d3:=Aw*N0*0.96 d5:=Aw*N0*0.96 d5:=Aw*N0*0.96 d5:=Aw*N0*0.96 d5:=Ld3/(N0*N0) P8:=Ld3/(N0*N0) P10:=Ld3/(N0*N0) P12:=Ld3/(N0*N3) P11:=Ld0/(N0*N0) P12:=Ld3/(N3*N3) IF t=5e-5 THEN vlp:=v[1]/cos(377*t+2.094) v3p:=v[3]/cos(377*t+2.094) ENDTE</pre>
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 449	<pre>I1]:=(B[1+1]-B[1])/(H[1+1]-H[1]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 443 444 445 446 447 448 449 450 450	<pre>I[1]:=(B[1+1]-B[1])/(H[1+1]-H[1]) ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>

```
452
       v1[3]:=v[3]
453
       IF t=5e-5 THEN
454
        v11p:=v1[1]/cos(377*t)
455
        v12p:=v1[2]/cos(377*t-2.094)
456
        v13p:=v1[3]/cos(377*t+2.094)
457
       ENDIF
458
       v2[1]:=(v11p*N3/(N0))*cos(377*t+0.524)
459
       v2[2]:=(v12p*N3/(N0))*cos(377*t-1.57)
460
       v2[3]:=(v13p*N3/(N0))*cos(377*t+2.62)
461
       v21p:=v11p*N3/(N0)
       v22p:=v12p*N3/(N0)
462
463
       v23p:=v13p*N3/(N0)
464
465
       BN[1]:=((v11p/377)*sin(377*t))/d1
466
       BN[2]:=BN[1]
467
       BN[3]:=((v12p/377)*sin(377*t-2.094))/d3
468
       BN[4]:=BN[3]
469
       BN[5]:=((v13p/377)*sin(377*t+2.094))/d5
470
       BN[6]:=BN[5]
471
472
       FOR i:=1 TO 6 DO
473
                     IF BN[i]>=0 THEN
                                                       -- Calculo de H para os trechos do sistema
474
                             HN[i]:=BN[i]/l[1]
475
                             FOR j:=2 TO 47 DO
476
                                      IF BN[i]>B[j] THEN
477
                                              HN[i]:=HN[i]+((BN[i]-B[j])/lp[j])
478
                                      ENDIF
479
                             ENDFOR
480
                     ELSE
                             HN[i]:=BN[i]/l[1]
481
482
                             FOR j:=2 TO 47 DO
                                      IF BN[i]<-B[j] THEN
483
484
                                               HN[i]:=HN[i]+((BN[i]+B[j])/lp[j])
485
                                      ENDIF
486
                             ENDFOR
487
                     ENDIF
488
            ENDFOR
489
490
            P1:=(BN[1]/HN[1])*Aw/(Lw1)
491
            P2:=(BN[2]/HN[1])*Aw/(Lw2)
492
            P3:=(BN[3]/HN[3])*Aw/(Lw1)
493
            P4 := (BN[4]/HN[3]) * Aw/(Lw2)
            P5:=(BN[5]/HN[5])*Aw/(Lw1)
494
495
            P6:=(BN[6]/HN[5])*Aw/(Lw2)
496
            O1:=BN[1]*Aw*0.96
497
            02:=BN[2]*Aw*0.96
498
            O3:=BN[3]*Aw*0.96
499
            O4:=BN[4]*Aw*0.96
            O5:=BN[5]*Aw*0.96
            O6:=BN[6]*Aw*0.96
502
            O7:=P7*((HN[1]*Lw1)+(O1/P1))
503
            O8 := P8 * ((HN[1] * Lw2) + (O2/P2))
504
            O9:=P9*((HN[3]*Lw1)+(O3/P3))
505
            O10:=P10*((HN[3]*Lw2)+(O4/P4))
506
            O11:=P11*((HN[5]*Lw1)+(O5/P5))
            O12:=P12*((HN[5]*Lw2)+(O6/P6))
            015 := (01 + 07) / 2
508
509
            016:=(01+07)/2
510
            013:=015
511
            017 := (05 + 011) / 2
```

