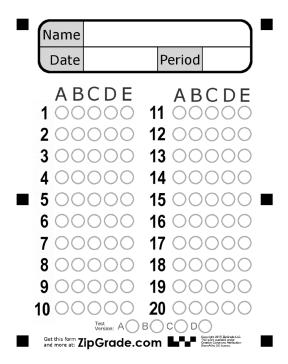
UNIVERSIDADE FEDERAL DE PERNAMBUCO

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL

PROVA DE SELEÇÃO PARA O MESTRADO EM ESTRUTURAS 2020.1

LEIA COM ATENÇÃO AS INSTRUÇÕES ABAIXO:


- No verso desta folha de instruções há o caderno de respostas. Somente as respostas escritas no caderno de respostas serão consideradas. Utilize caneta esferográfica azul ou preta para assinalar as respostas. Em anexo, encontra-se o caderno de perguntas.
- 2. O caderno de perguntas desta prova é composto por **08 Questões de Múltipla Escolha.** Verifique se a prova está completa.
- 3. Caso a prova esteja completa, **identifique o caderno de respostas no verso desta folha através do seu CPF**. Não é necessário o preenchimento do seu nome. Caso haja alguma falha de impressão na prova, avise imediatamente um dos responsáveis pela aplicação da prova.
- 4. No caderno de respostas, marque apenas uma alternativa para cada questão de múltipla escolha, no campo referente ao número da questão. Questões em branco ou com múltiplas respostas serão desconsideradas.
- 5. Não se comunique com os demais estudantes; não troque material com os mesmos; não consulte material bibliográfico, caderno ou anotações de qualquer espécie.
- 6. Os espaços em branco no caderno de perguntas podem ser utilizados como rascunho. Não será fornecido ou permitido o uso de qualquer papel extra.
- 7. Você terá quatro horas para responder às questões de múltipla escolha e discursivas da prova.
- 8. Quando terminar, entregue ao aplicador da prova o Caderno de Respostas e o Caderno de Perguntas.
- 9. Atenção! Você deverá permanecer, no mínimo, por uma hora na sala de aplicação das provas.

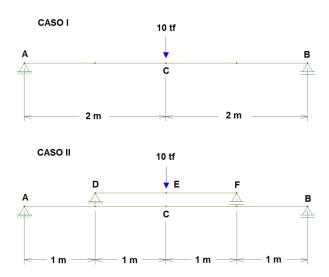
CADERNO DE RESPOSTAS

(Preenchimento com caneta esferográfica azul ou preta)

Questões de Múltipla Escolha

No cartão abaixo, marque apenas as questões existentes no caderno de perguntas no campo referente a cada questão.

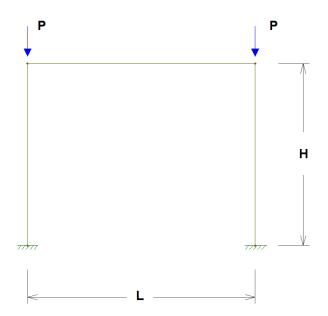
CADERNO DE PERGUNTAS


Identificação (CPF):	

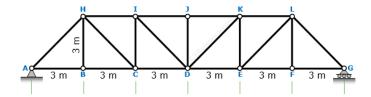
QUESTÃO 01

Considere a viga simplesmente apoiada AB sujeita a uma carga concentrada de 10 tf aplicada no centro do vão de duas formas diferentes:

caso I: diretamente aplicada na seção C da viga AB;

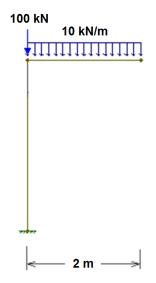

Caso II: indiretamente aplicada através da viga DEF simplesmente apoiada na viga AB:

Pode-se afirmar que:

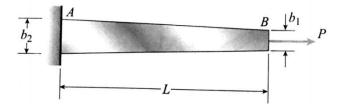

- a) O momento fletor na seção C será de 10 tf m em ambos os casos;
- No caso II, o diagrama de momento fletor da viga AB é constante nos 2 m centrais e igual a 10tf m;
- c) O momento fletor em C no caso I é necessariamente igual a soma dos momentos na seção E da viga DEF e na seção C da viga AB do caso II;
- d) As reações de apoio em A e B do caso I são diferentes do caso II;
- e) Nenhuma das alternativas acima.

Em relação a flambagem do pórtico abaixo pode-se afirmar que:

- a) O comprimento de flambagem dos pilares AC
 e BD é igual a H no caso de seções transversais idênticas para vigas e pilares;
- b) O comprimento de flambagem dos pilares AC e BD é 2 H;
- c) A configuração de flambagem do pórtico nem sempre é acompanhada de deslocamentos horizontais da viga CD;
- d) No caso da viga CD ser infinitamente rígida, o comprimento de flambagem dos pilares AC e BD é H;
- e) Nenhuma das alternativas acima.


Considere a estrutura treliçada abaixo. Para uma carga concentrada P de valor 100 kN aplicada no nó D, vertical e orientada para baixo, o esforço normal na barra IJ vale:

- a) -100 kN
- b) -150 kN
- c) $-100 \sqrt{2} \text{ kN}$
- d) $-50\sqrt{2} \text{ kN}$
- e) -50 kN

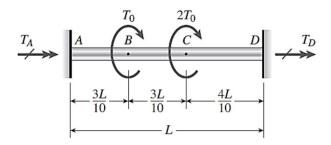

QUESTÃO 04

Considere o pórtico abaixo, cuja seção transversal das barras é quadrada de lado 0,2 m. A tensão normal máxima (tração ou compressão) vale:

- a) -1,2 MPa
- b) -3.0 MPa
- c) -12,0 MPa
- d) -18,0 MPa
- e) -24,0 MPa

Uma barra levemente afilada AB de seção transversal retangular e comprimento L é tracionada por uma força P. A largura da barra varia uniformemente de b2 na extremidade A até b1 na extremidade B. A espessura t é constante. O alongamento total da barra vale:

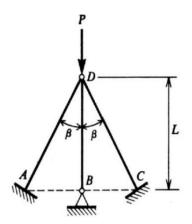
a)
$$\delta = \frac{PL}{Et(b_2 - b_1)} ln\