<pre>11 014-015 12 014-015 13 014-014 (Ar-0.96) 14 011-014 (Ar-0.96) 15 011 (Ar-0.96) 16 011 (Ar-0.96) 17 011 (Ar-0.96</pre>	512	018 = (05+011)/2
<pre>MIL():=013/(Ar=0.96) BN(3):=013/(Ar=0.96) BN(3):=013/(Ar=0.96) BN(3):=013/(Ar=0.96) BN(3):=013/(Ar=0.96) BN(3):=013/(Ar=0.96) BN(1):=013/(Ar=0.96) BN(1</pre>	513	014 = 018
<pre>min():.us, durations) min():.us, durati</pre>	514	$BN[7] \cdot = 013/(Ar + 0.96)$
<pre>31 3 10 10 10 10 10 10 10 10 10 10 10 10 10</pre>	515	$DN[0] = -0.14 / (h_{m+0}, 0.6)$
<pre>bis (j)0.0 (ky-0.9) bis (j)0.0 (ky-0.9) bis (j)0.0 (ky-0.96) bis (j)0.0 (ky-0.</pre>	516	$BN[0] = -014/(AI \times 0.96)$
<pre>bill:::::::::::::::::::::::::::::::::::</pre>	510	BN[9]:-O15/(Ay*0.96)
<pre>218 [11:1:=017/(3y=0.90) 229 230 231 FOR 1:=-7 TO 8 DO 232 IF BN(1)=-D(1)/(11) 233</pre>	517	$BN[10] = -010/(Ay \times 0.96)$
<pre>Ang(12):=-Clar(N(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(A)(</pre>	518	BN[11]:=01//(Ay*0.96)
201 FOR 1:-7 TO 8 DO 222 IF HU[1]-0 THEN Calculo de H para os trechos do sistema 223 IF HU[1]-10 THEN Calculo de H para os trechos do sistema 224 IF NU[1]-10 THEN Calculo de H para os trechos do sistema 225 IF NU[1]-10 THEN Calculo de H para os trechos do sistema 226 IF NU[1]-10 THEN Calculo de H para os trechos do sistema 227 IF NU[1]-10 THEN Calculo de H para os trechos do sistema 228 IF NU[1]-10 THEN Calculo de H para os trechos do sistema 229 IF NU[1]-10 THEN Calculo de H para os trechos do sistema 229 IF NU[1]-20 THEN Calculo de H para os trechos do sistema 229 IF NU[1]-20 THEN Calculo de H para os trechos do sistema 220 IF NU[1]-20 THEN Calculo de H para os trechos do sistema 220 IF NU[1]-20 THEN Calculo de H para os trechos do sistema 220 IF NU[1]-20 THEN Calculo de H para os trechos do sistema 220 IF Seconda do H para os trechos do sistema 220 IF Seconda do H para os trechos do sistema 221 IF Seconda do H para os trechos do sistema 221 IF Seconda do H para os trechos do sistema 221 IF Seconda do H para os trechos do sistema	519	BN[12]:=018/(Ay*0.96)
531 FOR 1:-7 TO 8 DO 222 IF BN(1)=0 THEN Calculo de H para os trechos do sistema 233 BN(1):=DN(1)/D (HEN) 234 FOR 1:-2 TO 47 DO 235 BN(1):=DN(1)/D (HEN) 236 BN(1):=DN(1)/D (HEN) 237 ENDFOR 238 BN(1):=DN(1)/D (HEN) 239 ELSE 230 BN(1):=DN(1)/D (HEN) 231 FOR 1:=2 TO 47 DO 232 ENDFOR 233 BN(1):=HN(1)/(HEN) 234 ENDFOR 235 ENDFOR 236 ENDFOR 237 ENDFOR 238 ENDFOR 239 ELSE 231 ENDFOR 233 ENDFOR 234 ENDFOR 235 ENDFOR 236 ENDFOR 237 ENDFOR 238 ENDFOR 239 ELSE 231-(EN(7)/HN(7))+Ar/Lr 244-(EN(6)/HN(6))+Ar/Lr 245-(EN(7)/HN(7))+Ar/Lr 246-(EN(7)/HN(7))+Ar/Lr <tr< th=""><th>520</th><th></th></tr<>	520	
522 IF BM[1]=0 THEN Calculo de H para os trechos do sistema 523 BN[1]=EBN[1]/1[1] 524 IF DM[1]=EBN[1]/1[1] 525 IF DM[1]=EBN[1]/1[1] 526 IF DM[1]=EBN[1]/1[1] 527 IF DM[1]=EBN[1]/1[1] 528 ENDER 529 ELSE 530 IF DM[1]=EBN[1]/EGN[1]/1[1] 531 FOR j=2 70 47 DO 532 IF DM[1]=EBN[1]/EGN[1]/EENN[1]/1[1] 533 ENDER 534 ENDIF 535 ENDER 536 ENDIF 537 ENDERCA 538 ENDIF 539 F13=E(DN[7]/ENN[7])+Ar/Lr 541 P14:=(BN[8]/HN[8])+Ar/Lr 542 P14:=(BN[8]/HN[8])+Ar/Lr 544 P14:=(BN[8]/HN[8])+Ar/Ly 545 ENDIF 544 P14:=(BN[8]/HN[8])+Ar/Ly 544 P16:=(BN[7]/HN[7])+Ar/Ly 544 P16:=(BN[7]/HN[7])+Ar/Ly 544 P16:=(BN[7]/HN[7])+Ar/Ly 545 INS:=BN[3] 546 INS:=BN[1] 547	521	FOR i:=7 TO 8 DO
233 INU[1]:=DN[1]/1[1] 234 FCR]:= 2 to 47 D0 235 IF EN[1]>E] THEN 236 INU[1]:=DN[1] THEN 237 ENDFOR 238 ENDFOR 239 ELSE 230 INU[1]:=DN[1]/1[1] 231 FOR]:= 2 to 47 D0 232 INU[1]:=DN[1]/1[1] 233 ENDFOR 234 ENDFOR 235 ENDFOR 236 ENDFOR 237 ENDFOR 238 ENDFOR 239 ENDFOR 230 ENDFOR 231 ENDFOR 233 ENDFOR 234 ENDFOR 235 ENDFOR 236 ENDFOR 237 ENDFOR 238 ENDFOR 239 D15:=(ENT[7]/ENT[7]+ENT/Er 241:=(ENT[6]/T/ENT[3])+ENT/Er 241:=(ENT[6]/ENT(8])+Ar/Er 241:=(ENT[6]/ENT(8])+Ar/Er 244:=ENT=ENT[1] 255 ENS:=ENT[2] 256 ENS:=ENT[2]	522	IF BN[i]>=0 THEN Calculo de H para os trechos do sistema
524 FOR 1:-2 TO 47 DO IF BN(1)=B(1) THEN NN(1):-(NN(1)-B(j))/lp(j)) 525 ENDTOR 526 ENDTOR 527 ENDTOR 528 ENDTOR 529 ELSE 530 IF BN(1)=END(1)/LT(1) 531 FOR 1:= 2 TO 47 DO 532 IF BN(1)=ENDTP 533 ENDTF 534 ENDTF 535 ENDTR 536 ENDTF 537 ENDTR 548 ENDTF 559 ENDTR 541 P13:-(ENN(7)/NN(7)) +Ar/Lr 542 P13:-(ENN(7)/NN(7)) +Ar/Lr 543 P13:-(ENN(7)/NN(7)) +Ar/Lr 544 P14:-(ENN(8)/NN(8)) +Ar/Lr 545 ENDTR 546 BN2:-ENN(2) 547 P13:=(ENN(8)/NN(8)) +Ar/Lr 548 BN3:=ENN(3) 549 P13:=(ENN(8)/NN(8)) +Ar/Lr 541 P13:=(ENN(8)/NN(8)) +Ar/Lr 542 BN1:=BN1(4) 543 BN3:=ENN(3) 544 P14:ENN(1)	523	HN[i]:=BN[i]/1[1]
253 IF ENLIJSE [] THEN 254 ENDIF 255 ELSE 256 ENDIF 257 ELSE 258 ELSE 259 ELSE 250 IF ENLIJ/[1] 253 FISE 254 ENDIF 255 IF ENLIJ(=ENLIJ/[1] 256 ENDIF 257 ENDOR 258 ENDIF 259 FL3:= (ENL[]/[NL]]) + Ar/Lr 250 ENDOR 259 P14:= (ENL[3]/[NL]]) + Ar/Lr 250 ENDOR 251 ENDOR 252 P16:= (ENL[7]/[NL]]) + Ar/Lr 254 P16:= (ENL[3]/[NL]]) + Ar/Lr 255 ENLISE 256 ENLISE 257 ENDOR 258 ENLISE 259 P12:= (ENL[3]/[NL]] + Ar/Lr 250 ENSISE 251 P13:= (ENL]/[NL]] + Ar/Lr 252 HN2:=ENL[3] 254 BN2	524	FOR j:=2 TO 47 DO
BN(i):=HN(i)+(EN(i)-B(j))/lp(j)) 520 ENDFOR 521 ENDFOR 522 ELSE 533 ELSE 534 FOR j:=2 TO 47 DO 535 ENDFOR 536 ENDFOR 537 ENDFOR 538 ENDFOR 539 ENDFOR 530 ENDFOR 531 ENDFOR 532 ENDFOR 533 ENDFOR 534 ENDFOR 535 ENDFOR 536 ENDFOR 537 ENDFOR 538 ENDFOR 539 P13:=(BN(1/I)/N)(7))+Ar/Lr 541 P15:=(BN(1/I)/N)(7))+Ar/Lr 542 P16:=(BN(1/I)/N)(7))+Ar/Lr 543 P17:=(BN(8)/IN(8))+Ar/Lr 544 P10:=(BN(8)/IN(8))+Ar/Lr 545 BN1:=NN(1) 546 BN2:=NN(2) 547 BN3:=NN(1) 548 BN4:=SN(1) 549 BN5:=NN(5) </th <th>525</th> <th>IF BN[i]>B[j] THEN</th>	525	IF BN[i]>B[j] THEN
227 ENDROR 238 ELSE 239 FUSE 230 FUSE 231 FOR j:= 2 TO 47 DO 232 IF NN[1](=N[1] THEN 233 ENDROR 234 ENDIT 235 ENDOR 236 ENDOR 237 ENDOR 238 ENDOR 249 P13:= (EN[7]/HN[7]) *Ar/Ir 241 P14:= (EN[8]/HN[8]) *Ar/Ir 242 P14:= (EN[8]/HN[8]) *Ar/Ir 243 P17:= (EN[8]/HN[8]) *Ar/Ir 244 P18:= (EN[7]/HN[7]) *Ar/Ir 245 ENDOR 246 P18:= (EN[7]/HN[7]) *Ar/Ir 247 P18:= (EN[7]/HN[7]) *Ar/Ir 248 P17:= (EN[8]/HN[8]) *Ar/Ir 249 P18:= (EN[7]/HN[7]) *Ar/Ir 241 P18:= (EN[7]/HN[7]) *Ar/Ir 242 P16:= (EN[7]/HN[7]) *Ar/Ir 243 PN1:= (EN[8]/HN[8]) *Ar/Ir 244 P18:= (EN[7]/HN[7]) *Ar/Ir 253 BN3:= HN[3] 254	526	HN[i]:=HN[i]+((BN[i]-B[j])/lp[j])
Bis ENDROK 529 LISE 530 IN(1):=DN(1)/1(1) 531 FOR j:= 20 47 DO 532 IN DN(1):=DN(1)/ENC 533 IN DN(1):=DN(1)/ENC 534 ENDROK 535 ENDROK 536 ENDROK 537 ENDROK 538 P13:=(ENTO/) 539 P13:=(ENTO/) 541 P15:=(ENTO/) 542 P16:=(ENT()/INT(7)) *Ar/Lr 543 P17:=(ENTR(3)) *Ar/Lr 544 P16:=(ENT()/INT(7)) *Ar/Lr 545 ENT:=ENTON 546 ENT:=ENTON 547 BN3:=BN(1) 548 ENT:=ENTON 549 ENT:=ENTON 541 ENT:=ENTON 542 ENT:=ENTON 543 ENT:=ENTON 544 ENTI:=ENTON 555 ENTI:=ENTON 556 ENTI:=ENTON 557 ENTI:=ENTON 558 ENTI:=ENTON	527	ENDIF
529 ELSF 530 HN(1):-BN(1)(1) 531 FOR j:=2 TO 47 DO 532 IF NN(1)<-B(j) THEN 533 IF NN(1)<-B(j) THEN 534 HN(1):-BN(1)(1)*(EN)(1)*S(1)/(D)(1) 535 ENDFOR 536 ENDFOR 537 ENDFOR 538 P13:=(EN(7)/EN(7))*Ar/Lr 549 P14:-(BN(8)/HN(8))*Ar/Lr 541 P15:=(EN(7)/EN(7))*Ar/Lr 542 P14:-(EN(1)/(N)*(3)*Ar/Lr 543 P17:=(EN(1)/(N)*(1)*Ar/Lr 544 P13:=(EN(7)/EN(7))*Ar/Ly 545 BN1:=BN(1) 546 BN1:=SN(1) 547 BN3:=SN(2) 548 BN1:=BN(1) 549 BN1:=BN(1) 541 BN1:=BN(1) 552 BN3:=BN(5) 553 HN3:=HN(3) 554 HN3:=HN(3) 555 HN3:=HN(3) 556 HN3:=HN(3) 557 BN1:=BN(1) 558 HN1:=HN(1)	528	ENDFOR
530 HN[1]-EN[1]/[1] 531 FOR j:=2 TO 47 DO 532 FIEN[1] 533 FIEN[1] 534 FIEN[1] 535 ENDFO 536 ENDFO 537 ENDFOR 538 P13:=(EN[7]/HN[7])*Ar/Lr 541 P15:=(EN[7]/HN[7])*Ar/Lr 542 P16:=(EN[8]/NN[8])*Ay/Ly 543 P17:=(EN[8]/NN[8])*Ay/Ly 544 P16:=(EN[8]/NN[8])*Ay/Ly 545 EN1:=EN[1] 546 EN2:=EN[2] 547 EN3:=EN[3] 548 EN1:=EN[1] 549 EN3:=EN[3] 540 EN1:=EN[1] 551 ENN:=EN[3] 552 EN3:=EN[3] 553 EN3:=EN[3] 554 EN3:=EN[1] 555 EN3:=EN[1] 556 EN3:=EN[1] 557 EN3:=EN[1] 558 EN3:=EN[1] 559 EN3:=EN[1] 551 EN3:=EN[1]	529	ELSE
FOR j:=2 TO 47 D0 S12 IF BN(j:=BN(j) THEN S13 ENDIF S14 ENDIF S15 ENDIF S16 ENDIF S17 ENDIC S18 ENDIF S19 F13:=(EN[7]/HN[7])*Ar/Lr S19 P13:=(EN[7]/HN[7])*Ar/Lr S14 P15:=(EN[7]/HN[7])*Ar/Lr S15 ENSI:=DN[1] S16 ENSI:=DN[1] S17 ENNIS] S18 EN1:=DN[1] S19 ENSI:=DN[2] S11 ENNI:=DN[1] S12 ENSI:=ENS[3] S13 ENNI:=ENS[3] S14 ENSI:=ENS[3] S15 ENSI:=ENS[3] S16 <th>530</th> <th>HN[i]:=BN[i]/l[1]</th>	530	HN[i]:=BN[i]/l[1]
J IF BN[j]:=BN[j]:ENEN BN[j]:=HN[j]:(ENE[j])/lp[j]) BN[J]:=HN[j]:(ENE[j])/lp[j])/lp[j]) BNDFOR ENDFON BN[J]:=HN[J]:(ENE[J])/lp[j]) BNDFON	531	FOR j:=2 TO 47 DO
BN[1]:=HN[1]+((BN[1]+B[])/lp[]) ENDT ENDTR FINE FINE <tr< th=""><th>532</th><th>IF BN[i]<-B[j] THEN</th></tr<>	532	IF BN[i]<-B[j] THEN
534 ENDER 535 ENDER 536 ENDER 537 ENDER 538 F13:=(EN[7]/EN[7])*Ar/Lr 549 F13:=(EN[7]/EN[7])*Ar/Lr 541 P13:=(EN[7]/EN[7])*Ar/Lr 542 P16:=(EN[7]/EN[7])*Ar/Ly 543 P17:=(EN[8]/EN[8])*Ar/Ly 544 P17:=(EN[8]/EN[8])*Ar/Ly 545 BN1:=EN[1] 546 BN2:=EN[2] 547 BN3:=EN[3] 548 BN1:=EN[5] 559 BN3:=EN[5] 554 HIN:=HN[1] 555 LIN:EN[5] 556 INS:=IN[5] 557	533	HN[i]:=HN[i]+((BN[i]+B[j])/lp[j])
535 ENDOR 536 FANDER 537 FENDER 539 F13:=(EN[7]/N[7]) *A/Jr 541 P14:=(EN[8]/N[8]) *A/Jr 542 P14:=(EN[7]/N[7]) *A/Jry 543 P17:=(EN[7]/N[7]) *A/Jry 544 P16:=(EN[8]/N[8]) *A/Jry 545 P17:=EN[8]/N[8]) *A/Jry 546 BN1:=BN[1] 547 P17:=EN[8]/N[8]) *A/Jry 548 P17:=EN[8]/N[8]) *A/Jry 549 P17:=EN[8]/N[8]) *A/Jry 544 P16:=(EN[8]/N[8]) *A/Jry 545 BN1:=BN[1] 546 BN2:=EN[2] 547 BN3:=EN[3] 548 DN4:=DN[1] 549 BN5:=EN[5] 550 BN5:=N[5] 551 BN5:=HN[5] 552 HN5:HN[1] 553 HN5:HN[6] 554 HN5:HN[6] 555 HN5:HN[6] 556 HN5:HN[6] 557 HN5:HN[6] 558 HN5:HN[6] 559 <th>534</th> <th>ENDIF</th>	534	ENDIF
536 ENDER 537 FUNCON 538 P13:=(BN[7]/HN[7]) *Ar/Lr 549 P14:=(BN[8]/NN[8]) *Ar/Lr 541 P15:=(BN[7]/HN[7]) *Ar/Lr 542 P16:=(BN[7]/HN[7]) *Ar/Lr 543 P15:=(BN[7]/HN[7]) *Ar/Lr 544 P15:=(BN[7]/HN[7]) *Ar/Lr 545 P15:=(BN[7]/HN[7]) *Ar/Lr 546 P15:=(BN[7]/HN[7]) *Ar/Lr 547 P15:=(BN[7]/HN[7]) *Ar/Lr 548 P17:=(BN[7]/HN[7]) *Ar/Lr 549 P16:=(BN[6]/HN[8]) *Ar/Lr 544 P18:=BN[1] 555 BN1:=BN[1] 566 BN2:=BN[3] 571 BN3:=BN[3] 582 HN2:=HN[4] 583 HN3:=HN[3] 584 HN3:=HN[3] 585 HN5:=HN[5] 586 HN5:=HN[6] 587	535	ENDFOR
537 538 539 539 539 531 532 533 534 541 542 543 544 545 546 547 548 549 541 542 543 544 545 546 547 548 549 549 541 542 543 544 545 546 547 548 549 541 542 543 544 545 546 547 548 549 541 542 543 544 545 545 546 5	536	ENDIF
539 P13:=(EN[7]/HN[7])*Ar/Lr 540 P14:=(BN[8]/HN[8])*Ar/Lr 541 P15:=(EN[7]/HN[7])*Ay/Ly 542 P16:=(BN[7]/HN[7])*Ay/Ly 543 P17:=(EN[8]/HN[8])*Ay/Ly 544 P18:=(BN[8]/HN[8])*Ay/Ly 545 BN1:=BN[1] 546 BN2:=BN[2] 547 BN3:=BN[3] 548 BN4:=BN[4] 550 BN6:=BN[6] 551 HN1:=HN[1] 552 HN2:=HN[2] 553 HN3:=HN[3] 554 HN4:=HN[4] 555 HN5:=FN[6] 556 HN6:=HN[6] 557 HN6:=HN[6] 558 HN3:=HN[3] 559 m:=900 560 IMtrxA1:=18 561 cMtrxA1:.0 562 MtrxA[1m]:=0 563 MtrxA[1m]:=0 564 MtrxA[1m]:=0 565 MtrxA[1m]:=0 566 MtrxA[1m]:=0 567 IMtrxA[1m]:=0 568 MtrxA[1m]:=0 569 MtrxA[1m]:=0	537	ENDFOR
539 P13:=(BN[7]/HN[7])*Ar/Lr 540 P14:=(BN[7]/HN[7])*Ar/Lr 541 P15:=(BN[7]/HN[7])*Ar/Lr 542 P16:=(BN[7]/HN[7])*Ar/Lr 543 P17:=(BN[8]/HN[8])*Ar/Lr 544 P17:=(BN[8]/HN[8])*Ar/Lr 545 BN1:=BN[1] 546 BN1:=BN[1] 547 BN3:=BN[3] 548 BN4:=BN[4] 549 BN5:=BN[5] 550 BN6:=BN[6] 551 HN1:=HN[1] 552 HN2:=HN[2] 553 HN3:=HN[3] 554 HN4:=HN[4] 555 HN5:=HN[5] 556 HN5:=HN[6] 557 Essa parte corresponde ao calculo das matrizes RLib 559 m:=900 561 cMtrxA := 6 562 MtrxA[1@ttrxA] :=[1,-1, 0, 0, 0, 0] 563 MtrxA[1@ttrxA] :=[0, 1, 0, 0, 0, 0] 564 MtrxA[1@ttrxA] :=[0, 0, 0, 0, 1, -1] 565 MtrxA[1@ttrxA] :=[0, 0, 0, 0, 0, 0] 566 MtrxA[1@ttrxA] :=[0, 0, 0, 0, 0, 0] 567 </th <th>538</th> <th></th>	538	
P14:= (BN[8]/HN[8])*Ar/Lr S41 P15:= (BN[7]/HN[7])*Ay/Ly S42 P16:= (BN[7]/HN[7])*Ay/Ly S43 P17:= (BN[8]/HN[8])*Ay/Ly S44 P18:= (BN[8]/HN[8])*Ay/Ly S45 BN1:=BN[1] S46 BN2:=BN[2] S47 BN3:=BN[3] S48 BN4:=BN[4] S49 BN5:=DN[5] S50 BN6:=BN[6] S51 HN1:=HN[1] S52 HN2:=HN[2] S53 HN3:=IN[3] S54 BN5:=DN[5] S55 BN6:=BN[6] S51 HN1:=HN[1] S52 HN2:=HN[2] S53 HN3:=IN[3] S54 HN4:=HN[4] S55 HN5:=IN[5] S56 HN6:=HN[6] S57 Essa parte corresponde ao calculo das matrizes RLib S55 m:=900 S60 IMtrxA]:=18 S61 CMtrxA]:=10 S62 MtrxA[1dHTrxA] :=[0, 1, 0, 0, 0, 0, 0] S63 MtrxA[1dHtrxA] :=[0, 0, 0, 1, -1, 0, 0] S64 MtrxA[3:=Mtr	539	P13:=(BN[7]/HN[7])*Ar/Lr
<pre>P15:=(BN[7]/HN[7]) *Ay/Ly P15:=(BN[7]/HN[7]) *Ay/Ly P16:=(BN[7]/HN[7]) *Ay/Ly P18:=(BN[8]/HN[8]) *Ay/Ly P19:=(BN[8]/HN[8]) *Ay/Ly P19:=(BN[8]/H</pre>	540	P14:=(BN[8]/HN[8])*Ar/Lr
<pre>P16:=(BN[7]/HN[7])*Ay/Ly P16:=(BN[6]/HN[8])*Ay/Ly P17:=(BN[6]/HN[8])*Ay/Ly P18:=(BN[8]/HN[8])*Ay/Ly P18:=(BN[8]/HN[8])*Ay/Ly P18:=(BN[8]/HN[8])*Ay/Ly P18:=(BN[8]/HN[8])*Ay/Ly P18:=(BN[8]) P18:=(B</pre>	541	P15:=(BN[7]/HN[7]) *Av/Lv
<pre>bit (b) (b) (b) (b) (b) (b) (b) (b) (b) (b)</pre>	542	P16 := (BN[7]/HN[7]) * AV/LV
P18:=(BN(8)/HN(8))*Ay/Ly P18:=(BN(8)/HN(8))*Ay/Ly BN1:=BN[1] BN2:=BN[2] BN3:=BN(3] BN3:=BN(3] BN4:=BN[4] BN5:=BN[5] BN1:=BN[1] BN3:=BN(3] BN4:=BN[4] BN5:=BN[5] BN1:=HN[1] BN2:=HN[2] BN3:=BN[5] BN1:=HN[1] BN3:=HN[3] BN3:=HN[3] BN3:=HN[3] BN4:=HN[4] BN5:=HN[5] BN5:=HN[6] BN3:=HN[6] BN4:=HN[6] BN4:=HN[6] BN4:=HN[6] BN4:=HN[6] BN4:=HN[6] BN4:=HN	543	P17:=(BN[8]/HN[8])*Av/Lv
511 Internet (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b	544	P18 = (BN[8]/HN[8]) + Av/T.v
515 Divid Set (1) 546 BN2:=BN[2] 547 BN3:=BN[3] 548 BN4:=BN[4] 549 BN5:=BN[5] 550 BN6:=BN[6] 551 HN1:=HN[1] 552 HN2:=HN[2] 553 HN3:=HN[3] 554 HN4:=HN[4] 555 HN5:=HN[5] 556 HN6:=HN[6] 557 Essa parte corresponde ao calculo das matrizes RLib 559 m:=900 560 IMtrxA := 18 561 cMtrxA := 6 562 MtrxA[1cMtrxA] :=[1, -1, 0, 0, 0, 0, 0] 563 MtrxA[1cwtrxA] :=[0, 0, 0, 1, -1, 0, 0] 564 MtrxA[2*cMtrxA+13*cMtrxA] :=[0, 0, 0, 1, -1, 0, 0] 565 MtrxA[4*cMtrxA+14*cMtrxA] :=[0, 0, 0, 0, 0, 1, -1] 566 MtrxA[4*cMtrxA+15*cMtrxA] :=[0, 0, 0, 0, 0, 0, 1] 566 MtrxA[4*cMtrxA+16*cMtrxA] :=[0, 0, 0, 0, 0, 0, 1] 566 MtrxA[5*cMtrxA+16*cMtrxA] :=[0, -1, 0, 0, 0, 0] 561 MtrxA[5*cMtrxA+16*cMtrxA] :=[0, 0, 0, 1, 1, 0, 0]	545	$RN1 \cdot = RN[1]$
3.5Disk: $Ln(1)$ 547 $BN3:=BN[3]$ 548 $BN4:=BN[4]$ 549 $BN5:=BN[5]$ 550 $BN6:=BN[6]$ 551 $HN1:=HN[1]$ 552 $HN2:=HN[2]$ 553 $HN3:=HN[3]$ 554 $HN4:=HN[4]$ 555 $HN5:=HN[6]$ 556 $HN5:=HN[6]$ 557 $$ Essa parte corresponde ao calculo das matrizes RLib558 $$ Essa parte corresponde ao calculo das matrizes RLib559 $m:=900$ 560 $IMtrxA := 18$ 561 $cMtrxA] := 6$ 562 $MtrxA[1cMtrxA]$ 563 $MtrxA[1cMtrxA]$ 564 $MtrxA[1cMtrxA]$ 565 $MtrxA[2*cMtrxA+13*cMtrxA]$ 566 $MtrxA[2*cMtrxA+13*cMtrxA]$ 567 $MtrxA[3*cMtrxA+15*cMtrxA]$ 568 $MtrxA[4*cMtrxA+15*cMtrxA]$ 569 $MtrxA[5*cMtrxA+16*cMtrxA]$ 569 $MtrxA[5*cMtrxA+16*cMtrxA]$ 561 $MtrxA[4*cMtrxA+15*cMtrxA]$ 562 $MtrxA[2*cMtrxA+16*cMtrxA]$ 563 $MtrxA[2*cMtrxA+16*cMtrXA]$ 564 $MtrxA[2*cMtrXA+16*cMtrXA]$ 565 $MtrxA[4*cMtrXA+16*cMtrXA]$ 566 $MtrxA[4*cMtrXA+16*cMtrXA]$ 567 $MtrxA[4*cMtrXA+16*cMtrXA]$ 568 $MtrxA[5*cMtrXA+16*cMtrXA]$ 579 $MtrxA[5*cMtrXA+16*cMtrXA]$ 570 $MtrXA[8*cMtrXA+19*cMtrXA]$ 571 $MtrXA[8*cMtrXA+19*cMtrXA]$ 572 $I=0, 0, -1, 1, 0, 0]$	546	BN2 = BN[2]
548 BN4:=BN[4] 549 BN5:=BN[5] 550 BN6:=BN[6] 551 HN1:=HN[1] 552 HN2:=HN[2] 553 HN3:=HN[3] 554 HN4:=HN[4] 555 HN5:=HN[5] 556 HN6:=HN[6] 557 558 559 m:=900 560 IMtrxA := 18 561 cMtrxA i:= 6 562 MtrxA[10MtrxA] 563 MtrxA[10MtrxA] 564 MtrxA[12*cMtrxA] 565 MtrxA[2*cMtrxA+13*cMtrxA] 566 MtrxA[2*cMtrxA+13*cMtrxA] 567 :=[0, 0, 0, 1, -1, 0, 0] 568 MtrxA[3*cMtrxA+15*cMtrxA] 569 MtrxA[6*cMtrxA+15*cMtrxA] 560 MtrxA[2*cMtrxA+15*cMtrxA] 561 MtrxA[4*cMtrxA+15*cMtrxA] 562 MtrxA[3*cMtrxA+15*cMtrxA] 563 MtrxA[5*cMtrxA+16*cMtrxA] 564 MtrxA[6*cMtrxA+16*cMtrxA] 565 MtrxA[6*cMtrxA+16*cMtrxA] 566 MtrxA[6*cMtrx	547	$BN3 \cdot = BN[3]$
549 BN5:=BN[5] 550 BN6:=BN[6] 551 HN1:=HN[1] 552 HN2:=HN[2] 553 HN3:=HN[3] 554 HN4:=HN[4] 555 HN5:=EN[5] 556 HN5:=EN[6] 557 HN5:=EN[6] 558 Essa parte corresponde ao calculo das matrizes RLib 559 m:=900 560 IMtrxA := 18 561 cMtrxA := 6 562 MtrxA[1m]:=0 563 MtrxA[1cMtrxA] :=[1,-1, 0, 0, 0, 0, 0] 564 MtrxA[2:cMtrxA+12*cMtrxA] :=[0, 0, 0, 1, -1, 0, 0] 565 MtrxA[3:cMtrxA+14*cMtrxA] :=[0, 0, 0, 1, -1, 0, 0] 566 MtrxA[3*cMtrxA+14*cMtrxA] :=[0, 0, 0, 0, 1, -1] 567 MtrxA[4*cMtrxA+15*cMtrxA] :=[0, 0, 0, 0, 0, 0, 1, -1] 568 MtrxA[5*cMtrxA+16*cMtrxA] :=[0, 0, 0, 0, 0, 0, 0, 1] 569 MtrxA[4*cMtrxA+16*cMtrxA] :=[0, 0, 0, 0, 0, 0, 0] 570 MtrxA[5*cMtrxA+18*cMtrxA] :=[0, 0, 0, 0, 0, 0] 571 MtrxA[8*cMtrxA+19*cMtrxA] :=[0, 0, -1, 1, 0, 0]	5/8	BN(4) - BN[4]
530 BN6: =BN[6] 550 BN6: =BN[6] 551 HN1: =HN[1] 552 HN2: =HN[2] 553 HN3: =HN[3] 554 HN4: =HN[4] 555 HN5: =HN[5] 556 HN6: =HN[6] 557 Essa parte corresponde ao calculo das matrizes RLib 558 Essa parte corresponde ao calculo das matrizes RLib 559 m:=900 560 IMtrxA := 18 561 cMtrxA := 6 562 MtrxA[1m]:=0 563 MtrxA[1cMtrxA] :=[1,-1, 0, 0, 0, 0, 0] 564 MtrxA[2.cvMtrxAt12*cMtrxA] :=[0, 1, 0, 0, 0, 0, 0] 565 MtrxA[2.cvMtrxAt13*cMtrxA] :=[0, 0, 0, 1, -1, 0, 0] 566 MtrxA[3*cMtrxAt14*cMtrxA] :=[0, 0, 0, 0, 1, -1] 568 MtrxA[4*cMtrxAt15*cMtrxA] :=[0, 0, 0, 0, 0, 0, 1] 569 MtrxA[5*cMtrxAt16*cMtrxA] :=[0, 0, 0, 0, 0, 0] 570 MtrxA[6*cMtrxAt17*cMtrxA] :=[0, -1, 0, 0, 0, 0] 571 MtrxA[8*cMtrxAt19*cMtrxA] :=[0, 0, -1, 1, 0, 0]	549	BN5 = BN[5]
535 BRU-EN[0] 551 HN1:=HN[1] 552 HN2:=HN[2] 553 HN3:=HN[3] 554 HN4:=HN[4] 555 HN5:=HN[5] 556 HN6:=HN[6] 557	550	$BN6 \cdot -BN[6]$
551 HN1HN[1] 552 HN2:=HN[2] 553 HN3:=HN[3] 554 HN4:=HN[4] 555 HN5:=HN[5] 556 HN6:=HN[6] 557 558 579 m:=900 560 IMtrxA := 18 561 cMtrxA i= 6 562 MtrxA[1m]:=0 563 MtrxA[cMtrxA+12*cMtrxA] :=[1,-1,0,0,0,0,0] 564 MtrxA[cMtrxA+12*cMtrxA] :=[0,0,0,1,-1,0,0] 565 MtrxA[2*cMtrxA+13*cMtrxA] :=[0,0,0,0,0,0,0] 566 MtrxA[3*cMtrxA+14*cMtrxA] :=[0,0,0,0,0,0,0] 567 MtrxA[4*cMtrxA+15*cMtrxA] :=[0,0,0,0,0,0,0] 568 MtrxA[5*cMtrxA+16*cMtrxA] :=[0,0,0,0,0,0,0] 569 MtrxA[6*cMtrxA+17*cMtrxA] :=[-1,1,0,0,0,0,0] 570 MtrxA[7*cMtrxA+19*cMtrxA] :=[0,0,0,0,0,0] 571 MtrxA[8*cMtrxA+19*cMtrxA] :=[0,0,0,0,0]	551	נון אםטאם
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	JJI DJI	
553 HNS:=HN[5] 554 HN4:=HN[4] 555 HN5:=HN[5] 556 HN6:=HN[6] 557 558 558 Essa parte corresponde ao calculo das matrizes RLib 559 m:=900 560 IMtrxA := 18 561 cMtrxA i:= 6 562 MtrxA[1m]:=0 563 MtrxA[1cMtrxA] :=[1,-1,0,0,0,0] 564 MtrxA[cMtrxA+12*cMtrxA] :=[0,0,0,1,-1,0,0] 565 MtrxA[2*cMtrxA+13*cMtrxA] :=[0,0,0,0,0,0] 566 MtrxA[3*cMtrxA+14*cMtrxA] :=[0,0,0,0,0,0] 567 MtrxA[4*cMtrxA+15*cMtrxA] :=[0,0,0,0,0,0] 568 MtrxA[5*cMtrxA+16*cMtrxA] :=[0,0,0,0,0,0] 569 MtrxA[6*cMtrxA+17*cMtrxA] :=[-1,1,0,0,0,0] 570 MtrxA[7*cMtrxA+18*cMtrxA] :=[0,0,0,-1,1,0,0]	552	
554 HN4:=HN[4] 555 HN5:=HN[5] 556 HN6:=HN[6] 557 Essa parte corresponde ao calculo das matrizes RLib 559 m:=900 560 IMtrxA := 18 561 cMtrxA[1m]:=0 563 MtrxA[1cMtrxA] 564 MtrxA[2*cMtrxA+12*cMtrxA] 565 MtrxA[2*cMtrxA+13*cMtrxA] 566 MtrxA[3*cMtrxA+14*cMtrxA] 567 MtrxA[4*cMtrxA+15*cMtrxA] 568 MtrxA[5*cMtrxA+16*cMtrxA] 569 MtrxA[5*cMtrxA+16*cMtrxA] 560 MtrxA[5*cMtrxA+16*cMtrxA] 561 mtrxA[5*cMtrxA+16*cMtrxA] 562 MtrxA[6*cMtrxA+16*cMtrxA] 563 MtrxA[2*cMtrxA+16*cMtrxA] 564 MtrxA[5*cMtrxA+16*cMtrxA] 565 MtrxA[6*cMtrxA+16*cMtrxA] 566 MtrxA[6*cMtrxA+16*cMtrxA] 571 MtrxA[6*cMtrxA+19*cMtrxA]	555	
555 HNS:=HN[5] 556 HN6:=HN[6] 557 Essa parte corresponde ao calculo das matrizes RLib 559 m:=900 560 IMtrxA := 18 561 cMtrxA i:= 6 562 MtrxA[1m]:=0 563 MtrxA[1cMtrxA] 564 MtrxA[cMtrxA+12*cMtrxA] 565 MtrxA[2*cMtrxA+13*cMtrxA] 566 MtrxA[3*cMtrxA+14*cMtrxA] 567 MtrxA[4*cMtrxA+15*cMtrxA] 568 MtrxA[5*cMtrxA+16*cMtrxA] 569 MtrxA[6*cMtrxA+16*cMtrxA] 570 MtrxA[7*cMtrxA+18*cMtrxA] 571 MtrxA[8*cMtrxA+19*cMtrxA]	554 555	
556 HN6:=HN[6] 557 Essa parte corresponde ao calculo das matrizes RLib 559 m:=900 560 IMtrxA := 18 561 cMtrxA := 6 562 MtrxA[1m]:=0 563 MtrxA[1cMtrxA] :=[1,-1, 0, 0, 0, 0] 564 MtrxA[cMtrxA+12*cMtrxA] :=[0, 0, 1, -1, 0, 0] 565 MtrxA[2*cMtrxA+13*cMtrxA] :=[0, 0, 0, 1, -1, 0, 0] 566 MtrxA[3*cMtrxA+14*cMtrxA] :=[0, 0, 0, 0, 0, 1, -1] 567 MtrxA[4*cMtrxA+15*cMtrxA] :=[0, 0, 0, 0, 0, 0, 1, -1] 568 MtrxA[5*cMtrxA+16*cMtrxA] :=[0, 0, 0, 0, 0, 0, 1] 569 MtrxA[6*cMtrxA+17*cMtrxA] :=[-1, 1, 0, 0, 0, 0] 570 MtrxA[7*cMtrxA+18*cMtrxA] :=[0, 0, -1, 1, 0, 0]	555	
557 558 Essa parte corresponde ao calculo das matrizes RLib 559 560 1MtrxA := 18 561 cMtrxA i= 6 562 MtrxA[1m]:=0 563 564 MtrxA[cMtrxA] i=[0, 1, 0, 0, 0, 0] 565 MtrxA[cMtrxA+12*cMtrxA] i=[0, 0, 1, -1, 0, 0] 566 MtrxA[2*cMtrxA+13*cMtrxA] i=[0, 0, 0, 1, -1, 0, 0] 566 MtrxA[3*cMtrxA+14*cMtrxA] i=[0, 0, 0, 0, 1, -1, 0, 0] 567 MtrxA[4*cMtrxA+15*cMtrxA] i=[0, 0, 0, 0, 0, 1, -1] 568 MtrxA[5*cMtrxA+16*cMtrxA] i=[0, 0, 0, 0, 0, 0, 1] 569 MtrxA[6*cMtrxA+17*cMtrxA] i=[0, -1, 0, 0, 0, 0] 570 MtrxA[7*cMtrxA+19*cMtrxA] i=[0, 0, -1, 1, 0, 0]	556	HN0:=HN[0]
558 Essa parte corresponde ao calculo das matrizes RLib 559 m:=900 560 lMtrxA := 18 561 cMtrxA := 6 562 MtrxA[1m]:=0 563 MtrxA[1cMtrxA] 564 MtrxA[cMtrxA+12*cMtrxA] 565 MtrxA[2*cMtrxA+13*cMtrxA] 566 MtrxA[3*cMtrxA+14*cMtrxA] 567 MtrxA[4*cMtrxA+15*cMtrxA] 568 MtrxA[4*cMtrxA+15*cMtrxA] 569 MtrxA[6*cMtrxA+16*cMtrxA] 569 MtrxA[6*cMtrxA+17*cMtrxA] 570 MtrxA[7*cMtrxA+18*cMtrxA] 571 MtrxA[8*cMtrxA+19*cMtrxA]	557	
559 $m:=900$ 560 $1MtrxA := 18$ 561 $cMtrxA := 6$ 562 $MtrxA[1m]:=0$ 563 $MtrxA[1cMtrxA]$ 564 $MtrxA[cMtrxA+12*cMtrxA]$ 565 $MtrxA[cMtrxA+13*cMtrxA]$ 566 $MtrxA[3*cMtrxA+14*cMtrxA]$ 566 $MtrxA[3*cMtrxA+15*cMtrxA]$ 567 $MtrxA[5*cMtrxA+15*cMtrxA]$ 568 $MtrxA[5*cMtrxA+16*cMtrxA]$ 569 $MtrxA[6*cMtrxA+17*cMtrxA]$ 570 $MtrxA[7*cMtrxA+18*cMtrxA]$ 571 $MtrxA[8*cMtrxA+19*cMtrxA]$	558	Essa parte corresponde ao calculo das matrizes RLib
560 $1MtrxA := 18$ 561 $cMtrxA := 6$ 562 $MtrxA[1m]:=0$ 563 $MtrxA[1cMtrxA]$ 564 $MtrxA[cMtrxA+12*cMtrxA]$ 565 $MtrxA[cMtrxA+13*cMtrxA]$ 566 $MtrxA[2*cMtrxA+13*cMtrxA]$ 566 $MtrxA[3*cMtrxA+14*cMtrxA]$ 567 $MtrxA[4*cMtrxA+15*cMtrxA]$ 568 $MtrxA[5*cMtrxA+16*cMtrxA]$ 569 $MtrxA[6*cMtrxA+17*cMtrxA]$ 569 $MtrxA[6*cMtrxA+18*cMtrxA]$ 570 $MtrxA[7*cMtrxA+18*cMtrxA]$ 571 $MtrxA[8*cMtrxA+19*cMtrxA]$	559	m:=900
561 cMtrxA := 6 562 MtrxA[1m]:=0 563 MtrxA[1cMtrxA] :=[1,-1, 0, 0, 0, 0] 564 MtrxA[cMtrxA+12*cMtrxA] :=[0, 1, 0, 0, 0, 0] 565 MtrxA[2*cMtrxA+13*cMtrxA] :=[0, 0, 1, -1, 0, 0] 566 MtrxA[3*cMtrxA+14*cMtrxA] :=[0, 0, 0, 1, -0, 0] 567 MtrxA[4*cMtrxA+15*cMtrxA] :=[0, 0, 0, 0, 1, -1] 568 MtrxA[5*cMtrxA+16*cMtrxA] :=[0, 0, 0, 0, 0, 1] 569 MtrxA[6*cMtrxA+17*cMtrxA] :=[-1, 1, 0, 0, 0, 0] 570 MtrxA[7*cMtrxA+18*cMtrxA] :=[0, -1, 0, 0, 0, 0] 571 MtrxA[8*cMtrxA+19*cMtrxA] :=[0, 0, -1, 1, 0, 0]	560	lMtrxA := 18
562MtrxA[1m]:=0563MtrxA[1cMtrxA]:=[1,-1, 0, 0, 0, 0]564MtrxA[cMtrxA+12*cMtrxA]:=[0, 1, 0, 0, 0, 0]565MtrxA[2*cMtrxA+13*cMtrxA]:=[0, 0, 1, -1, 0, 0]566MtrxA[3*cMtrxA+14*cMtrxA]:=[0, 0, 0, 1, 0, 0]567MtrxA[4*cMtrxA+15*cMtrxA]:=[0, 0, 0, 0, 1, -1]568MtrxA[5*cMtrxA+16*cMtrxA]:=[0, 0, 0, 0, 0, 1]569MtrxA[6*cMtrxA+17*cMtrxA]:=[-1, 1, 0, 0, 0, 0]570MtrxA[7*cMtrxA+18*cMtrxA]:=[0, -1, 0, 0, 0, 0]571MtrxA[8*cMtrxA+19*cMtrxA]:=[0, 0, -1, 1, 0, 0]	561	cMtrxA := 6
563MtrxA[1cMtrxA]:=[1,-1, 0, 0, 0, 0]564MtrxA[cMtrxA+12*cMtrxA]:=[0, 1, 0, 0, 0, 0]565MtrxA[2*cMtrxA+13*cMtrxA]:=[0, 0, 1, -1, 0, 0]566MtrxA[3*cMtrxA+14*cMtrxA]:=[0, 0, 0, 1, -0, 0]567MtrxA[4*cMtrxA+15*cMtrxA]:=[0, 0, 0, 0, 1, -1]568MtrxA[5*cMtrxA+16*cMtrxA]:=[0, 0, 0, 0, 0, 1]569MtrxA[6*cMtrxA+17*cMtrxA]:=[-1, 1, 0, 0, 0, 0]570MtrxA[7*cMtrxA+18*cMtrxA]:=[0, -1, 0, 0, 0, 0]571MtrxA[8*cMtrxA+19*cMtrxA]:=[0, 0, -1, 1, 0, 0]	562	MtrxA[1m]:=0
564 MtrxA[cMtrxA+12*cMtrxA] :=[0, 1, 0, 0, 0, 0] 565 MtrxA[2*cMtrxA+13*cMtrxA] :=[0, 0, 1, -1, 0, 0] 566 MtrxA[3*cMtrxA+14*cMtrxA] :=[0, 0, 0, 1, -0, 0] 567 MtrxA[4*cMtrxA+15*cMtrxA] :=[0, 0, 0, 0, 1, -1] 568 MtrxA[5*cMtrxA+16*cMtrxA] :=[0, 0, 0, 0, 0, 1] 569 MtrxA[6*cMtrxA+17*cMtrxA] :=[-1, 1, 0, 0, 0, 0] 570 MtrxA[7*cMtrxA+18*cMtrxA] :=[0, -1, 0, 0, 0, 0] 571 MtrxA[8*cMtrxA+19*cMtrxA] :=[0, 0, -1, 1, 0, 0]	563	MtrxA[1cMtrxA] := [1, -1, 0, 0, 0]
565 MtrxA[2*cMtrxA+13*cMtrxA] :=[0, 0, 1, -1, 0, 0] 566 MtrxA[3*cMtrxA+14*cMtrxA] :=[0, 0, 0, 1, 0, 0] 567 MtrxA[4*cMtrxA+15*cMtrxA] :=[0, 0, 0, 0, 1, -1] 568 MtrxA[5*cMtrxA+16*cMtrxA] :=[0, 0, 0, 0, 0, 1] 569 MtrxA[6*cMtrxA+17*cMtrxA] :=[-1, 1, 0, 0, 0, 0] 570 MtrxA[7*cMtrxA+18*cMtrxA] :=[0, -1, 0, 0, 0, 0] 571 MtrxA[8*cMtrxA+19*cMtrxA] :=[0, 0, -1, 1, 0, 0]	564	MtrxA[cMtrxA+12*cMtrxA] :=[0, 1, 0, 0, 0]
566 MtrxA[3*cMtrxA+14*cMtrxA] :=[0, 0, 0, 1, 0, 0] 567 MtrxA[4*cMtrxA+15*cMtrxA] :=[0, 0, 0, 0, 1, -1] 568 MtrxA[5*cMtrxA+16*cMtrxA] :=[0, 0, 0, 0, 0, 1] 569 MtrxA[6*cMtrxA+17*cMtrxA] :=[-1, 1, 0, 0, 0, 0] 570 MtrxA[7*cMtrxA+18*cMtrxA] :=[0, -1, 0, 0, 0, 0] 571 MtrxA[8*cMtrxA+19*cMtrxA] :=[0, 0, -1, 1, 0, 0]	565	MtrxA[2*cMtrxA+13*cMtrxA] :=[0, 0, 1,-1, 0, 0]
567 MtrxA[4*cMtrxA+15*cMtrxA] :=[0, 0, 0, 0, 0, 1, -1] 568 MtrxA[5*cMtrxA+16*cMtrxA] :=[0, 0, 0, 0, 0, 1] 569 MtrxA[6*cMtrxA+17*cMtrxA] :=[-1, 1, 0, 0, 0, 0] 570 MtrxA[7*cMtrxA+18*cMtrxA] :=[0, -1, 0, 0, 0, 0] 571 MtrxA[8*cMtrxA+19*cMtrxA] :=[0, 0, -1, 1, 0, 0]	566	MtrxA[3*cMtrxA+14*cMtrxA] :=[0, 0, 0, 1, 0, 0]
568 MtrxA[5*cMtrxA+16*cMtrxA] :=[0, 0, 0, 0, 0, 1] 569 MtrxA[6*cMtrxA+17*cMtrxA] :=[-1, 1, 0, 0, 0, 0] 570 MtrxA[7*cMtrxA+18*cMtrxA] :=[0, -1, 0, 0, 0, 0] 571 MtrxA[8*cMtrxA+19*cMtrxA] :=[0, 0, -1, 1, 0, 0]	567	MtrxA[4*cMtrxA+15*cMtrxA] :=[0, 0, 0, 0, 1,-1]
569 MtrxA[6*cMtrxA+17*cMtrxA] :=[-1, 1, 0, 0, 0, 0] 570 MtrxA[7*cMtrxA+18*cMtrxA] :=[0, -1, 0, 0, 0, 0] 571 MtrxA[8*cMtrxA+19*cMtrxA] :=[0, 0, -1, 1, 0, 0]	568	MtrxA[5*cMtrxA+16*cMtrxA] :=[0, 0, 0, 0, 1]
570 MtrxA[7*cMtrxA+18*cMtrxA] :=[0,-1,0,0,0,0] 571 MtrxA[8*cMtrxA+19*cMtrxA] :=[0,0,-1,1,0,0]	569	MtrxA[6*cMtrxA+17*cMtrxA] :=[-1, 1, 0, 0, 0, 0]
571 MtrxA[8*cMtrxA+19*cMtrxA] :=[0, 0,-1, 1, 0, 0]	570	MtrxA[7*cMtrxA+18*cMtrxA] :=[0,-1, 0, 0, 0]
	571	MtrxA[8*cMtrxA+19*cMtrxA] :=[0, 0,-1, 1, 0, 0]

```
572
            MtrxA[9*cMtrxA+1..10*cMtrxA] :=[ 0, 0, 0, -1, 0, 0]
573
            MtrxA[10*cMtrxA+1..11*cMtrxA] :=[ 0, 0, 0, 0, -1, 1]
574
            MtrxA[11*cMtrxA+1..12*cMtrxA] :=[ 0, 0, 0, 0, 0, -1]
            MtrxA[12*cMtrxA+1..13*cMtrxA] :=[ 0, 0, 0, 0, 0, 0]
575
            MtrxA[13*cMtrxA+1..14*cMtrxA] :=[ 0, 0, 0, 0, 0, 0]
576
577
            MtrxA[14*cMtrxA+1..15*cMtrxA] :=[-1, 0, 0, 0, 0, 0]
578
            MtrxA[15*cMtrxA+1..16*cMtrxA] :=[-1, 0, 1, 0, 0, 0]
579
            MtrxA[16*cMtrxA+1..17*cMtrxA] :=[ 0, 0, 1, 0, -1, 0]
580
            MtrxA[17*cMtrxA+1..18*cMtrxA] :=[ 0, 0, 0, 0, -1, 0]
581
582
            lMtrxN := 6
583
            cMtrxN := 6
584
            MtrxN[1..m]:=0
585
            MtrxN[0*cMtrxN+1] := N0
            MtrxN[1*cMtrxN+2] := N3
586
587
            MtrxN[2*cMtrxN+3] := N0
            MtrxN[3*cMtrxN+4] := N3
589
            MtrxN[4*cMtrxN+5] := N0
590
            MtrxN[5*cMtrxN+6] := N3
591
592
            lMtrxV := 6
593
            cMtrxV := 1
594
            MtrxV[1..m] := 0
595
            MtrxV[0*cMtrxV+1] := v1[1]
            MtrxV[1*cMtrxV+1] := v1[2]
596
597
            MtrxV[2*cMtrxV+1] := v1[3]
598
            MtrxV[3*cMtrxV+1] := v2[1]
599
            MtrxV[4 * cMtrxV+1] := v2[2]
600
            MtrxV[5*cMtrxV+1] := v2[3]
601
602
            1Mt.rx0 := 6
603
            cMtrxO := 1
604
            Mtrx0[1..m]:=0
605
            Mtrx0[0*cMtrx0+1] := 01
606
            Mtrx0[1*cMtrx0+1] := 02
607
            Mtrx0[2*cMtrx0+1] := 03
608
            Mtrx0[3*cMtrx0+1] := 04
609
            MtrxO[4*cMtrxO+1] := 05
610
            Mtrx0[5*cMtrx0+1] := 06
611
612
613
            lMtrxInsIn := 6
            cMtrxInsIn := 1
614
615
            MtrxInsIn[1..m]:=0
616
            MtrxInsIn[0*cMtrxInsIn+1] := ins1
617
            MtrxInsIn[1*cMtrxInsIn+1] := ins2
            MtrxInsIn[2*cMtrxInsIn+1] := ins3
618
619
            MtrxInsIn[3*cMtrxInsIn+1] := ins4
620
            MtrxInsIn[4*cMtrxInsIn+1] := ins5
621
            MtrxInsIn[5*cMtrxInsIn+1] := ins6
622
623
            dt := timestep
624
            1MtrxP := 18,
62.5
626
            cMtrxP := 18,
627
            MtrxP[1..m]:=0
62.8
            MtrxP[(1-1) * cMtrxP + 1] := P1
62.9
            MtrxP[(2-1)*cMtrxP + 2] := P2
630
            MtrxP[(3-1)*cMtrxP + 3] := P3
631
            MtrxP[(4-1)*cMtrxP + 4] := P4
```

```
632
            MtrxP[(5-1)*cMtrxP + 5] := P5
633
            MtrxP[(6-1)*cMtrxP + 6] := P6
634
            MtrxP[(7-1)*cMtrxP + 7] := P7
635
            MtrxP[(8-1)*cMtrxP + 8] := P8
636
            MtrxP[(9-1)*cMtrxP + 9] := P9
637
            MtrxP[(10-1) * cMtrxP + 10] := P10
638
            MtrxP[(11-1)*cMtrxP + 11] := P11
639
            MtrxP[(12-1)*cMtrxP + 12] := P12
640
            MtrxP[(13-1)*cMtrxP + 13] := P13
641
            MtrxP[(14-1)*cMtrxP + 14] := P14
            MtrxP[(15-1)*cMtrxP + 15] := P15
642
643
            MtrxP[(16-1)*cMtrxP + 16] := P16
644
            MtrxP[(17-1)*cMtrxP + 17] := P17
645
            MtrxP[(18-1)*cMtrxP + 18] := P18
646
647
            USE RNSMatrix as RNSM1
            INPUT
648
649
            deltaTime := dt,
650
651
            lMatrixA := lMtrxA,
652
            cMatrixA := cMtrxA,
653
            MatrixA[1..m] := MtrxA[1..m]
654
655
            IMP := IMtrxP,
656
            cMP := cMtrxP,
            MP[1..900]:= MtrxP[1..m]
657
658
659
            lMatrixN := lMtrxN,
660
            cMatrixN := cMtrxN,
            MatrixN[1..m] := MtrxN[1..m]
661
662
            lMatrixV := lMtrxV,
663
            cMatrixV := cMtrxV,
664
665
            MatrixV[1..m] := MtrxV[1..m]
666
667
            lMatrixO := lMtrxO,
668
            cMatrixO := cMtrxO,
669
            MatrixO[1..m] := MtrxO[1..m]
670
671
            lMatrixInsIn := lMtrxInsIn,
            cMatrixInsIn := cMtrxInsIn,
672
673
            MatrixInsIn[1..m] := MtrxInsIn[1..m]
674
            OUTPUT
            MtrxIns[1..m] := MatrixIns[1..m],
675
676
            MtrxIs[1..m] := MatrixIs[1..m]
677
            ENDUSE
678
            ins1 := MtrxIns[1]
679
            ins2 := MtrxIns[2]
680
            ins3 := MtrxIns[3]
681
            ins4 := MtrxIns[4]
682
            ins5 := MtrxIns[5]
683
            ins6 := MtrxIns[6]
684
            i1[1] := MtrxIs[1]
685
686
            i2[1] := MtrxIs[2]
687
            i1[2] := MtrxIs[3]
            i2[2] := MtrxIs[4]
688
689
            i1[3] := MtrxIs[5]
690
            i2[3] := MtrxIs[6]
691
```

692	i1A:=i1[1] - (i1[2]/2) - (i1[3]/2)
693	i2A:=i2[1]
694	i1B:=i1[2] -(i1[1]/2)-(i1[3]/2)
695	i2B:=i2[2]
696	i1C:=i1[3] -(i1[2]/2)-(i1[1]/2)
697	i2C:=i2[3]
698	v1A:=v1[1]
699	v2A:=v2[1]
700	v1B:=v1[2]
701	v2B:=v2[2]
702	v1C:=v1[3]
703	v2C:=v2[3]
704	
705	ENDEXEC
706	ENDMODEL
707	RECORD
708	RNS6Yd, HN1 AS HN1
709	RNS6Yd RN1 AS RN1
710	DNS6VA HN3 NC HN3
711	DNS6VA BN3 AC BN3
712	DNGEVA UNE NC UNE
712	DNGCVA DNE AC DNE
/±3 71/	CNB CA CHELLING
714	RNS6IG.HN/ AS HN/
715	RNS6IG.BN/ AS BN/
/16	RNS61d.HN8 AS HN8
/1/	RNS6Yd.BN8 AS BN8
/18	RNS6Yd.BN9 AS BN9
719	RNS6Yd.HN9 AS HN9
720	RNS6Yd.BN10 AS BN10
721	RNS6Yd.HN10 AS HN10
722	RNS6Yd.BN11 AS BN11
723	RNS6Yd.HN11 AS HN11
724	RNS6Yd.BN12 AS BN12
725	RNS6Yd.HN12 AS HN12
726	RNS6Yd.i1A AS i1A
727	RNS6Yd.i2A AS i2A
728	RNS6Yd.i1B AS i1B
729	RNS6Yd.i2B AS i2B
730	RNS6Yd.i1C AS i1C
731	RNS6Yd.i2C AS i2C
732	RNS6Yd.ins1 AS ins1
733	RNS6Yd.ins2 AS ins2
734	RNS6Yd.ins3 AS ins3
735	RNS6Yd.ins4 AS ins4
736	RNS6Yd.ins5 AS ins5
737	RNS6Yd.ins6 AS ins6
738	RNS6Yd.vlA AS vlA
739	RNS6Yd.v2A AS v2A
740	RNS6Yd.v1B AS v1B
741	RNS6Yd.v2B AS v2B
742	RNS6Yd.v1C AS v1C
743	RNS6Yd.v2C AS v2C
744	RNS6Yd.iolA AS iolA
745	RNS6Yd.io2A AS io2A
746	RNS6Yd.io1B As io1B
747	RNS6Yd.io2B As io2B
748	RNS6Yd.io1C AS io1C
749	RNS6Yd.io2C AS io2C
750	RNS6Yd.v1p AS v1p
751	RNS6Yd.v2p AS v2p

752	2 RNS6Yd.v3p AS v3p			
753	3 RNS6Yd.v11p AS v11p			
754	4 RNS6Yd.v12p AS v12p			
755	5 RNS6Yd.v13p AS v13p			
756	6 RNS6Yd.v21p AS v21p			
757	7 RNS6Yd.v22p AS v22p			
758	8 RNS6Yd.v23p AS v23p			
759	9 RNS6Yd.vn AS vn			
760	0 RNS6Yd.in AS in			
761	1 RNS6Yd.xla AS xla			
762	2 RNS6Yd.xlb AS xlb			
763	3 RNS6Yd.xlc AS xlc			
764	4 RNS6Yd.01 AS 01			
765	5 RNS6Yd.02 AS 02			
766	6 RNS6Yd.O3 AS O3			
767	7 RNS6Yd.04 AS 04			
768	8 RNS6Yd.05 AS 05			
769	9 RNS6Yd.06 AS 06			
770	0 RNS6Yd.07 AS 07			
771	1 RNS6Yd.08 AS 08			
772	2 RNS6Yd.09 AS 09			
773	3 BNS6Yd.010 AS 010			
774	4 RNS6Yd.011 AS 011			
775	5 RNS6Yd.012 AS 012			
776	6 RNS6Yd.013 AS 013			
777	7 RNS6Yd.014 AS 014			
778	8 RNS6Yd.015 AS 015			
779	9 RNS6Yd.016 AS 016			
780	0 RNS6Yd.017 AS 017			
781	1 RNS6Yd.018 AS 018			
782	2 USE BNS6Yd AS BNS6Yd			
783				
784	$4 \qquad x[1] = M0001A$			
785	v[2] = M0001B			
786	$v_{[2]} = M0001C$			
787	7 DATA			
788	$A_{W} = 0.0158$			
789	9 Av:= 0.0158			
790	Ar:= 0.0158			
791	1 N0 = 195			
792	2 N3:= 98.			
793	3 T.w1 ·= 0.39			
794	$4 Lw^2 := 0.27$			
795	$5 I_{\rm M} = 0.3608$			
796	6 Lr = 0.8			
797	7 Ld0 = 3.88E-4			
798	$1 \text{ Ld}^2 = 0.00678$			
799				
800	$0 \times 0.001 \text{ A} \cdot = \sqrt{2} [1]$			
801	$1 \times 10001 \text{ R}^{-1} = \sqrt{2} [2]$			
802	$2 \times 100012 \cdot 12[2]$			
803	3 ENDUSE			
804	4 ENDMODELS			
805	5 C 1 2 3	4	5 6	7 ×
805	6 C 34567890123456789012345678901234	- 5678901234567	890123456789012	345678901234567890
807	7 /BRANCH		5201201001001Z	5 100,0001204007090
808	8 C < n1 > 2 n2 > 2 ref1> 2 ref2> 2 P > 2	T. >< C >		
200 200	$C < n1 > < n2 > cref1>cref2> C = n^2 > cref1>cref2> c = 2$		0<><> <pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre>><pre><pre< th=""><th></th></pre<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	
810				0
811	1 X0002B 001			0
0 T T	.001			0

812	X0002C		.001						0
813	/ SOURCE								
814	C < n 1><>	>< Ampl. ><	Freq. > <ph< th=""><th>nase/T0><</th><th>A1</th><th>><</th><th>Τ1</th><th>>< TSTART >< T</th><th>ISTOP ></th></ph<>	nase/T0><	A1	><	Τ1	>< TSTART >< T	ISTOP >
815	14X0002A 0	2449.5	60.					-1.	1.E3
816	14X0002B 0	2449.5	60.	-120.				-1.	1.E3
817	14X0002C C	2449.5	60.	120.				-1.	1.E3
818	/OUTPUT								
819	BLANK MODE	ELS							
820	BLANK BRAN	ICH							
821	BLANK SWIT	ГСН							
822	BLANK SOUR	RCE							
823	BLANK OUTP	PUT							
824	BLANK PLOT	C							
825	BEGIN NEW	DATA CASE							
826	BLANK								

Código Fonte A.8 – Código ATP para reator naturalmente saturado com 6 enrolamentos

1	BEGIN NEW DATA CASE
2	C
3	C Generated by ATPDRAW dezembro, quinta-feira 3, 2015
4	C A Bonneville Power Administration program
5	C by H. K. Hoidalen at SEFAS/NTNU - NORWAY 1994-2009
6	
7	POWER FREQUENCY 60.
8	C di >< imax >< Xopt >< Copt > <epsiin></epsiin>
10	5.E-6 .U5 6U. I.E-18U
11	
12	MODELS
13	
14	$MODIA \{ v(XOO2A) \}$
15	$M0001B \{v(X0002B)\}$
16	M0001C {v(X0002C)}
17	OUTPUT
18	X0001A
19	X0001B
20	X0001C
21	MODEL RNS6Yd
22	INPUT v[13]
23	DATA Aw
24	Ау
25	Ar
26	NO
27	N3
28	Lw1
29	Lw2
30	ГА
31	Lr
32	LdO
33	
34	VAR B[148] Campo magnetico dos nove trechos
35	H[140] Densidade magnetica para os nove trechos
30	
27 20	DN[112] HN1 HN2 HN3 HN4 HN5 HN6 HN7 HN8 UN0 UN10 UN11 UN12
30	RN1_RN2_RN3_RN4_RN5_RN6_RN7_RN8_RN9_RN10_RN11_RN12
40	1[147] Indutancias para os nove trechos
41	lp[247] Indutancias linhas (l') para os nove trechos
42	X

43	У
44	d1
45	d2
46	d3
47	d4
48	d5
49	de
50	ав р1
50	F1
51	PZ
52	P3
53	P4
54	P5
55	P6
56	P7
57	P8
58	P9
59	P10
60	P11
61	P12
62	P13
63	P14
64	P15
65	P16
66	P17
67	P18
68	01
69	02
70	02
70	03
71	04
12	05
/3	06
74	07
75	08
76	09
77	010
78	011
79	012
80	013
81	014
82	015
83	016
84	017
85	018
86	a1[16]
87	a2[16]
88	a3[16]
89	a4[16]
90	a5[16]
91	a6[16]
92	f1[16]
93	f2[1 6]
0.1	±2[±0]
74 05	±3[10]
30	14[10]
96	I5[16]
97	±6[16]
98	j1[17]
99	j2[17]
100	j3[17]
101	j4[17]

102

j5[1..7]

1	5	5
1	J	J

103	j6[17]
104	j7[17]
105	u1[16]
106	u2[16]
107	u3[16]
108	u4[1 6]
100	u=[10]
1109	u5[16]
110	u6[16]
	ral[1/]
112	ra2[17]
113	ra3[17]
114	ra4[17]
115	ra5[17]
116	ra6[17]
117	ra7[17]
118	g1[16]
119	q2[16]
120	q3[16]
121	α4[16]
122	a5[1 6]
122	991±000
101	yu[10]
124	m1[16]
125	m2[16]
126	m3[16]
127	m4[16]
128	m5[16]
129	m6[16]
130	q11
131	q22
132	q33
133	q44
134	q55
135	q66
136	insl
137	ins2
138	ins3
139	ins4
140	ins5
141	ins6
1/2	1100
1/2	127
143	12A
144	1 1 1 B
145	128
146	110
147	12C
148	i1[13]
149	i2[13]
150	v1A
151	v2A
152	v1B
153	v2B
154	v1C
155	v2C
156	v1[13]
157	v2[13]
158	vllp
159	v12n
160	v12n
161	v±5p
101	v21p
т 62	v22p

163	v23p
164	vlp
165	v2p
166	v3p
167	iLlp
168	iL2p
169	iL3p
170	ZL1
171	ZL2
172	ZL3
173	iolA
174	io2A
175	iolB
176	io2B
177	iolC
178	io2C
179	e2[13]
180	Pcl
181	Pc2
182	Pc.3
183	Xc1
184	Xc2
185	Xc.3
186	Zcl
187	Zc2
188	Zc3
189	x1
190	x2
191	y1
192	у2
193	e11
194	e21
195	e22
196	e23
197	e1[13]
198	e12[13]
199	ip
200	e121
201	Zc
202	vn
203	in
204]/1
205]/2
206]/3
207	-75
208	J/5
209	
210	دار
212	vlb
213	x]c
214	7
21.5	m, dt, determnt. aux.
216	lMtrxA, cMtrxA, MtrxA[1900]
217	lMtrxP, cMtrxP, MtrxP[1900]
218	lMtrxN, cMtrxN, MtrxN[1900]
219	lMtrxV, cMtrxV, MtrxV[1900]
220	lMtrxO, cMtrxO, MtrxO[1900]
221	lMtrxI, cMtrxI, MtrxI[1900]
222	<pre>lMtrxInsIn, cMtrxInsIn, MtrxInsIn[1900]</pre>

```
lMtrxIns, cMtrxIns, MtrxIns[1..900]
224
            lMtrxIs, cMtrxIs, MtrxIs[1..900]
            Hc -- for hysteresis
226 OUTPUT v2[1..3]
227 $INCLUDE ./RLib.m
228 INIT
229 HN1:=0
230 BN1:=0
231 BN3:=0
232 HN3:=0
233 BN5:=0
     HN5:=0
235
     BN7:=0
236
     HN7:=0
     BN8:=0
     HN8:=0
2.38
239 HN[1..12]:=0
240 BN[1..12]:=0
241
     ins1:=0.01
242 ins2:=0.01
243 ins3:=0.01
244
     ins4:=0.01
245
     ins5:=0.01
246
     ins6:=0.01
247
     i1[1..3]:=0.01
248
     i2[1..3]:=0.01
249 v2[1..3]:=0.01
250 i1A:=0.01
251 i2A:=0.01
252 i1B:=0.01
253 i2B:=0.01
254 i1C:=0.01
    i2C:=0.01
     v1A:=0.01
257
     v2A:=0.01
258
     v1B:=0.01
259
     v2B:=0.01
    v1C:=0.01
260
261
    v2C:=0.01
262 e21:=0.01
263 e22:=0.01
264 e23:=0.01
    v1[1..3]:=0.01
    P1:=0.01
266
267
     P2:=0.01
     P3:=0.01
268
269
     P4:=0.01
270 P5:=0.01
271 P6:=0.01
272 P13:=0.01
273 P14:=0.01
274 P15:=0.01
275 P16:=0.01
276 P17:=0.01
277
    P18:=0.01
278
     m1[1..6]:=0
279
    m2[1..6]:=0
280 m3[1..6]:=0
281 m4[1..6]:=0
282 m5[1..6]:=0
```

~ ~ ~	
283	m6[16]:=0
284	i1[17]:=0.01
285	$\frac{1}{2}$
205	
286	j3[17]:=0.01
287	j4[17]:=0.01
288	j5[17]:=0.01
289	i6[1 7]•=0 01
200	JO[17]. 0.01
290]/[1/]:=0.01
291	v1p:=0
292	v2p:=0
293	v3p:=0
297	v11p.=0
294	viip.=0
295	v12p:=0
296	v13p:=0
297	iL1p:=0
298	iL2p:=0
299	iI.3p.=0
200	
500	vzip:-0
301	v22p:=0
302	v23p:=0
303	io1A:=0
304	io2A:=0
305	io1B•=0
200	LOID. O
306	TOZR:=0
307	iolC:=0
308	io2C:=0
309	q11:=0.01
310	q22:=0.01
311	a33.=0 01
210	q00. 0.01
SIZ	Q44:-0.01
21.3	a55:=0.01
JIJ	1
314	q66:=0.01
314 315	q66:=0.01 in:=0
314 315 316	q66:=0.01 in:=0 vn:=0
 313 314 315 316 317 	q66:=0.01 in:=0 vn:=0 xla:=0
314 315 316 317 318	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0
314 315 316 317 318	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0
314 315 316 317 318 319	<pre>q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0</pre>
 314 315 316 317 318 319 320 	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT
 314 315 316 317 318 319 320 321 	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC
 314 315 316 317 318 319 320 321 322 	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133
 314 315 316 317 318 319 320 321 322 323 	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937
314 315 316 317 318 319 320 321 322 323 324	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4
314 315 316 317 318 319 320 321 322 323 324 325	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H(2]:=13.608
314 315 316 317 318 319 320 321 322 323 324 325	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608
 313 314 315 316 317 318 319 320 321 322 323 324 325 326 	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999
 314 315 316 317 318 319 320 321 322 323 324 325 326 327 	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358
 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998
 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.168
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.168 B[7]:=0.999992
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 332 333 334 335 336 337	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.168 B[7]:=0.999992 H[8]:=21.884
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.168 B[7]:=0.999992 H[8]:=21.884 B[8]:=1.049991
314 314 315 316 317 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.168 B[7]:=0.999992 H[8]:=21.884 B[8]:=1.049991 U[0]:=0.2020
314 314 315 316 317 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.168 B[7]:=0.999992 H[8]:=21.884 B[8]:=1.049991 H[9]:=22.839
314 314 315 316 317 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.168 B[7]:=0.999992 H[8]:=1.049991 H[9]:=22.839 B[9]:=1.099991
314 314 315 316 317 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341	q66:=0.01 in:=0 vn:=0 xla:=0 xlb:=0 xlc:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.168 B[7]:=0.999992 H[8]:=1.049991 H[9]:=22.839 B[9]:=1.099991 H[10]:=23.635

343	H[11]:=24.987
244	51111 1 10000
344	B[II]:=I.19999
345	H[12]:=26.42
0 1 0	
346	B[12]:=1.24999
317	u[12]20 17
547	п[13]20.17
348	B[13]:=1.29999
~	
349	H[14]:=30.63/
350	B[14]:=1.349991
0.5.4	
351	H[15]:=33.025
352	B[15]·=1 399992
002	2[10]. 1.000002
353	H[16]:=37.242
357	B[16] -1 //0005
554	D[10]. 1.449999
355	H[17]:=42.972
356	D[17]1 /00000
550	B[17]1.499990
357	H[18]:=45.757
250	51101 1 50
338	B[18]:=1.52
359	H[19]:=48.94
200	D[10], 1 540000
36U	B[19]:=1.540003
361	H[20]:=53.317
2.00	D1003 1 50000
362	B[20]:=1.560006
363	H[21]:=58.887
364	B[21]:=1.580011
365	H[22]:=66.049
366	B[22]:=1.600016
367	H[23]:=76.394
2.6.0	
368	B[23]:=1.620025
369	H[24]:=85.944
270	D[24]1 640022
570	B[24]:-1.040033
371	H[25]:=103.451
372	B[25] ·=1 660048
	5[20]. 1.000010
373	H[26]:=119.366
374	B[26]:=1.680062
0.7.5	
3/5	H[2/]:=14/.218
376	B[27]:=1.700087
277	TI (00) 1(0) 104
3//	H[28]:=103.134
378	B[28]:=1.710101
270	11(201, 170,040
519	п[29]:-1/9.049
380	B[29]:=1.720115
3.9.1	H[30] -202 923
JUI	11[30]202.923
382	B[30]:=1.730136
383	H[31] ·= 226 796
000	n[31]• 220•/90
384	B[31]:=1.740157
385	H[32]·=259 423
386	в[32]:=1.750186
387	H[33]:=282.5
200	51221 1 760007
388	B[33]:=1./6020/
389	H[34]:=334.225
200	DI241. 1 7700E2
390	Б[34]:-1.//0255
391	H[35]:=377.993
202	D[25]1 700202
592	B[35]1.700292
393	H[36]:=445.634
301	D[26]1 700252
594	D[30]1./90332
395	H[37]:=501.338
396	B[371:=1.800402
	5.0.1. 1.000402
397	H[38]:=612.747
398	B[38]:=1.810502
200	HI203 700 000
399	н[зу]:=/00.282
400	B[39]:=1.82058
101	H[101035 564
ΗUI	п[ч0]:=033.304
	B[10] •-1 830701

```
403
       H[41]:=954.93
404
       B[41]:=1.840808
405
       H[42]:=1114.085
       B[42]:=1.850951
406
407
      H[43]:=1193.662
408
      B[43]:=1.861022
409
      H[44]:=1392.606
410
      B[44]:=1.871201
411
      H[45]:=1591.549
412
      B[45]:=1.881379
      H[46]:=2500
413
414
      B[46]:=1.922194
415
       H[47]:=5000
416
      B[47]:=1.964438
417
      H[48]:=10000
      B[48]:=1.978929
418
419
420
       -- Metodo de aproximacao linear por trechos
421
       -- Esse loop calcula a indutancia de cada trecho
422
      FOR i:=1 TO 47 DO
423
           l[i]:=(B[i+1]-B[i])/(H[i+1]-H[i])
424
       ENDFOR
425
426
       -- Metodo de aproximacao linear por trechos parte 2
427
       -- Segundo loop para calcular o l' para cada trecho
       -- Utilizar Lp' para criar indutores equivalentes que facam
428
429
       -- o mesmo efeito na indutância total.
430
431
       FOR i:=2 TO 47 DO
          lp[i]:=1/((1/l[i])-(1/l[i-1]))
432
433
       ENDFOR
434
       d1:=Aw*N0*0.96
435
436
       d2:=Aw*N3*0.96
437
       d3:=Aw*N0*0.96
438
      d4:=Aw*N3*0.96
439
       d5:=Aw*N0*0.96
440
      d6:=Aw*N3*0.96
441
      P7:=Ld0/(N0*N0)
442
      P8:=Ld3/(N3*N3)
443
      P9:=Ld0/(N0*N0)
444
      P10:=Ld3/(N3*N3)
445
      P11:=Ld0/(N0*N0)
446
      P12:=Ld3/(N3*N3)
447
       IF t=5e-5 THEN
448
       v1p:=v[1]/cos(377*t)
449
       v2p:=v[2]/cos(377*t-2.094)
       v3p:=v[3]/cos(377*t+2.094)
450
451
      ENDIF
452
      v1[1]:=v[1]
453
      v1[2]:=v[2]
454
      v1[3]:=v[3]
455
      IF t=5e-5 THEN
456
       v11p:=v1[1]/cos(377*t)
457
        v12p:=v1[2]/cos(377*t-2.094)
458
       v13p:=v1[3]/cos(377*t+2.094)
       ENDIF
459
       v2[1]:=(v11p*N3/(N0))*cos(377*t+0.524)
460
461
      v2[2]:=(v12p*N3/(N0))*cos(377*t-1.57)
462
       v2[3]:=(v13p*N3/(N0))*cos(377*t+2.62)
```

```
463
       v21p:=v11p*N3/(N0)
464
       v22p:=v12p*N3/(N0)
       v23p:=v13p*N3/(N0)
465
466
       BN[1]:=((v11p/377)*sin(377*t))/d1
467
468
       BN[2]:=BN[1]
469
       BN[3]:=((v12p/377)*sin(377*t-2.094))/d3
470
       BN[4]:=BN[3]
471
       BN[5]:=((v13p/377)*sin(377*t+2.094))/d5
472
       BN[6]:=BN[5]
473
474
            FOR i:=1 TO 6 DO
475
                     IF BN[i]>=0 THEN
                                                       -- Calculo de H para os trechos do sistema
476
                             HN[i]:=BN[i]/1[1]
477
                             FOR j:=2 TO 47 DO
478
                                      IF BN[i]>B[j] THEN
                                              HN[i]:=HN[i]+((BN[i]-B[j])/lp[j])
479
480
                                      ENDIF
                             ENDFOR
481
482
                     ELSE
483
                             HN[i]:=BN[i]/1[1]
484
                             FOR j:=2 TO 47 DO
485
                                      IF BN[i]<-B[j] THEN
486
                                               HN[i]:=HN[i]+((BN[i]+B[j])/lp[j])
487
                                      ENDIF
                             ENDFOR
488
489
                     ENDIF
490
                     IF v[1] < 0 THEN
491
                             HN[i]:=HN[i]-Hc
                ELSE
492
493
                         HN[i]:=HN[i]+Hc
                     ENDIF
494
            ENDFOR
495
496
497
            P1:=(BN[1]/HN[1])*Aw/(Lw1)
498
            P2:=(BN[2]/HN[1]) *Aw/(Lw2)
499
            P3:=(BN[3]/HN[3])*Aw/(Lw1)
            P4:=(BN[4]/HN[3])*Aw/(Lw2)
501
            P5:=(BN[5]/HN[5])*Aw/(Lw1)
502
            P6:=(BN[6]/HN[5])*Aw/(Lw2)
503
            01:=BN[1]*Aw*0.96
            02:=BN[2]*Aw*0.96
504
505
            O3:=BN[3]*Aw*0.96
506
            04:=BN[4]*Aw*0.96
507
            O5:=BN[5]*Aw*0.96
508
            O6:=BN[6]*Aw*0.96
509
            O7:=P7*((HN[1]*Lw1)+(O1/P1))
510
            O8 := P8 * ((HN[1] * Lw2) + (O2/P2))
511
            O9:=P9*((HN[3]*Lw1)+(O3/P3))
512
            O10:=P10*((HN[3]*Lw2)+(O4/P4))
513
            O11:=P11*((HN[5]*Lw1)+(O5/P5))
514
            O12:=P12*((HN[5]*Lw2)+(O6/P6))
            015:=(01+07)/2
516
            016:=(01+07)/2
517
            013:=015
518
            017:=(05+011)/2
519
            018 := (05 + 011) / 2
520
            014:=018
            BN[7]:=013/(Ar*0.96)
522
            BN[8]:=014/(Ar*0.96)
```

```
523
            BN[9]:=015/(Ay*0.96)
524
            BN[10]:=016/(Ay*0.96)
            BN[11]:=017/(Ay*0.96)
525
            BN[12]:=018/(Ay*0.96)
526
527
            FOR i:=7 TO 8 DO
528
529
                    IF BN[i]>=0 THEN
                                                      -- Calculo de H para os trechos do sistema
                             HN[i]:=BN[i]/1[1]
531
                             FOR j:=2 TO 47 DO
532
                                     IF BN[i]>B[j] THEN
533
                                             HN[i]:=HN[i]+((BN[i]-B[j])/lp[j])
534
                                     ENDIF
535
                             ENDFOR
                    ELSE
537
                             HN[i]:=BN[i]/l[1]
538
                             FOR j:=2 TO 47 DO
539
                                     IF BN[i]<-B[j] THEN
540
                                             HN[i]:=HN[i]+((BN[i]+B[j])/lp[j])
541
                                     ENDIF
542
                             ENDFOR
543
                    ENDIF
544
            ENDFOR
545
546
            P13:=(BN[7]/HN[7])*Ar/Lr
547
        P14:=(BN[8]/HN[8])*Ar/Lr
        P15:=(BN[7]/HN[7])*Ay/Ly
549
        P16:=(BN[7]/HN[7]) * Ay/Ly
550
        P17:=(BN[8]/HN[8])*Ay/Ly
        P18:=(BN[8]/HN[8])*Ay/Ly
552
            BN1:=BN[1]
553
            BN2:=BN[2]
554
            BN3:=BN[3]
555
            BN4:=BN[4]
556
            BN5:=BN[5]
            BN6:=BN[6]
558
            HN1:=HN[1]
559
            HN2:=HN[2]
            HN3:=HN[3]
561
            HN4:=HN[4]
            HN5:=HN[5]
562
563
            HN6:=HN[6]
564
565
            -- Essa parte corresponde ao calculo das matrizes RLib
            m : = 900
567
            1MtrxA := 18
568
            cMtrxA := 6
569
            MtrxA[1..m]:=0
570
                                                        := [1, -1, 0, 0, 0]
            MtrxA[1..cMtrxA]
571
            MtrxA[cMtrxA+1..2*cMtrxA]
                                               := [0, 1, 0, 0, 0]
572
            MtrxA[2*cMtrxA+1..3*cMtrxA]
                                               := [0, 0, 1, -1, 0, 0]
573
            MtrxA[3*cMtrxA+1..4*cMtrxA]
                                               := [0, 0, 0, 1, 0, 0]
574
            MtrxA[4*cMtrxA+1..5*cMtrxA]
                                               := [0, 0, 0, 0, 1, -1]
575
                                                := [0, 0, 0, 0, 0, 1]
            MtrxA[5*cMtrxA+1..6*cMtrxA]
576
                                                := [-1, 1, 0, 0, 0]
            MtrxA[6*cMtrxA+1..7*cMtrxA]
577
            MtrxA[7*cMtrxA+1..8*cMtrxA]
                                                := [0, -1, 0, 0, 0]
578
            MtrxA[8*cMtrxA+1..9*cMtrxA]
                                                := [0, 0, -1, 1, 0, 0]
579
            MtrxA[9*cMtrxA+1..10*cMtrxA] :=[ 0, 0, 0, -1, 0, 0]
580
            MtrxA[10*cMtrxA+1..11*cMtrxA] :=[ 0, 0, 0, 0, -1, 1]
581
            MtrxA[11*cMtrxA+1..12*cMtrxA] :=[ 0, 0, 0, 0, 0, -1]
582
            MtrxA[12*cMtrxA+1..13*cMtrxA] :=[ 0, 0, 0, 0, 0, 0]
```

```
583
            MtrxA[13*cMtrxA+1..14*cMtrxA] :=[ 0, 0, 0, 0, 0, 0]
584
            MtrxA[14*cMtrxA+1..15*cMtrxA] :=[-1, 0, 0, 0, 0, 0]
585
            MtrxA[15*cMtrxA+1..16*cMtrxA] :=[-1, 0, 1, 0, 0, 0]
            MtrxA[16*cMtrxA+1..17*cMtrxA] :=[ 0, 0, 1, 0,-1, 0]
586
587
            MtrxA[17*cMtrxA+1..18*cMtrxA] :=[ 0, 0, 0, 0, -1, 0]
588
589
            lMtrxN := 6
            cMtrxN := 6
591
            MtrxN[1..m]:=0
592
            MtrxN[0*cMtrxN+1] := N0
593
            MtrxN[1*cMtrxN+2] := N3
594
            MtrxN[2*cMtrxN+3] := N0
595
            MtrxN[3*cMtrxN+4] := N3
            MtrxN[4*cMtrxN+5] := N0
597
            MtrxN[5*cMtrxN+6] := N3
598
            lMtrxV := 6
600
            cMtrxV := 1
601
            MtrxV[1..m] := 0
602
            MtrxV[0*cMtrxV+1] := v1[1]
603
            MtrxV[1*cMtrxV+1] := v1[2]
604
            MtrxV[2*cMtrxV+1] := v1[3]
605
            MtrxV[3*cMtrxV+1] := v2[1]
606
            MtrxV[4*cMtrxV+1] := v2[2]
607
            MtrxV[5*cMtrxV+1] := v2[3]
608
609
            lMtrxO := 6
610
            cMtrxO := 1
611
            Mtrx0[1..m]:=0
612
            MtrxO[0*cMtrxO+1] := 01
613
            Mtrx0[1*cMtrx0+1] := 02
            Mtrx0[2*cMtrx0+1] := 03
614
            Mtrx0[3*cMtrx0+1] := 04
615
616
            MtrxO[4*cMtrxO+1] := 05
617
            Mtrx0[5*cMtrx0+1] := 06
618
619
620
            lMtrxInsIn := 6
621
            cMtrxInsIn := 1
622
            MtrxInsIn[1..m]:=0
623
            MtrxInsIn[0*cMtrxInsIn+1] := ins1
            MtrxInsIn[1*cMtrxInsIn+1] := ins2
624
62.5
            MtrxInsIn[2*cMtrxInsIn+1] := ins3
626
            MtrxInsIn[3*cMtrxInsIn+1] := ins4
627
            MtrxInsIn[4*cMtrxInsIn+1] := ins5
628
            MtrxInsIn[5*cMtrxInsIn+1] := ins6
629
630
            dt := timestep
631
632
            1MtrxP := 18,
633
            cMtrxP := 18,
634
            MtrxP[1..m]:=0
            MtrxP[(1-1) * cMtrxP + 1] := P1
635
            MtrxP[(2-1)*cMtrxP + 2] := P2
636
637
            MtrxP[(3-1) * cMtrxP + 3] := P3
638
            MtrxP[(4-1)*cMtrxP + 4] := P4
639
            MtrxP[(5-1) * cMtrxP + 5] := P5
640
            MtrxP[(6-1) * cMtrxP + 6] := P6
641
            MtrxP[(7-1)*cMtrxP + 7] := P7
642
            MtrxP[(8-1)*cMtrxP + 8] := P8
```

```
643
            MtrxP[(9-1)*cMtrxP + 9] := P9
644
            MtrxP[(10-1)*cMtrxP + 10] := P10
645
            MtrxP[(11-1)*cMtrxP + 11] := P11
            MtrxP[(12-1)*cMtrxP + 12] := P12
646
647
            MtrxP[(13-1)*cMtrxP + 13] := P13
648
           MtrxP[(14-1)*cMtrxP + 14] := P14
649
           MtrxP[(15-1)*cMtrxP + 15] := P15
650
           MtrxP[(16-1)*cMtrxP + 16] := P16
651
           MtrxP[(17-1)*cMtrxP + 17] := P17
652
            MtrxP[(18-1)*cMtrxP + 18] := P18
653
            USE RNSMatrix as RNSM1
654
655
            INPUT
656
            deltaTime := dt,
657
658
           lMatrixA := lMtrxA,
659
            cMatrixA := cMtrxA,
660
           MatrixA[1..m] := MtrxA[1..m]
661
662
           IMP := IMtrxP,
663
            cMP := cMtrxP,
664
            MP[1..900]:= MtrxP[1..m]
665
666
            lMatrixN := lMtrxN,
667
            cMatrixN := cMtrxN,
            MatrixN[1..m] := MtrxN[1..m]
668
669
670
           lMatrixV := lMtrxV,
671
            cMatrixV := cMtrxV,
672
            MatrixV[1..m] := MtrxV[1..m]
673
            lMatrixO := lMtrxO,
674
675
            cMatrixO := cMtrxO,
676
            MatrixO[1..m] := MtrxO[1..m]
677
678
            lMatrixInsIn := lMtrxInsIn,
679
            cMatrixInsIn := cMtrxInsIn,
680
            MatrixInsIn[1..m] := MtrxInsIn[1..m]
681
            OUTPUT
682
            MtrxIns[1..m] := MatrixIns[1..m],
           MtrxIs[1..m] := MatrixIs[1..m]
683
684
           ENDUSE
685
            ins1 := MtrxIns[1]
            ins2 := MtrxIns[2]
686
687
            ins3 := MtrxIns[3]
688
            ins4 := MtrxIns[4]
689
            ins5 := MtrxIns[5]
690
            ins6 := MtrxIns[6]
691
692
           i1[1] := MtrxIs[1]
693
            i2[1] := MtrxIs[2]
694
            i1[2] := MtrxIs[3]
695
            i2[2] := MtrxIs[4]
            i1[3] := MtrxIs[5]
696
697
            i2[3] := MtrxIs[6]
698
            i1A:=i1[1] -(i1[2]/2)-(i1[3]/2)
699
            i2A:=i2[1]
            i1B:=i1[2] -(i1[1]/2)-(i1[3]/2)
            i2B:=i2[2]
```

703	i1C = i1[3] - (i1[2]/2) - (i1[1]/2)
704	i2C = i2[3]
705	120. 12[0]
705	
706	VZA:=VZ[1]
707	VIB:=VI[2]
708	v2B:=v2[2]
709	v1C:=v1[3]
710	v2C:=v2[3]
711	
712	ENDEXEC
713	ENDMODEL
714	RECORD
715	RNS6Yd.HN1 AS HN1
716	RNS6Yd.BN1 AS BN1
717	RNS6Yd.HN3 AS HN3
718	RNS6Yd.BN3 AS BN3
719	RNS6Yd.HN5 AS HN5
720	RNS6Yd.BN5 AS BN5
721	RNS6Yd.HN7 AS HN7
722	RNS6Yd.BN7 AS BN7
723	RNS6Yd.HN8 AS HN8
724	RNS6Yd.BN8 AS BN8
725	RNS6Yd.BN9 AS BN9
726	RNS6Yd.HN9 AS HN9
727	RNS6Yd.BN10 AS BN10
728	RNS6Yd.HN10 AS HN10
729	RNS6Yd.BN11 AS BN11
730	RNS6Yd.HN11 AS HN11
731	RNS6Yd.BN12 AS BN12
732	RNS6Yd.HN12 AS HN12
733	RNS6Yd.ila AS ila
734	RNS6Yd.i2A AS i2A
735	RNS6Yd.i1B AS i1B
736	RNS6Yd.i2B AS i2B
737	RNS6Yd.ilC AS ilC
738	RNS6Yd.i2C AS i2C
739	RNS6Yd.ins1 AS ins1
740	RNS6Yd.ins2 AS ins2
741	RNS6Yd.ins3 AS ins3
742	RNS6Yd.ins4 AS ins4
743	RNS6Yd.ins5 AS ins5
744	RNS6Yd.ins6 AS ins6
745	RNS6Yd.vlA AS vlA
746	RNS6Yd.v2A AS v2A
747	RNS6Yd.v1B AS v1B
748	RNS6Yd.v2B AS v2B
749	RNS6Yd.v1C AS v1C
750	RNS6Yd.v2C AS v2C
751	RNS6Yd.iolA AS iolA
752	RNS6Yd.io2A AS io2A
753	RNS6Yd.io1B As io1B
754	RNS6Yd.io2B As io2B
7.5.5	RNS6Yd.io1C AS io1C
756	RNS6Yd.io2C AS io2C
757	RNS6Yd.vlp AS vlp
758	RNS6Yd.v2p AS v2p
759	RNS6Yd. v3p AS v3p
760	RNS6Yd.v11p AS v11p
761	RNS6Yd.v12p AS v12p
762	RNS6Yd v13p AS v13p
104	THOOTH ATOP ATOP

763	RNS6Yd.v21p AS v21p
764	RNS6Yd.v22p AS v22p
765	RNS6Yd.v23p AS v23p
766	RNS6Yd.vn AS vn
767	RNS6Yd.in AS in
768	RNS6Yd.xla AS xla
769	RNS6Yd.xlb AS xlb
770	RNS6Yd.xlc AS xlc
771	RNS6Yd.01 AS 01
772	RNS6Yd.02 AS 02
773	RNS6Yd.03 AS 03
774	RNS6Yd.04 AS 04
775	RNS6Yd.05 AS 05
776	RNS6Yd.06 AS 06
777	RNS6Yd.07 AS 07
778	RNS6Yd.08 AS 08
779	RNS6Yd.09 AS 09
780	RNS6Yd.010 AS 010
781	RNS6Yd.011 AS 011
782	RNS6Yd.012 AS 012
783	RNS6Yd.013 AS 013
784	RNS6Yd.014 AS 014
785	RNS6Yd.015 AS 015
786	RNS6Yd.016 AS 016
787	RNS6Yd.017 AS 017
788	RNS6Yd.018 AS 018
789	USE RNS6Yd AS RNS6Yd
790	INPUT
791	v[1]:= M0001A
792	v[2]:= M0001B
793	v[3]:= M0001C
794	DATA
795	Aw:= 0.0158
796	Ay:= 0.0158
797	Ar:= 0.0158
798	NO:= 195.
799	N3:= 98.
800	Lw1:= 0.39
801	Lw2:= 0.27
802	Ly:= 0.3608
803	Lr:= 0.8
804	LdU:= 3.88E-4
805	Ld3:= 0.006/8
806	
807	X0001A:=v2[1]
808	X0001B:=v2[2]
809	X0001C:=V2[3]
810	
811	
812	
011	C 3430103017343010301734301030173430103017343010301734301030173420103017342010301734501030173450103017345010301
014 015	/ DRAINCH
01J 816	C < n1 > n2 > reflected P > A > R > long > A > 0
0±0 017	
01/ 810	V0002R 001 0
0±0 810	x00020 001 0
820	
02U 821	r of r of r
822	14X0002a 0 2449 5 60 _1 1 22
UZZ	-1. 1.E3

823	14X000	2B 0	2449.5	60.	-120.	-1.	1.E3
824	14X000	2C 0	2449.5	60.	120.	-1.	1.E3
825	/OUTPU	г					
826	BLANK I	MODELS					
827	BLANK	BRANCH					
828	BLANK :	SWITCH					
829	BLANK :	SOURCE					
830	BLANK (OUTPUT					
831	BLANK 1	PLOT					
832	BEGIN 1	NEW DAT	A CASE				
833	BLANK						

Código Fonte A.9 – Código ATP para reator naturalmente saturado com 6 enrolamentos e considerando efeitos de histerese

```
1 BEGIN NEW DATA CASE
 2
  C ---
 3 C Generated by ATPDRAW dezembro, quinta-feira 3, 2015
 4 C A Bonneville Power Administration program
 5 C by H. K. Hoidalen at SEFAS/NTNU - NORWAY 1994-2009
 6 c -----
                          60.
 7 POWER FREQUENCY
8 C dT >< Tmax >< Xopt >< Copt ><Epsiln>
     5.E-6 .05 60. 1.E-180
 9
              1
                              1 1
     500
                      1
                                             0
                                                     0
                                                            1
                                                                     0
  /MODELS
12 MODELS
13 INPUT
14 M0001A {v(X0002A)}
15 M0001B {v(X0002B)}
16 M0001C {v(X0002C)}
17 OUTPUT
18 X0001A
19 X0001B
   X0001C
20
21 MODEL RNS9
22
  INPUT v[1..3]
23
   DATA Aw
       Ay
2.4
25
        Ar
26
        N1
27
        N2
28
            NЗ
29
        Lw1
        Lw2
        Lw3
        Ly
33
        Lr
34
        Ld1
        Ld2
        Ld3
37
   VAR B[1..48]
                        -- Campo magnetico dos nove trechos
38
         H[1..48]
                           -- Densidade magnetica para os nove trechos
39
       HN[1..15]
40
       BN[1..15]
41
          HN1, HN2, HN3, HN4, HN5, HN6, HN7, HN8, HN9, HN10, HN11, HN12, HN13, HN14, HN15
42
           BN1, BN2, BN3, BN4, BN5, BN6, BN7, BN8, BN9, BN10, BN11, BN12, BN13, BN14, BN15
43
       1[1..47]
                        -- Indutancias para os nove trechos
44
                         -- Indutancias linhas (l') para os nove trechos
       lp[2..47]
```

```
45
         d1, d2, d3, d4, d5, d6, d7, d8, d9
 46
         P1, P2, P3, P4, P5, P6, P7, P8, P9
 47
         P10, P11, P12, P13, P14, P15, P16, P17, P18
             P19, P20, P21, P22, P23, P24
 48
 49
         01,02,03,04,05,06,07,08,09
         010,011,012,013,014,015,016,017,018
 50
 51
             019, 020, 021, 022, 023, 024
         ins1, ins2, ins3, ins4, ins5, ins6, ins7, ins8, ins9
 53
             i1A, i1B, i1C
         i2A,i2B,i2C
 54
55
             i3A,i3B,i3C
 56
         i1[1..3],i2[1..3],i3[1..3]
 57
         v1A,v1B,v1C
 58
             v2A, v2B, v2C
 59
         v3A,v3B,v3C
         v1[1..3],v2[1..3],v3[1..3]
 60
 61
             v1p, v2p, v3p
 62
         v11p,v12p,v13p
 63
         v21p,v22p,v23p
 64
         iolA, iolB, iolC
 65
         io2A,io2B,io2C
         io3A,io3B,io3C
 67
             --Library Variables
 68
             m, dt, determnt, aux,
 69
             IMtrxA, cMtrxA, MtrxA[1..900]
             lMtrxP, cMtrxP, MtrxP[1..900]
 71
             lMtrxN, cMtrxN, MtrxN[1..900]
             lMtrxV, cMtrxV, MtrxV[1..900]
             lMtrxO, cMtrxO, MtrxO[1..900]
 74
             lMtrxI, cMtrxI, MtrxI[1..900]
             IMtrxInsIn, cMtrxInsIn, MtrxInsIn[1..900]
             IMtrxIns, cMtrxIns, MtrxIns[1..900]
             lMtrxIs, cMtrxIs, MtrxIs[1..900]
 78
    OUTPUT v3[1..3]
 79
    $INCLUDE ./RLib.m
80
    INIT
81
      HN[1..15]:=0
82
      BN[1..15]:=0
83
      ins1:=0.01
 84
      ins2:=0.01
85
      ins3:=0.01
86
      ins4:=0.01
87
      ins5:=0.01
88
      ins6:=0.01
89
      ins7:=0.01
 90
      ins8:=0.01
 91
      ins9:=0.01
      i1[1..3]:=0.01
92
93
      i2[1..3]:=0.01
94
      i3[1..3]:=0.01
 95
      v1[1..3]:=0.01
 96
      v2[1..3]:=0.01
 97
      v3[1..3]:=0.01
98
      i1A:=0.01
99
      i2A:=0.01
100
      i3A:=0.01
      i1B:=0.01
      i2B:=0.01
103
      i3B:=0.01
104
      i1C:=0.01
```

	1
105	i2C:=0.01
106	i3C:=0.01
107	
107	VIA:=0.01
108	v2A:=0.01
109	v3A:=0.01
110	1.D. 0.01
110	AIB:=0.01
111	v2B:=0.01
112	v3B:=0.01
110	16. 0.01
TTC	VIC:-0.01
114	v2C:=0.01
115	v3C:=0.01
116	P10 01
TIO	110.01
117	P2:=0.01
118	P3:=0.01
119	P4:=0.01
100	DE 0 01
ΙΖU	P5:=0.01
121	P6:=0.01
122	P13:=0.01
123	P14·=0 01
104	515 0 01
124	P15:=0.01
125	P16:=0.01
126	P17:=0.01
127	P180 01
127	
128	P19:=0.01
129	P20:=0.01
130	P21:=0.01
131	P22·=0 01
101	122. 0.01
132	P23:=0.01
133	P24:=0.01
134	v1p:=0
125	
TSS	v2p:-0
136	v3p:=0
137	v11p:=0
138	v12p:=0
130	$\frac{1}{3n!=0}$
100	V15p0
140	v21p:=0
141	v22p:=0
142	v23p:=0
1/13	io1A·=0
145	10140
144	102A:=0
145	io3A:=0
146	io1B:=0
147	io2B·=0
1 4 0	
148	103B:=0
149	io1C:=0
150	io2C:=0
151	io3C:=0
1 5 0	ENDINI
1 J Z	ENDINIT
153	EXEC
154	H[1]:=11.937
155	B[1]:=0.4
156	u[2].=12 600
TOR	Π[2]:-13.000
157	B[2]:=0.499999
158	H[3]:=15.358
159	B[3]:=0.599998
160	H[4]·=17 100
1 6 5	D[4] 0 0000
161	В[4]:=0.699997
162	H[5]:=18.701
163	B[5]:=0.799995
164	H[6]:=20.292

	I
165	B[6]:=0.899994
166	H[7]:=21.168
167	P[7], -0 000002
TOV	B[7]0.999992
168	H[8]:=21.884
169	B[8]:=1.049991
170	H[9]·=22 839
170	11[9]22.039
171	B[9]:=1.099991
172	H[10]:=23.635
173	B[10]·=1 14999
1 7 4	
1/4	H[11]:=24.987
175	B[11]:=1.19999
176	H[12]:=26.42
177	B[12]:=1.24999
170	
1/0	H[13]:-20.17
179	B[13]:=1.29999
180	H[14]:=30.637
181	B[14]:=1.349991
100	TI[1E] - 22 02E
TOZ	п[10]:-03.020
183	B[15]:=1.399992
184	H[16]:=37.242
185	B[16]:=1.449995
106	TI[17] - 42 072
100	H[1/]:-42.9/2
187	B[17]:=1.499998
188	H[18]:=45.757
189	B[18]:=1.52
1 9 0	н[19].—/8 9/
1.01	n[10] 1 540000
191	B[19]:=1.540003
192	H[20]:=53.317
193	B[20]:=1.560006
194	H[21] •=58 887
105	D[21]. 30.007
195	B[21]:=1.580011
196	H[22]:=66.049
197	B[22]:=1.600016
198	H[23]:=76.394
100	D[22] -1 620025
199	B[23]:-1.620025
200	H[24]:=85.944
201	B[24]:=1.640033
202	H[25]:=103.451
203	B[25]·=1 660048
205	B[25]1.000040
204	H[26]:=119.366
205	B[26]:=1.680062
206	H[27]:=147.218
2.07	B[27]:=1.700087
200	ц[20]162 134
200	п[20]:-103.134
209	B[28]:=1.710101
210	H[29]:=179.049
211	B[29]:=1.720115
212	H[30] ·= 202 923
010	D[00] 1 D0100
213	B[30]:=1./30136
214	H[31]:=226.796
215	B[31]:=1.740157
216	H[32]:=259.423
217	B[32] -1 750104
L 1 /	D[32].=1./JU100
218	H[33]:=282.5
219	B[33]:=1.760207
220	H[34]:=334.225
221	B[341:=1.770253
200	TIDE1 - 277 000
222	н[зэ]:=3//.993
223	B[35]:=1.780292
224	H[36]:=445.634

005	D1201 1 200200
225	B[36]:=1.790352
226	H[3/]:=501.338
227	B[37]:=1.800402
228	H[38]:=612.747
229	B[38]:=1.810502
230	H[39]:=700.282
231	B[39]:=1.82058
232	H[40]:=835.564
233	B[40]:=1.830701
234	H[41]:=954.93
235	B[41]:=1.840808
236	H[42]:=1114.085
237	B[42]:=1.850951
238	H[43]:=1193.662
239	B[43]:=1.861022
240	H[44]:=1392.606
241	B[44]:=1.871201
242	H[45]:=1591.549
243	B[45]:=1.881379
244	H[46] := 2500
245	B[46]:=1.922194
246	H[47]:=5000
247	B[47]:=1.964438
248	H[48] := 10000
249	$B[48] \cdot = 1 978929$
250	D[10]. 1.970929
251	Metodo de aproximação linear por trechos
252	Esse loon calcula a indutancia de cada trecho
253	FOR $i = 1$ TO 47 DO
254	$1(i) \cdot = (B(i+1) - B(i)) / (H(i+1) - H(i))$
201	$\perp \lfloor \perp \rfloor \cdot - \langle D \lfloor \perp \cdot \perp \rfloor D \lfloor \perp \rfloor \rangle / \langle \Pi \lfloor \perp \cdot \perp \rfloor \Pi \lfloor \perp \rfloor \rangle$
255	ENDEOD
255	ENDFOR
255 256	ENDFOR
255 256 257	ENDFOR Metodo de aproximacao linear por trechos parte 2
255 256 257 258	ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho
255 256 257 258 259	ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam
255 256 257 258 259 260	ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total.
255 256 257 258 259 260 261	ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total.
255 256 257 258 259 260 261 262	<pre>ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO </pre>
255 256 257 258 259 260 261 262 263	<pre>ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO lp[i]:=1/((1/1[i])-(1/1[i-1]))</pre>
255 257 258 259 260 261 262 263 264	<pre>ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO lp[i]:=1/((1/1[i])-(1/1[i-1])) ENDFOR</pre>
255 257 258 259 260 261 262 263 263 264 265	<pre>ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
255 257 258 259 260 261 262 263 264 265 266	<pre>ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
255 257 258 259 260 261 262 263 264 265 266 266	<pre>ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO lp[i]:=1/((1/1[i])-(1/1[i-1])) ENDFOR v1[1]:=v[1] v1[2]:=v[2] </pre>
255 257 258 259 260 261 262 263 263 265 266 265 266 267 268	<pre>ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO lp[i]:=1/((1/1[i])-(1/1[i-1])) ENDFOR v1[1]:=v[1] v1[2]:=v[2] v1[3]:=v[3]</pre>
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269	<pre>ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270	<pre>ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271	<pre>ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 271 272	<pre>ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO lp[i]:=1/((1/1[i])-(1/1[i-1])) ENDFOR v1[1]:=v[1] v1[2]:=v[2] v1[3]:=v[3] IF t=5e-5 THEN v1p:=v[1]/cos(377*t) v2p:=v[2]/cos(377*t-2.094)</pre>
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 271 272 273	<pre>ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 273 273	<pre>ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
255 256 257 258 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 273	<pre>ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
255 256 257 258 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276	<pre>ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277	<pre>ENDFOR Metodo de aproximação linear por trechos parte 2 Segundo loop para calcular o 1' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278	<pre>ENDFOR Metodo de aproximação linear por trechos parte 2 Segundo loop para calcular o 1' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 277 278 277	<pre>ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
255 256 257 258 259 260 261 262 263 264 265 266 267 268 270 271 272 273 274 275 274 275 276 277 278 277 278 279 280	<pre>ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
255 256 257 258 259 260 261 262 263 264 265 266 267 268 270 271 271 272 273 274 275 276 277 278 279 280 281	<pre>ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o 1' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO lp[i]:=1/((1/1[i])-(1/1[i-1])) ENDFOR v1[1]:=v[1] v1[2]:=v[2] v1[3]:=v[3] IF t=5e-5 THEN vlp:=v[1]/cos(377*t) v2p:=v[2]/cos(377*t-2.094) v3p:=v[3]/cos(377*t+2.094) ENDIF v1[1]:=((0.743*v1p))*cos(377*t) v1[2]:=((0.743*v2p))*cos(377*t-2.094) v1[3]:=((0.743*v3p))*cos(377*t+2.094) IF t=5e-5 THEN v1p:=v1[1]/cos(377*t) v12p:=v1[2]/cos(377*t-2.094) v12p:=v1[2]/cos(377*t-2.094) v12p:=v1[3]/cos(377*t+2.094)</pre>
255 256 257 258 259 260 261 262 263 264 265 266 267 268 267 270 271 272 273 274 275 276 277 278 279 279 280 281 282	<pre>ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o 1' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO</pre>
255 256 257 258 259 260 261 262 263 264 265 266 267 268 267 270 271 272 273 274 273 274 275 276 277 278 279 280 281 282 283	<pre>ENDFOR Metodo de aproximacao linear por trechos parte 2 Segundo loop para calcular o l' para cada trecho Utilizar Lp' para criar indutores equivalentes que facam o mesmo efeito na indutancia total. FOR i:=2 TO 47 DO lp[i]:=1/((1/1[i])-(1/1[i-1])) ENDFOR v1[1]:=v[1] v1[2]:=v[2] v1[3]:=v[3] IF t=5e-5 THEN v1p:=v1[1]/cos(377*t) v2p:=v[2]/cos(377*t-2.094) v3p:=v[3]/cos(377*t+2.094) ENDIF v1[1]:=((0.743*v1p))*cos(377*t) v1[2]:=((0.743*v2p))*cos(377*t+2.094) IF t=5e-5 THEN v1p:=v1[1]/cos(377*t) v1[2]:=v[2]/cos(377*t-2.094) v1[3]:=((0.743*v3p))*cos(377*t+2.094) IF t=5e-5 THEN v1p:=v1[2]/cos(377*t) v12p:=v1[3]/cos(377*t+2.094) ENDIF v1[1]:=v1[3]/cos(377*t+2.094) V1[2]:=v1[3]/cos(377*t+2.094) V1[2]:=v1[3]/cos(377*t+2.094)</pre>

```
285
       v2[3]:=((N2/N1)*v13p)*cos(377*t+2.094)
286
       v21p:=((N2/N1)*v11p)
       v22p:=((N2/N1)*v12p)
287
       v23p:=((N2/N1) *v13p)
289
       v3[1]:=(v11p*0.675)*cos(377*t-0.524)
       v3[2]:=(v12p*0.675)*cos(377*t-2.094-0.524)
291
       v3[3]:=(v13p*0.675)*cos(377*t+2.094-0.524)
292
293
       --Enrolamentos da esquerda
       d1:=Aw*(N1+N2)*0.96
       BN[1]:=(((v11p+v21p)/(377))*sin(377*t))/d1
296
       BN[2]:=BN[1]
297
298
       --Enrolamentos do MEIO
299
       d3:=Aw*(N1+N2)*0.96
       BN[3]:=(((v12p+v22p)/(377))*sin(377*t-2.094))/d3
       BN[4]:=BN[3]
       --Enrolamentos da direita
304
       d5:=Aw*(N1+N2)*0.96
       BN[5]:=(((v13p+v23p)/(377))*sin(377*t+2.094))/d5
       BN[6]:=BN[5]
308
       FOR i:=1 TO 6 DO
309
                    IF BN[i]>=0 THEN
                                                      -- Calculo de H para os trechos do sistema
                             HN[i]:=BN[i]/1[1]
                             FOR j:=2 TO 47 DO
                                     IF BN[i]>B[j] THEN
                                             HN[i]:=HN[i]+((BN[i]-B[j])/lp[j])
                                     ENDIF
314
                             ENDFOR
                    ELSE
                             HN[i]:=BN[i]/1[1]
318
                             FOR j:=2 TO 47 DO
319
                                     IF BN[i]<-B[j] THEN
                                             HN[i]:=HN[i]+((BN[i]+B[j])/lp[j])
321
                                     ENDIF
                             ENDFOR
323
                    ENDIF
324
            ENDFOR
        -- PERMEANCIAS DOS ENROLAMENTOS
327
           P1:=(BN[1]/HN[1])*Aw/(Lw1)
            P2:=(BN[1]/HN[1])*Aw/(Lw2)
329
            P3:=(BN[1]/HN[1])*Aw/(Lw3)
            P4:=(BN[3]/HN[3]) *Aw/(Lw1)
332
            P5:=(BN[3]/HN[3])*Aw/(Lw2)
333
            P6:=(BN[3]/HN[3]) *Aw/(Lw3)
334
335
            P7:=(BN[5]/HN[5])*Aw/(Lw1)
            P8:=(BN[5]/HN[5])*Aw/(Lw2)
            P9:=(BN[5]/HN[5])*Aw/(Lw3)
338
339
            -- PERMEANCIAS DE DISPERSAO
340
            P10:=Ld1/(N1*N1)
        P11:=Ld2/(N2*N2)
341
342
       P12:=Ld3/(N3*N3)
343
       P13:=Ld1/(N1*N1)
344
       P14:=Ld2/(N2*N2)
```

```
345
        P15:=Ld3/(N3*N3)
346
            P16:=Ld1/(N1*N1)
347
        P17:=Ld2/(N2*N2)
        P18:=Ld3/(N3*N3)
348
349
            -- Fluxo principal
351
            O1:=BN[1]*Aw*0.96
            02:=BN[1]*Aw*0.96
353
            O3:=BN[1]*Aw*0.96
            04:=BN[3]*Aw*0.96
            O5:=BN[3]*Aw*0.96
356
            O6:=BN[3]*Aw*0.96
357
            07:=BN[5]*Aw*0.96
358
            08:=BN[5]*Aw*0.96
359
            09:=BN[5]*Aw*0.96
            --Fluxo disperso
362
            O10:=P10*((HN[1]*Lw1)+(O1/P1))
363
            O11:=P11*((HN[1]*Lw2)+(O2/P2))
364
            O12:=P12*((HN[1]*Lw3)+(O3/P3))
            O13:=P13*((HN[3]*Lw1)+(O4/P4))
            O14:=P14*((HN[3]*Lw2)+(O5/P5))
367
            O15:=P15*((HN[3]*Lw3)+(O6/P6))
368
            O16:=P16*((HN[5]*Lw1)+(O7/P7))
369
            O17:=P17*((HN[5]*Lw2)+(O8/P8))
            O18:=P18*((HN[5]*Lw3)+(O9/P9))
371
372
            --Fluxo nos jugos e retornos
            021:=(01-010)/2
374
            022:=021
375
            019:=022
            023 := (07 - 016) / 2
377
            024:=023
378
            020:=024
379
380
            BN[7]:=019/(Ar*0.96)
            BN[8]:=020/(Ar*0.96)
381
            BN[9]:=021/(Ay*0.96)
383
            BN[10]:=022/(Ay*0.96)
384
            BN[11]:=023/(Ay*0.96)
            BN[12]:=024/(Ay*0.96)
385
386
            FOR i:=7 TO 12 DO
387
                     IF BN[i]>=0 THEN
                                                      -- Calculo de H para os trechos do sistema
389
                             HN[i]:=BN[i]/1[1]
390
                             FOR j:=2 TO 47 DO
                                      IF BN[i]>B[j] THEN
392
                                              HN[i]:=HN[i]+((BN[i]-B[j])/lp[j])
                                      ENDIF
394
                             ENDFOR
395
                     ELSE
396
                             HN[i]:=BN[i]/l[1]
397
                             FOR j:=2 TO 47 DO
                                      IF BN[i]<-B[j] THEN
399
                                              HN[i]:=HN[i]+((BN[i]+B[j])/lp[j])
400
                                      ENDIF
                             ENDFOR
401
402
                     ENDIF
403
            ENDFOR
404
```

105	
405	$P_{1,2} = (DN[0]/UN[0]) + DN[1]$
400	P20:= (DN[0]/IN[0]) * At/LL
407	P21: -(BN[9]/RN[9]) *Ay/Ly
408	P22: (DN[11]/HN[11]) *Ay/Ly
409	P23:= (BN[11]/HN[11]) *Ay/Ly
410	P24:=(BN[12]/HN[12])*AY/LY
411	
412	BN1:=BN[1]
413	BN2:=BN[2]
414	BN3:=BN[3]
415	BN4:=BN[4]
416	BN2:=BN[2]
41/	BN6:=BN[6]
418	BN/:=BN[/]
419	BN8:=BN[8]
420	BN9:=BN[9]
421	BN10:=BN[10]
422	BN11:=BN[11]
423	BN12:=BN[12]
424	TIXT1. TIXT[1]
420	
420	низни[з]
428	$HN4 \cdot = HN[4]$
429	$HN5 \cdot = HN[5]$
430	$HN6 \cdot = HN[6]$
431	HN7:=HN[7]
432	HN8:=HN[8]
433	HN9:=HN[9]
434	HN10:=HN[10]
435	HN11:=HN[11]
436	HN12:=HN[12]
437	
438	Essa parte corresponde ao calculo das matrizes RLib
439	m:=900
440	lMtrxA := 24
441	cMtrxA := 9
442	MtrxA[1m]:=0
443	MtrxA[1cMtrxA] :=[1,-1, 0, 0, 0, 0, 0, 0]
444	MtrxA[cMtrxA+12*cMtrxA] :=[0, 1,-1, 0, 0, 0, 0, 0]
445	MtrxA[2*cMtrxA+13*cMtrxA] :=[0, 0, 1, 0, 0, 0, 0, 0]
446	MtrxA[3*cMtrxA+14*cMtrxA] :=[0, 0, 0, 1,-1, 0, 0, 0, 0]
447	MtrxA[4*cMtrxA+15*cMtrxA] := [0, 0, 0, 0, 1, -1, 0, 0, 0]
448	MtrxA[5*cMtrxA+16*cMtrxA] := [0, 0, 0, 0, 0, 1, 0, 0]
449	MtrxA[6*cMtrxA+17*cMtrxA] := [0, 0, 0, 0, 0, 0, 1, -1, 0]
450	MtrxA[7*cMtrxA+18*cMtrxA] := [0, 0, 0, 0, 0, 0, 0, 1, -1]
451	MtrxA[8*cMtrxA+19*cMtrxA] :=[0, 0, 0, 0, 0, 0, 0, 1]
452	MtrxA[9*cMtrxA+110*cMtrxA] :=[-1, 1, 0,0, 0, 0, 0, 0, 0]
453	MtrxA[10*cMtrxA+111*cMtrxA] :=[0,-1, 1, 0, 0, 0, 0, 0, 0]
454	MtrxA[ll*cMtrxA+112*cMtrxA] :=[0, 0, -1, 0, 0, 0, 0, 0, 0]
455	MtrxA[12*cMtrxA+113*cMtrxA] := [0, 0, 0, -1, 1, 0, 0, 0]
456	MTXA[13*CMTXA+114*CMTXA] := [0, 0, 0, 0, -1, 1, 0, 0]
45/	MLTXA[14*CMTTXA+115*CMTTXA] := [0, 0, 0, 0, 0, -1, 0, 0, 0]
458	MTXX[13*CMTXA+110*CMTXA] := [U, U, 1, U, U, U, -1, 1, U]
439	Mtryb[17+cMtryb+1 = 18+cMtryb] := [0, 0, 0, 0, 0, 0, 0, 1]
400	Mtrvb[18+cMtrvb+1 = 19+cMtrvb] := [0, 0, 0, 0, 0, 0, 0, 0, 0]
162	MtrxA[19+cMtrxA+1 = 20+cMtrxA] = [0, 0, 0, 0, 0, 0, 0, 0, 0]
463	MtrxA[20*cMtrxA+121*cMtrxA] := [-1. 0. 0. 0. 0. 0. 0. 0]
464	MtrxA[2]*cMtrxA+122*cMtrxA] := [-1. 0. 0. 1.0. 0. 0. 0. 0]
101	

```
465
            MtrxA[22*cMtrxA+1..23*cMtrxA] :=[ 0, 0, 0, 1,0, 0, -1,0,0]
466
        MtrxA[23*cMtrxA+1..24*cMtrxA] :=[ 0, 0, 0, 0, 0, 0, -1 ,0 ,0]
467
468
469
470
            lMtrxN := 9
471
            cMtrxN := 9
472
            MtrxN[1..m]:=0
473
            MtrxN[0*cMtrxN+1] := N1
474
            MtrxN[1*cMtrxN+2] := N2
475
            MtrxN[2*cMtrxN+3] := N3
476
            MtrxN[3*cMtrxN+4] := N1
477
            MtrxN[4*cMtrxN+5] := N2
478
            MtrxN[5*cMtrxN+6] := N3
479
            MtrxN[6*cMtrxN+7] := N1
480
            MtrxN[7*cMtrxN+8] := N2
            MtrxN[8*cMtrxN+9] := N3
481
482
            lMtrxV := 9
483
484
            cMtrxV := 1
485
            MtrxV[1..m] := 0
486
            MtrxV[0*cMtrxV+1] := v1[1]
487
            MtrxV[1*cMtrxV+1] := v2[1]
488
            MtrxV[2*cMtrxV+1] := v3[1]
489
            MtrxV[3*cMtrxV+1] := v1[2]
            MtrxV[4*cMtrxV+1] := v2[2]
490
491
            MtrxV[5*cMtrxV+1] := v3[2]
492
            MtrxV[6*cMtrxV+1] := v1[3]
493
            MtrxV[7*cMtrxV+1] := v2[3]
494
            MtrxV[8*cMtrxV+1] := v3[3]
495
            lMtrxO := 9
496
497
            cMtrxO := 1
498
            Mtrx0[1..m]:=0
499
            MtrxO[0*cMtrxO+1] := 01
500
            Mtrx0[1*cMtrx0+1] := 02
            Mtrx0[2*cMtrx0+1] := 03
501
            Mtrx0[3*cMtrx0+1] := 04
503
            Mtrx0[4*cMtrx0+1] := 05
504
            Mtrx0[5*cMtrx0+1] := 06
505
        Mtrx0[6*cMtrx0+1] := 07
506
            Mtrx0[7*cMtrx0+1] := 08
507
            Mtrx0[8*cMtrx0+1] := 09
509
            lMtrxInsIn := 9
510
            cMtrxInsIn := 1
            MtrxInsIn[1..m]:=0
512
            MtrxInsIn[0*cMtrxInsIn+1] := ins1
513
            MtrxInsIn[1*cMtrxInsIn+1] := ins2
514
            MtrxInsIn[2*cMtrxInsIn+1] := ins3
515
            MtrxInsIn[3*cMtrxInsIn+1] := ins4
516
            MtrxInsIn[4*cMtrxInsIn+1] := ins5
517
            MtrxInsIn[5*cMtrxInsIn+1] := ins6
518
            MtrxInsIn[6*cMtrxInsIn+1] := ins7
519
            MtrxInsIn[7*cMtrxInsIn+1] := ins8
            MtrxInsIn[8*cMtrxInsIn+1] := ins9
521
522
            dt := timestep
523
524
            1MtrxP := 24,
```

FOF	
525	CMTrXP := 24,
526	MtrxP[1m]:=0
527	MtrxP[(1-1)*cMtrxP + 1] := P1
528	MtrxP[(2-1)*cMtrxP + 2] := P2
529	MtrxP[(3-1)*cMtrxP + 3] := P3
530	MtrxP[(4-1)*cMtrxP+4] := P4
531	Mt ry D[(5-1) + cMt ry D + 5] = D5
531 532	$METRI [(0, 1) \times METRI + 0] : 10$
552	MUIXP[(0-1) * CMUIXP + 0] := P0
533	MTXP[(7-1) * CMTXP + 7] := P7
534	MtrxP[(8-1)*cMtrxP + 8] := P8
535	MtrxP[(9-1)*cMtrxP + 9] := P9
536	MtrxP[(10-1)*cMtrxP + 10] := P10
537	MtrxP[(11-1)*cMtrxP + 11] := P11
538	MtrxP[(12-1)*cMtrxP + 12] := P12
539	MtrxP[(13-1)*cMtrxP + 13] := P13
540	MtrxP[(14-1)*cMtrxP + 14] := P14
541	MtrxP[(15-1)*cMtrxP + 15] := P15
542	MtrxP[(16-1)*cMtrxP + 16] := P16
543	MtrvP[(17-1) + cMtrvP + 17] := P17
544	MtrvD[(18-1)+cMtrvD + 18] - D18
515	MtryD[(10-1)+oMtryD + 10] = P10
545	MUTXP[(19-1)*CMUTXP + 19] := P19
546	MtrxP[(20-1)*cMtrxP + 20] := P20
547	MtrxP[(21-1)*cMtrxP + 21] := P21
548	MtrxP[(22-1)*cMtrxP + 22] := P22
549	MtrxP[(23-1)*cMtrxP + 23] := P23
550	MtrxP[(24-1)*cMtrxP + 24] := P24
551	
552	USE RNSMatrix as RNSM1
553	INPUT
554	deltaTime := dt,
555	
556	lMatrixA := lMtrxA,
557	cMatrixA := cMtrxA.
558	$MatrixA[1 m] \cdot = MtrxA[1 m]$
559	indefinitie
560	lMP ⋅= lMtrxP
561	oMP ·= oMtryP
562	MD[1 QOO] - MtryD[1 m]
502	MP[1900]:- MCIXP[1m]
203	
564	IMATTIXN := IMTTXN,
565	CMatrixN := CMtrxN,
566	MatrixN[1m] := MtrxN[1m]
567	
568	<pre>IMatrixV := LMtrxV,</pre>
569	cMatrixV := cMtrxV,
570	<pre>MatrixV[1m] := MtrxV[1m]</pre>
571	
572	lMatrixO := lMtrxO,
573	cMatrixO := cMtrxO,
574	<pre>MatrixO[1m] := MtrxO[1m]</pre>
575	
576	lMatrixInsIn := lMtrxInsIn,
577	cMatrixInsIn := cMtrxInsIn,
578	MatrixInsTn[1m] := MtrxTnsTn[1 m]
579	ΟυτΡυτ
520	MtryIns[1 m] ·= MatrivIng[1 m]
5.00	MtryTe[1 m] - MotriyTe[1 m]
TOT	PULIXIS[IM] - MAULIXIS[IM]
502	
283 501	Insi := Mtrxins[1]
584	insz := Mtrxins[2]

585	ins3 := MtrxIns[3]
586	ins4 := MtrxIns[4]
587	ins5 := MtrxIns[5]
588	ins6 := MtrxIns[6]
589	<pre>ins7 := MtrxIns[7]</pre>
590	ins8 := MtrxIns[8]
591	ins9 := MtrxIns[9]
592	
593	i1[1] := MtrxIs[1]
594	i2[1] := MtrxIs[2]
595	i1[2] := MtryIe[4]
597	$i_{2}[2] := MtrxIs[4]$
598	i3[2] := MtrxIs[6]
599	i1[3] := MtrxIs[7]
600	i2[3] := MtrxIs[8]
601	i3[3] := MtrxIs[9]
602	
603	i1A:=i1[1]+(i2[2])-(i2[1]/2)-(i2[3]/2)-(i1[3]/2)-(i1[2]/2)
604	io1A+(io2B)-(io2A/2)-(io2C/2)-(io1C/2)-(io1B/2)
605	
606	11B:=11[2]+(12[3])-(12[2]/2)-(12[1]/2)-(11[1]/2)-(11[3]/2)
608	= 101B+(102C) - (102B/2) - (102A/2) - (101A/2) - (101C/2)
609	i1C:=i1[3]+(i2[1])-(i2[2]/2)-(i2[3]/2)-(i1[1]/2)-(i1[2]/2)
610	io1C+(io2A) - (io2B/2) - (io2C/2) - (io1A/2) - (io1B/2)
611	
612	i2A:=i2[1]
613	i2B:=i2[2]
614	i2C:=i2[3]
615	
616	i3A:=i3[1]
617	13B:=13[2]
619	130:=13[3]
620	v1A:=v1[1]
621	v2A:=v2[1]
622	v3A:=v3[1]
623	v1B:=v1[2]
624	v2B:=v2[2]
625	v3B:=v3[2]
626	v1C:=v1[3]
620	v_{2} = v_{2} [3]
629	
630	ENDEXEC
631	ENDMODEL
632	RECORD
633	RNS9.HN1 AS HN1
634	RNS9.BN1 AS BN1
635	RNS9.HN3 AS HN3
636	KNSY.BNJ AS BNJ
628	RNS9, BN5 AS BN5
639	RNS9.HN7 AS HN7
640	RNS9.BN7 AS BN7
641	RNS9.HN8 AS HN8
642	RNS9.BN8 AS BN8
643	RNS9.BN9 AS BN9
644	RNS9.HN9 AS HN9

	1
645	RNS9.BN10 AS BN10
646	RNS9.HN10 AS HN10
647	RNS9.BN11 AS BN11
648	RNS9.HN11 AS HN11
649	RNS9.BN12 AS BN12
650	RNS9 HN12 AS HN12
651	$\frac{1}{2} \frac{1}{2} \frac{1}$
652	DNGQ ; 27 AC ; 27
652	RNS9.12A AS 12A
653	RNS9.IJA AS IJA
654	RNS9.11B AS 11B
655	RNS9.128 AS 128
656	RNS9.13B AS 13B
657	RNS9.ilC AS ilC
658	RNS9.i2C AS i2C
659	RNS9.i3C AS i3C
660	RNS9.insl AS insl
661	RNS9.ins2 AS ins2
662	RNS9.ins3 AS ins3
663	RNS9.ins4 AS ins4
664	RNS9.ins5 AS ins5
665	RNS9.ins6 AS ins6
666	RNS9.ins7 AS ins7
667	RNS9.ins8 AS ins8
668	RNS9.ins9 AS ins9
669	RNS9.v1A AS v1A
670	RNS9.v2A AS v2A
671	RNS9.v3A AS v3A
672	RNS9.v1B AS v1B
673	RNS9.v2B AS v2B
674	RNS9. v3B AS v3B
675	RNS9 v1C AS v1C
676	BNS9 W2C AS W2C
677	RNS9 V3C AS V3C
678	PNS9 iola AS iola
679	RNS9 io22 AS io22
680	PNS9 io18 As io18
601	DNCQ ic2D As ic2D
001	RNS9.102B AS 102B
002	RNS9.101C AS 101C
683	RNS9.102C AS 102C
684	RNS9.VIIP AS VIIP
685	RNS9.VI2p AS VI2p
686	RNS9.VI3p AS VI3p
687	RNS9.v2lp AS v2lp
688	RNS9.v22p AS v22p
689	RNS9.v23p AS v23p
690	RNS9.01 AS 01
691	RNS9.02 AS 02
692	RNS9.03 AS 03
693	RNS9.04 AS 04
694	RNS9.05 AS 05
695	RNS9.06 AS 06
696	RNS9.07 AS 07
697	RNS9.08 AS 08
698	RNS9.09 AS 09
699	RNS9.010 AS 010
700	RNS9.011 AS 011
701	RNS9.012 AS 012
702	RNS9.013 AS 013
703	RNS9.014 AS 014
704	RNS9.015 AS 015
705	RNS9.016 AS 016
-------	--
706	RNS9.017 AS 017
707	RNS9.018 AS 018
708	RNS9.019 AS 019
709	RNS9.020 AS 020
710	RNS9.021 AS 021
711	RNS9.022 AS 022
712	RNS9.023 AS 023
713	RNS9.024 AS 024
714	USE RNS9 AS RNS9
715	INPUT
716	v[1]:= M0001A
717	v[2]:= M0001B
718	v[3]:= M0001C
719	DATA
720	AW:= 0.0158
722	$A_{Y} = 0.0158$
723	N1 145
724	$N_{2} = 77$
725	N3 := 98.
72.6	T_{W} 1:= 0.29
727	Lw2:= 0.154
728	Lw3:= 0.27
729	Ly:= 0.3608
730	Lr:= 0.8
731	Ld1:= 5.119E-5
732	Ld2:= 1.279E-4
733	Ld3:= 0.0108
734	OUTPUT
735	X0001A:=v3[1]
736	X0001B:=v3[2]
737	X0001C:=v3[3]
738	ENDUSE
739	ENDMODELS
740	
741	
742	$\int \mathbf{D} \mathbf{A} \mathbf{n} \mathbf{r}$
744	C < n1 > (n2 > (nc) < (nc) > (nc) < (nc) > (nc) < (nc) > (nc) < (nc) >
745	$\begin{array}{c} x_{0002A} \\ x_{0002A} \\ \end{array}$
746	X0002B 1. 0
747	x0002C 1. 0
748	/ SOURCE
749	C < n 1><>< Ampl. >< Freq. > <phase t0="">< A1 >< T1 >< TSTART >< TSTOP ></phase>
750	14X0002A 2449.5 601. 100.
751	14X0002B 2449.5 601201. 100.
752	14X0002C 2449.5 602401. 100.
753	/OUTPUT
754	BLANK MODELS
755	BLANK BRANCH
756	BLANK SWITCH
757	BLANK SOURCE
/58	BLANK OUTPUT
159	DIANA FLUT
761	BLOIM NEW DATA CASE
1 U I	

Código Fonte A.10 - Código ATP para reator naturalmente saturado com 9 enrolamentos

```
1 BEGIN NEW DATA CASE
 2 C -----
 3 C Generated by ATPDRAW dezembro, quinta-feira 3, 2015
 4 C A Bonneville Power Administration program
5 C by H. K. Hoidalen at SEFAS/NTNU - NORWAY 1994-2009
 6 c -----
 7 POWER FREQUENCY
                                       60.
 8 C dT >< Tmax >< Xopt >< Copt ><Epsiln>
 9
      5.E-6
            .05 60. 1.E-180
                                1 1
               1
                       1
                                                0
                                                       0
                                                               1
      500
                                                                       0
11 /MODELS
12 MODELS
13 INPUT
14 M0001A {v(X0002A)}
15 M0001B {v(X0002B)}
16 M0001C {v(X0002C)}
17 OUTPUT
    X0001A
19
   X0001B
20
    X0001C
21 MODEL RNS9
22 INPUT v[1..3]
23 DATA Aw
24
       Ay
25
        Ar
26
        N1
27
        N2
28
            NЗ
29
        Lw1
30
        Lw2
31
         Lw3
        Ly
33
        1.r
34
        Ld1
         Ld2
           Ld3
   VAR B[1..48]
                          -- Campo magnetico dos nove trechos
          H[1..48]
                             -- Densidade magnetica para os nove trechos
       HN[1..15]
40
       BN[1..15]
41
           HN1, HN2, HN3, HN4, HN5, HN6, HN7, HN8, HN9, HN10, HN11, HN12, HN13, HN14, HN15
           BN1, BN2, BN3, BN4, BN5, BN6, BN7, BN8, BN9, BN10, BN11, BN12, BN13, BN14, BN15
42
                         -- Indutancias para os nove trechos
43
       1[1..47]
                         -- Indutancias linhas (l') para os nove trechos
44
       lp[2..47]
45
       d1,d2,d3,d4,d5,d6,d7,d8,d9
46
       P1, P2, P3, P4, P5, P6, P7, P8, P9
47
       P10, P11, P12, P13, P14, P15, P16, P17, P18
48
           P19, P20, P21, P22, P23, P24
49
       01,02,03,04,05,06,07,08,09
       010,011,012,013,014,015,016,017,018
51
           019, 020, 021, 022, 023, 024
52
       ins1, ins2, ins3, ins4, ins5, ins6, ins7, ins8, ins9
           i1A, i1B, i1C
54
       i2A,i2B,i2C
55
           i3A,i3B,i3C
56
        i1[1..3],i2[1..3],i3[1..3]
57
       v1A,v1B,v1C
58
          v2A, v2B, v2C
       v3A,v3B,v3C
```

```
60
         v1[1..3],v2[1..3],v3[1..3]
61
             v1p, v2p, v3p
 62
         v11p,v12p,v13p
         v21p,v22p,v23p
63
64
         iolA, iolB, iolC
         io2A,io2B,io2C
65
 66
         io3A,io3B,io3C
 67
             --Library Variables
 68
            m, dt, determnt, aux,
             lMtrxA, cMtrxA, MtrxA[1..900]
69
            lMtrxP, cMtrxP, MtrxP[1..900]
 71
             lMtrxN, cMtrxN, MtrxN[1..900]
 72
             IMtrxV, cMtrxV, MtrxV[1..900]
             IMtrxO, cMtrxO, MtrxO[1..900]
 74
             lMtrxI, cMtrxI, MtrxI[1..900]
 75
             lMtrxInsIn, cMtrxInsIn, MtrxInsIn[1..900]
76
             lMtrxIns, cMtrxIns, MtrxIns[1..900]
 77
            lMtrxIs, cMtrxIs, MtrxIs[1..900]
 78
         Hc -- for hysteresis
 79
    OUTPUT v3[1..3]
80 $INCLUDE ./RLib.m
     INIT
81
82
      HN[1..15]:=0
83
      BN[1..15]:=0
84
     ins1:=0.01
85
     ins2:=0.01
     ins3:=0.01
86
87
     ins4:=0.01
88
     ins5:=0.01
89
     ins6:=0.01
90
     ins7:=0.01
91
     ins8:=0.01
92
      ins9:=0.01
 93
      i1[1..3]:=0.01
 94
      i2[1..3]:=0.01
 95
     i3[1..3]:=0.01
96
     v1[1..3]:=0.01
97
     v2[1..3]:=0.01
98
     v3[1..3]:=0.01
99
      i1A:=0.01
100
     i2A:=0.01
     i3A:=0.01
      i1B:=0.01
      i2B:=0.01
103
104
      i3B:=0.01
      i1C:=0.01
106
      i2C:=0.01
     i3C:=0.01
108
     v1A:=0.01
109
     v2A:=0.01
110
     v3A:=0.01
     v1B:=0.01
112
     v2B:=0.01
     v3B:=0.01
114
     v1C:=0.01
115
     v2C:=0.01
     v3C:=0.01
116
117
     P1:=0.01
118
     P2:=0.01
119
     P3:=0.01
```

	I
120	P4:=0.01
121	P5:=0.01
100	DC: 0.01
$\perp \angle \angle$	P0:=0.01
123	P13:=0.01
124	P14:=0.01
125	P15.=0 01
120	1150.01
126	P16:=0.01
127	P17:=0.01
128	P18:=0.01
100	D10- 0 01
129	P19:-0.01
130	P20:=0.01
131	P21:=0.01
132	P22:=0.01
122	D230 01
100	F230.01
134	P24:=0.01
135	v1p:=0
136	v2p:=0
137	1 1 1 1 1 1 1 1 1
137	v5p.=0
138	vllp:=0
139	v12p:=0
140	v13p:=0
1/1	$x^{21}n = 0$
141	vzip0
142	v22p:=0
143	v23p:=0
144	io1A:=0
145	i02A.=0
1 4 6	1.27 0
146	103A:=0
147	io1B:=0
148	io2B:=0
149	io3B:=0
149	io3B:=0
149 150	io3B:=0 io1C:=0
149 150 151	io3B:=0 io1C:=0 io2C:=0
149 150 151 152	io3B:=0 io1C:=0 io2C:=0 io3C:=0
149 150 151 152 153	io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT
149 150 151 152 153	io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT
149 150 151 152 153 154	io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC
149 150 151 152 153 154 155	io3B:=0 io1C:=0 io2C:=0 ENDINIT EXEC Hc:=53.133
149 150 151 152 153 154 155 156	io3B:=0 io1C:=0 io2C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937
149 150 151 152 153 154 155 156 157	io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4
149 150 151 152 153 154 155 156 157 158	io3B:=0 io1C:=0 io2C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608
149 150 151 152 153 154 155 156 157 158	<pre>io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 D[2]:=0.400000</pre>
149 150 151 152 153 154 155 156 157 158 159	<pre>io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999</pre>
149 150 151 152 153 154 155 156 157 158 159 160	<pre>io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358</pre>
149 150 151 152 153 154 155 156 157 158 159 160 161	<pre>io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998</pre>
149 150 151 152 153 154 155 156 157 158 159 160 161 162	<pre>io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109</pre>
149 150 151 152 153 154 155 156 157 158 159 160 161 162	io3B:=0 io1C:=0 io2C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163	io3B:=0 io1C:=0 io2C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164	io3B:=0 io1C:=0 io2C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165	io3B:=0 io1C:=0 io2C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165	io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166	<pre>io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994</pre>
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167	io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.169
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167	io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.168
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169	io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.168 B[7]:=0.999992
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170	io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.168 B[7]:=0.999992 H[8]:=21.884
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170	io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.168 B[7]:=0.999992 H[8]:=21.884 B[8]:=1.049991
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171	<pre>io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.168 B[7]:=0.999992 H[8]:=21.884 B[8]:=1.049991 H[9]:=22.839</pre>
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172	io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.168 B[7]:=0.999992 H[8]:=21.884 B[8]:=1.049991 H[9]:=22.839 P[0]:=1.000001
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172	io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.168 B[7]:=0.999992 H[8]:=21.884 B[8]:=1.049991 H[9]:=22.839 B[9]:=1.099991
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174	io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.168 B[7]:=0.999992 H[8]:=21.884 B[8]:=1.049991 H[9]:=22.839 B[9]:=1.099991 H[10]:=23.635
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174	<pre>io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.168 B[7]:=0.999992 H[8]:=1.049991 H[9]:=22.839 B[9]:=1.099991 H[10]:=23.635 B[10]:=1.14999</pre>
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174	io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.168 B[7]:=0.999992 H[8]:=1.049991 H[9]:=22.839 B[9]:=1.099991 H[10]:=23.635 B[10]:=1.14999 H[11]:=24.987
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177	<pre>io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699977 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.168 B[7]:=0.999992 H[8]:=21.884 B[8]:=1.049991 H[9]:=22.839 B[9]:=1.099991 H[10]:=23.635 B[10]:=1.14999 H[11]:=24.987 B[11]:=1.19999</pre>
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177	io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.168 B[7]:=0.999992 H[8]:=21.884 B[8]:=1.049991 H[9]:=22.839 B[9]:=1.099991 H[10]:=23.635 B[10]:=1.14999 H[11]:=24.987 B[11]:=1.19999
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175	io3B:=0 io1C:=0 io2C:=0 io3C:=0 ENDINIT EXEC Hc:=53.133 H[1]:=11.937 B[1]:=0.4 H[2]:=13.608 B[2]:=0.499999 H[3]:=15.358 B[3]:=0.599998 H[4]:=17.109 B[4]:=0.699997 H[5]:=18.701 B[5]:=0.799995 H[6]:=20.292 B[6]:=0.899994 H[7]:=21.168 B[7]:=0.999992 H[8]:=21.884 B[8]:=1.049991 H[9]:=22.839 B[9]:=1.099991 H[10]:=23.635 B[10]:=1.14999 H[11]:=24.987 B[11]:=1.19999 H[12]:=26.42

	I
180	H[13]:=28.17
181	B[13]:=1.29999
1 0 0	
182	H[14]:=30.63/
183	B[14]:=1.349991
184	H[15]:=33.025
105	
185	B[15]:=1.399992
186	H[16]:=37.242
187	B[16] =1 449995
107	
188	H[17]:=42.972
189	B[17]:=1.499998
190	H[18] •=45 757
100	
191	B[18]:=1.52
192	H[19]:=48.94
193	B[19]:=1.540003
104	T [20] . E2 217
194	H[20]:=53.317
195	B[20]:=1.560006
196	H[21]:=58.887
107	D[01]. 1 E00011
197	B[21]:=1.580011
198	H[22]:=66.049
199	B[22]:=1.600016
200	H[23] -76 204
200	п[23]:-/0.394
201	B[23]:=1.620025
202	H[24]:=85.944
203	B[24]·=1 640033
200	
204	H[25]:=103.451
205	B[25]:=1.660048
206	H[26]:=119.366
207	D[26] -1 690062
207	B[20]:-1.000002
208	H[27]:=147.218
209	B[27]:=1.700087
210	H[28]:=163.134
011	D[20] . 1 710101
	B[28]:=1./10101
212	H[29]:=179.049
213	B[29]:=1.720115
214	H[30]·=202 923
015	D[30] 1 730136
215	B[30]:=1./30136
216	H[31]:=226.796
217	B[31]:=1.740157
218	H[32] •=259 423
210	
219	B[32]:=1.750186
220	H[33]:=282.5
221	B[33]:=1.760207
222	цгэлі.—Ээл ээр
~~~	n[34]334.223
223	B[34]:=1.770253
224	H[35]:=377.993
225	B[35]:=1.780292
220	
220	H[36]:=445.634
227	B[36]:=1.790352
228	H[37]:=501.338
229	B[37]·=1 800402
0.00	
230	H[38]:=612./4/
231	B[38]:=1.810502
232	H[39]:=700.282
223	B[39]·=1 82058
200	D[35]1.02030
234	н[40]:=835.564
235	B[40]:=1.830701
236	H[41]:=954.93
227	P[41]1 040000
231	D[41];=1.840808
238	H[42]:=1114.085
	B[/2] -1 850951

```
240
       H[43]:=1193.662
241
       B[43]:=1.861022
242
       H[44]:=1392.606
243
      B[44]:=1.871201
244
      H[45]:=1591.549
245
      B[45]:=1.881379
246
      H[46]:=2500
247
      B[46]:=1.922194
248
      H[47]:=5000
249
      B[47]:=1.964438
      H[48]:=10000
      B[48]:=1.978929
253
       -- Metodo de aproximação linear por trechos
254
       -- Esse loop calcula a indutancia de cada trecho
255
      FOR i:=1 TO 47 DO
          l[i]:=(B[i+1]-B[i])/(H[i+1]-H[i])
257
       ENDFOR
258
259
       -- Metodo de aproximação linear por trechos parte 2
       -- Segundo loop para calcular o l' para cada trecho
       -- Utilizar Lp' para criar indutores equivalentes que facam
262
       -- o mesmo efeito na indutancia total.
264
       FOR i:=2 TO 47 DO
           lp[i]:=1/((1/l[i])-(1/l[i-1]))
265
       ENDFOR
267
268
      v1[1]:=v[1]
269
      v1[2]:=v[2]
270
      v1[3]:=v[3]
271
      IF t=5e-5 THEN
273
       v1p:=v[1]/cos(377*t)
274
       v2p:=v[2]/cos(377*t-2.094)
275
       v3p:=v[3]/cos(377*t+2.094)
       ENDIF
      v1[1]:=((0.743*v1p))*cos(377*t)
278
       v1[2]:=((0.743*v2p))*cos(377*t-2.094)
279
      v1[3]:=((0.743*v3p))*cos(377*t+2.094)
280
      IF t=5e-5 THEN
281
       v11p:=v1[1]/cos(377*t)
2.82
       v12p:=v1[2]/cos(377*t-2.094)
283
       v13p:=v1[3]/cos(377*t+2.094)
284
       ENDIF
285
       v2[1]:=((N2/N1)*v11p)*cos(377*t)
286
       v2[2]:=((N2/N1)*v12p)*cos(377*t-2.094)
2.87
      v2[3]:=((N2/N1)*v13p)*cos(377*t+2.094)
      v21p:=((N2/N1)*v11p)
289
      v22p:=((N2/N1)*v12p)
290
      v23p:=((N2/N1)*v13p)
291
      v3[1]:=(v11p*0.675)*cos(377*t-0.524)
292
      v3[2]:=(v12p*0.675)*cos(377*t-2.094-0.524)
      v3[3]:=(v13p*0.675)*cos(377*t+2.094-0.524)
2.9.3
294
295
       --Enrolamentos da esquerda
296
       d1:=Aw*(N1+N2)*0.96
       BN[1]:=(((v11p+v21p)/(377))*sin(377*t))/d1
297
       BN[2]:=BN[1]
299
```

```
--Enrolamentos do MEIO
       d3:=Aw*(N1+N2)*0.96
       BN[3]:=(((v12p+v22p)/(377))*sin(377*t-2.094))/d3
       BN[4]:=BN[3]
       --Enrolamentos da direita
       d5:=Aw*(N1+N2)*0.96
       BN[5]:=(((v13p+v23p)/(377))*sin(377*t+2.094))/d5
308
       BN[6]:=BN[5]
309
310
       FOR i:=1 TO 6 DO
311
                    IF BN[i]>=0 THEN
                                                      -- Calculo de H para os trechos do sistema
312
                             HN[i]:=BN[i]/l[1]
313
                             FOR j:=2 TO 47 DO
                                     IF BN[i]>B[j] THEN
314
                                             HN[i]:=HN[i]+((BN[i]-B[j])/lp[j])
                                     ENDIF
317
                             ENDFOR
                    ELSE
318
319
                             HN[i]:=BN[i]/l[1]
                             FOR j:=2 TO 47 DO
                                     IF BN[i]<-B[j] THEN
                                             HN[i]:=HN[i]+((BN[i]+B[j])/lp[j])
323
                                     ENDIF
324
                             ENDFOR
                    ENDIF
                    IF v[1] < 0 THEN
                             HN[i]:=HN[i]-Hc
328
                ELSE
329
                        HN[i]:=HN[i]+Hc
                    ENDIF
            ENDFOR
331
333
        -- PERMEANCIAS DOS ENROLAMENTOS
334
            P1:=(BN[1]/HN[1])*Aw/(Lw1)
            P2:=(BN[1]/HN[1]) *Aw/(Lw2)
336
           P3:=(BN[1]/HN[1])*Aw/(Lw3)
337
338
            P4:=(BN[3]/HN[3])*Aw/(Lw1)
339
            P5:=(BN[3]/HN[3])*Aw/(Lw2)
340
            P6:=(BN[3]/HN[3])*Aw/(Lw3)
341
342
           P7:=(BN[5]/HN[5])*Aw/(Lw1)
343
           P8:=(BN[5]/HN[5])*Aw/(Lw2)
344
            P9:=(BN[5]/HN[5])*Aw/(Lw3)
345
346
            -- PERMEANCIAS DE DISPERSAO
347
            P10:=Ld1/(N1*N1)
        P11:=Ld2/(N2*N2)
349
        P12:=Ld3/(N3*N3)
350
        P13:=Ld1/(N1*N1)
351
        P14:=Ld2/(N2*N2)
        P15:=Ld3/(N3*N3)
            P16:=Ld1/(N1*N1)
353
354
        P17:=Ld2/(N2*N2)
        P18:=Ld3/(N3*N3)
357
            -- Fluxo principal
            O1:=BN[1]*Aw*0.96
359
            O2:=BN[1]*Aw*0.96
```

```
360
            O3:=BN[1]*Aw*0.96
361
            O4:=BN[3]*Aw*0.96
            05:=BN[3]*Aw*0.96
            06:=BN[3]*Aw*0.96
            07:=BN[5]*Aw*0.96
            08:=BN[5]*Aw*0.96
366
            09:=BN[5]*Aw*0.96
367
            --Fluxo disperso
368
369
            O10:=P10*((HN[1]*Lw1)+(O1/P1))
            O11:=P11*((HN[1]*Lw2)+(O2/P2))
371
            O12:=P12*((HN[1]*Lw3)+(O3/P3))
372
            O13:=P13*((HN[3]*Lw1)+(O4/P4))
373
            O14:=P14*((HN[3]*Lw2)+(O5/P5))
374
            O15:=P15*((HN[3]*Lw3)+(O6/P6))
            O16:=P16*((HN[5]*Lw1)+(O7/P7))
375
            O17:=P17*((HN[5]*Lw2)+(O8/P8))
377
            O18:=P18*((HN[5]*Lw3)+(O9/P9))
378
379
            --Fluxo nos jugos e retornos
            021 := (01 - 010) / 2
381
            022:=021
382
            019:=022
383
            023:=(07-016)/2
384
            024:=023
385
            020:=024
387
            BN[7]:=019/(Ar*0.96)
388
            BN[8]:=020/(Ar*0.96)
389
            BN[9]:=021/(Ay*0.96)
            BN[10]:=022/(Ay*0.96)
390
            BN[11]:=023/(Ay*0.96)
            BN[12]:=024/(Ay*0.96)
393
394
            FOR i:=7 TO 12 DO
395
                     IF BN[i]>=0 THEN
                                                      -- Calculo de H para os trechos do sistema
                             HN[i]:=BN[i]/l[1]
                             FOR j:=2 TO 47 DO
                                     IF BN[i]>B[j] THEN
399
                                              HN[i]:=HN[i]+((BN[i]-B[j])/lp[j])
                                     ENDIF
400
401
                             ENDFOR
402
                     ELSE
                             HN[i]:=BN[i]/l[1]
403
404
                             FOR j:=2 TO 47 DO
405
                                      IF BN[i]<-B[j] THEN
406
                                              HN[i]:=HN[i]+((BN[i]+B[j])/lp[j])
                                     ENDIF
407
408
                             ENDFOR
409
                     ENDIF
410
            ENDFOR
411
            P19:=(BN[7]/HN[7])*Ar/Lr
412
413
        P20:=(BN[8]/HN[8])*Ar/Lr
414
        P21:=(BN[9]/HN[9])*Ay/Ly
415
        P22:=(BN[10]/HN[10])*Ay/Ly
        P23:=(BN[11]/HN[11])*Ay/Ly
416
417
        P24:=(BN[12]/HN[12])*Ay/Ly
418
419
            BN1:=BN[1]
```

420	BN2:=BN[2]
421	BN3:=BN[3]
422	BN4:=BN[4]
423	BN5:=BN[5]
424	BN6:=BN[6]
425	BN7:=BN[7]
426	BN8:=BN[8]
427	BN9:=BN[9]
428	BN10:=BN[10]
429	BN11:=BN[11]
430	BN12:=BN[12]
431	
432	HN1:=HN[1]
433	HN2:=HN[2]
434	HN3:=HN[3]
435	HN4:=HN[4]
436	HN5:=HN[5]
437	HN6:=HN[6]
438	HN7 := HN[7]
439	
440	
441	HNIU:=HN[10]
442	HN12.=HN[12]
444	
445	Essa parte corresponde ao calculo das matrizes RLib
446	m:=900
447	lMtrxA := 24
448	cMtrxA := 9
449	MtrxA[1m]:=0
450	MtrxA[1cMtrxA] :=[1,-1, 0, 0, 0, 0, 0, 0]
451	MtrxA[cMtrxA+12*cMtrxA] :=[ 0, 1,-1, 0, 0, 0, 0, 0]
452	MtrxA[2*cMtrxA+13*cMtrxA] :=[ 0, 0, 1, 0, 0, 0, 0, 0]
453	MtrxA[3*cMtrxA+14*cMtrxA] :=[ 0, 0, 0, 1,-1, 0, 0, 0, 0]
454	MtrxA[4*cMtrxA+15*cMtrxA] :=[ 0, 0, 0, 0, 1,-1, 0, 0, 0]
455	MtrxA[5*cMtrxA+16*cMtrxA] :=[ 0, 0, 0, 0, 0, 1, 0, 0, 0]
456	MtrxA[6*cMtrxA+17*cMtrxA] :=[0, 0, 0, 0, 0, 0, 1,-1, 0]
457	MtrxA[7*cMtrxA+18*cMtrxA] :=[0,0,0,0,0,0,0,1,-1]
458	MtrxA[8*cMtrxA+19*cMtrxA] := [0, 0, 0, 0, 0, 0, 0, 0]
459	MtrxA[9*CMtrxA+110*CMtrxA] := [-1, 1, 0, 0, 0, 0, 0, 0]
460	MtrxA[10*CMtrxA+111*CMtrxA] := [0, -1, 1, 0, 0, 0, 0, 0, 0]
401	$Mtry\lambda[12+cMtry\lambda+1, 12+cMtry\lambda] := [0, 0, -1, 0, 0, 0, 0, 0]$
463	MtrxA[13*cMtrxA+114*cMtrxA] := [0, 0, 0, 0, -1, 1, 0, 0, 0]
464	MtrxA[14*cMtrxA+115*cMtrxA] := [0, 0, 0, 0, 0, -1, 0, 0, 0]
465	MtrxA[15*cMtrxA+116*cMtrxA] :=[ 0, 0, 1, 0, 0, 0, -1, 1, 0]
466	MtrxA[16*cMtrxA+117*cMtrxA] :=[ 0, 0, 0, 0, 0, 0, 0, 0, -1, 1]
467	MtrxA[17*cMtrxA+118*cMtrxA] :=[ 0, 0, 0, 0, 0, 0, 0, 0, -1]
468	MtrxA[18*cMtrxA+119*cMtrxA] :=[ 0, 0, 0, 0, 0, 0, 0, 0, 0]
469	MtrxA[19*cMtrxA+120*cMtrxA] :=[ 0, 0, 0, 0, 0, 0, 0, 0]
470	MtrxA[20*cMtrxA+121*cMtrxA] :=[ -1, 0, 0, 0,0, 0, 0, 0]
471	MtrxA[21*cMtrxA+122*cMtrxA] :=[ -1, 0, 0, 1,0, 0, 0, 0]
472	MtrxA[22*cMtrxA+123*cMtrxA] :=[ 0, 0, 0, 1,0, 0, -1 ,0 ,0]
473	MtrxA[23*cMtrxA+124*cMtrxA] :=[ 0, 0, 0, 0, 0, 0, -1 ,0 ,0]
474	
475	
476	
477	IMTrXN := 9
4/8	$M_{rxN[1 m]} = 9$
ユノブ	TICLAN [1m] 0

```
480
            MtrxN[0*cMtrxN+1] := N1
481
            MtrxN[1*cMtrxN+2] := N2
482
            MtrxN[2*cMtrxN+3] := N3
483
            MtrxN[3*cMtrxN+4] := N1
484
            MtrxN[4*cMtrxN+5] := N2
485
            MtrxN[5*cMtrxN+6] := N3
486
            MtrxN[6*cMtrxN+7] := N1
487
            MtrxN[7*cMtrxN+8] := N2
488
            MtrxN[8*cMtrxN+9] := N3
489
490
            lMtrxV := 9
491
            cMtrxV := 1
492
            MtrxV[1..m]:= 0
493
            MtrxV[0*cMtrxV+1] := v1[1]
494
            MtrxV[1*cMtrxV+1] := v2[1]
            MtrxV[2*cMtrxV+1] := v3[1]
495
496
            MtrxV[3*cMtrxV+1] := v1[2]
497
            MtrxV[4*cMtrxV+1] := v2[2]
498
            MtrxV[5*cMtrxV+1] := v3[2]
499
            MtrxV[6*cMtrxV+1] := v1[3]
500
            MtrxV[7*cMtrxV+1] := v2[3]
501
            MtrxV[8*cMtrxV+1] := v3[3]
503
            lMtrxO := 9
504
            cMtrxO := 1
            Mtrx0[1..m]:=0
506
            MtrxO[0*cMtrxO+1] := 01
507
            MtrxO[1*cMtrxO+1] := 02
508
            Mtrx0[2*cMtrx0+1] := 03
509
            Mtrx0[3*cMtrx0+1] := 04
510
            Mtrx0[4*cMtrxO+1] := 05
            Mtrx0[5*cMtrx0+1] := 06
511
        Mtrx0[6*cMtrx0+1] := 07
512
513
            Mtrx0[7*cMtrx0+1] := 08
514
            Mtrx0[8*cMtrx0+1] := 09
515
516
            lMtrxInsIn := 9
517
            cMtrxInsIn := 1
518
            MtrxInsIn[1..m]:=0
519
            MtrxInsIn[0*cMtrxInsIn+1] := ins1
520
            MtrxInsIn[1*cMtrxInsIn+1] := ins2
521
            MtrxInsIn[2*cMtrxInsIn+1] := ins3
522
            MtrxInsIn[3*cMtrxInsIn+1] := ins4
            MtrxInsIn[4*cMtrxInsIn+1] := ins5
524
            MtrxInsIn[5*cMtrxInsIn+1] := ins6
525
            MtrxInsIn[6*cMtrxInsIn+1] := ins7
            MtrxInsIn[7*cMtrxInsIn+1] := ins8
527
            MtrxInsIn[8*cMtrxInsIn+1] := ins9
528
529
            dt := timestep
530
531
            1MtrxP := 24,
            cMtrxP := 24,
533
            MtrxP[1..m]:=0
534
            MtrxP[(1-1) * cMtrxP + 1] := P1
            MtrxP[(2-1)*cMtrxP + 2] := P2
536
            MtrxP[(3-1) * cMtrxP + 3] := P3
537
            MtrxP[(4-1) * cMtrxP + 4] := P4
538
            MtrxP[(5-1)*cMtrxP + 5] := P5
539
            MtrxP[(6-1)*cMtrxP + 6] := P6
```

```
540
            MtrxP[(7-1)*cMtrxP + 7] := P7
541
            MtrxP[(8-1)*cMtrxP + 8] := P8
542
            MtrxP[(9-1) * cMtrxP + 9] := P9
            MtrxP[(10-1)*cMtrxP + 10] := P10
543
            MtrxP[(11-1)*cMtrxP + 11] := P11
545
            MtrxP[(12-1)*cMtrxP + 12] := P12
546
            MtrxP[(13-1)*cMtrxP + 13] := P13
547
            MtrxP[(14-1)*cMtrxP + 14] := P14
548
            MtrxP[(15-1)*cMtrxP + 15] := P15
549
            MtrxP[(16-1)*cMtrxP + 16] := P16
550
            MtrxP[(17-1)*cMtrxP + 17] := P17
551
            MtrxP[(18-1)*cMtrxP + 18] := P18
552
            MtrxP[(19-1)*cMtrxP + 19] := P19
553
            MtrxP[(20-1)*cMtrxP + 20] := P20
            MtrxP[(21-1)*cMtrxP + 21] := P21
554
555
            MtrxP[(22-1)*cMtrxP + 22] := P22
            MtrxP[(23-1)*cMtrxP + 23] := P23
557
            MtrxP[(24-1)*cMtrxP + 24] := P24
558
559
            USE RNSMatrix as RNSM1
560
            INPUT
561
            deltaTime := dt,
562
563
            lMatrixA := lMtrxA,
564
            cMatrixA := cMtrxA,
            MatrixA[1..m] := MtrxA[1..m]
566
567
            IMP := IMtrxP,
568
            cMP := cMtrxP,
569
            MP[1..900]:= MtrxP[1..m]
570
            lMatrixN := lMtrxN,
571
572
            cMatrixN := cMtrxN,
573
            MatrixN[1..m] := MtrxN[1..m]
574
575
            lMatrixV := lMtrxV,
576
            cMatrixV := cMtrxV,
577
            MatrixV[1..m] := MtrxV[1..m]
578
579
            lMatrixO := lMtrxO,
580
            cMatrixO := cMtrxO,
581
            MatrixO[1..m] := MtrxO[1..m]
582
            lMatrixInsIn := lMtrxInsIn,
584
            cMatrixInsIn := cMtrxInsIn,
585
            MatrixInsIn[1..m] := MtrxInsIn[1..m]
586
            OUTPUT
587
            MtrxIns[1..m] := MatrixIns[1..m],
            MtrxIs[1..m] := MatrixIs[1..m]
589
            ENDUSE
590
            ins1 := MtrxIns[1]
591
            ins2 := MtrxIns[2]
            ins3 := MtrxIns[3]
593
            ins4 := MtrxIns[4]
594
            ins5 := MtrxIns[5]
            ins6 := MtrxIns[6]
596
            ins7 := MtrxIns[7]
597
            ins8 := MtrxIns[8]
            ins9 := MtrxIns[9]
599
```

600	
600	11[1] := Mtrx1s[1]
601	i2[1] := MtrxIs[2]
602	i3[1] := MtrxIs[3]
603	i1[2] := MtrxIs[4]
604	i2[2] := MtrxIs[5]
605	$\frac{1}{3} \frac{1}{2} = M \frac{1}{2} \frac{1}{3} $
000	11[2] . MERITE[7]
606	
607	12[3] := MTTXIS[8]
608	i3[3] := MtrxIs[9]
609	
610	i1A:=i1[1]+(i2[2])-(i2[1]/2)-(i2[3]/2)-(i1[3]/2)-(i1[2]/2)
611	io1A+(io2B)-(io2A/2)-(io2C/2)-(io1C/2)-(io1B/2)
612	
613	i1B:=i1[2]+(i2[3])-(i2[2]/2)-(i2[1]/2)-(i1[1]/2)-(i1[3]/2)
614	io1B+(io2C)-(io2B/2)-(io2A/2)-(io1A/2)-(io1C/2)
615	
616	i1C:=i1[3]+(i2[1])-(i2[2]/2)-(i2[3]/2)-(i1[1]/2)-(i1[2]/2)
617	=
610	
610	i27i2[1]
019	12A12[1]
020	178:=17[7]
621	i2C:=i2[3]
622	
623	i3A:=i3[1]
624	i3B:=i3[2]
625	i3C:=i3[3]
626	
627	v1A:=v1[1]
628	v2A:=v2[1]
629	v3A:=v3[1]
630	v1B:=v1[2]
631	v2B:=v2[2]
632	$v_{3R} = v_{3}[2]$
633	$u_{1}^{(2)}$
621	vicvi[3]
625	v2C:-v2[3]
635	vsc:-vs[5]
636	
637	ENDEXEC
638	ENDMODEL
639	RECORD
640	RNS9.HN1 AS HN1
641	RNS9.BN1 AS BN1
642	RNS9.HN3 AS HN3
643	RNS9.BN3 AS BN3
644	RNS9.HN5 AS HN5
645	RNS9.BN5 AS BN5
646	RNS9.HN7 AS HN7
647	RNS9.BN7 AS BN7
648	RNS9. HN8 AS HN8
649	RNS9 BN8 AS BN8
650	DNSO BNO AS BNO
000	
LCO	KNSY.HNY AS HNY
652	KN59.BNIU AS BNIU
653	KNS9.HNIO AS HNIO
654	RNS9.BN11 AS BN11
655	RNS9.HN11 AS HN11
656	RNS9.BN12 AS BN12
657	RNS9.HN12 AS HN12
658	RNS9.i1A <b>AS</b> i1A
659	RNS9.i2A AS i2A

660	RNS9.i3A <b>AS</b> i3A
661	RNS9 i18 AS i18
C C O	
662	RNS9.12B AS 12B
663	RNS9.i3B <b>AS</b> i3B
664	RNS9.i1C AS i1C
665	DNGQ 12C NC 12C
005	RN59.12C AS 12C
666	RNS9.i3C <b>AS</b> i3C
667	RNS9.ins1 AS ins1
668	BNS9.ins2 AS ins2
660	
669	RNS9.1ns3 AS 1ns3
670	RNS9.ins4 AS ins4
671	RNS9.ins5 AS ins5
672	RNS9 ins6 AS ins6
672	
6/3	RNS9.ins/ AS ins/
674	RNS9.ins8 AS ins8
675	RNS9.ins9 AS ins9
676	RNS9 1712 25 1712
670	
677	RNS9.V2A <b>AS</b> V2A
678	RNS9.v3A <b>AS</b> v3A
679	RNS9.v1B AS v1B
620	RNS9 TOR AC TOP
000	NINGJ.VZB AD VZB
681	RNS9.v3B <b>AS</b> v3B
682	RNS9.v1C <b>AS</b> v1C
683	RNS9.v2C AS v2C
601	DNCO TOC NC TOC
004	KN39.VSC AS VSC
685	RNS9.iolA AS iolA
686	RNS9.io2A <b>AS</b> io2A
687	RNS9.io1B As io1B
600	DNCQ io2D Ac io2D
000	10059.102B AS 102B
689	RNS9.iolC AS iolC
690	RNS9.io2C AS io2C
691	RNS9.v11p <b>AS</b> v11p
692	PNG9 $v12n$ $AC$ $v12n$
6002	
693	RNS9.vl3p AS vl3p
694	RNS9.v21p AS v21p
695	RNS9.v22p AS v22p
696	RNS9 v23n AS v23n
600	
697	RNS9.01 AS 01
698	RNS9.02 <b>AS</b> 02
699	RNS9.03 <b>AS</b> 03
700	RNS9 04 AS 04
701	
/ U I	RN59.05 AS 05
702	RNS9.06 <b>AS</b> 06
703	RNS9.07 <b>AS</b> 07
704	RNS9.08 AS 08
705	
105	RN59.09 AS 09
706	RNS9.010 <b>AS</b> 010
707	RNS9.011 <b>AS</b> 011
708	RNS9.012 AS 012
700	DNGQ 012 NC 012
109	KN39.013 AS 013
710	RNS9.014 <b>AS</b> 014
711	RNS9.015 <b>AS</b> 015
712	RNS9.016 <b>AS</b> 016
712	BNS9 017 NC 017
110	KINSS.UL/ AS UL/
714	RNS9.018 <b>AS</b> 018
715	RNS9.019 <b>AS</b> 019
716	RNS9.020 AS 020
717	PNIS9 021 NC 021
/ ± /	ANDS.UZI AS UZI
718	RNS9.022 AS 022
719	RNS9.023 <b>AS</b> 023

```
720
     RNS9.024 AS 024
721 USE RNS9 AS RNS9
722 INPUT
723
     v[1]:= M0001A
    v[2]:= M0001B
725 v[3]:= M0001C
726 DATA
727 Aw:= 0.0158
728 Ay:= 0.0158
729 Ar:= 0.0158
730 N1:=
           145.
     N2:=
731
              77.
732
     N3:=
               98.
     Lw1:=
               0.29
734
     Lw2:= 0.154
735 Lw3:= 0.27
736 Ly:= 0.3608
737 Lr:= 0.8
738 Ld1:= 5.119E-5
739 Ld2:= 1.279E-4
740 Ld3:= 0.0108
741 OUTPUT
742
     X0001A:=v3[1]
743
     X0001B:=v3[2]
744
     X0001C:=v3[3]
745 ENDUSE
746 ENDMODELS
747 c 1 2 3 4 5 6
                                                                      7
                                                                                8
749 /BRANCH
750 C < n1 >< n2 ><ref1><ref2>< R >< L >< C >
751 C < n1 >< n2 ><ref1><ref2>< R >< A >< B ><Leng><>>0
752 X0002A
                                                                                0
                                1.
753
     X0002B
                                 1.
                                                                                0
     X0002C
                                 1.
                                                                                 0
755 / SOURCE
756 C < n 1><>< Ampl. >< Freq. ><Phase/T0>< A1 >< T1 >< TSTART >< TSTOP >

      757
      14X0002A
      2449.5
      60.

      758
      14X0002B
      2449.5
      60.
      -120.

      759
      14X0002C
      2449.5
      60.
      -240.

                                                                    -1. 100.
                                     -120.
                                                                    -1. 100.
-1. 100.
760 /OUTPUT
761 BLANK MODELS
762 BLANK BRANCH
763 BLANK SWITCH
764 BLANK SOURCE
765 BLANK OUTPUT
766 BLANK PLOT
767 BEGIN NEW DATA CASE
768 BLANK
```

Código Fonte A.11 – Código ATP para reator naturalmente saturado com 9 enrolamentos e considerando efeitos de histerese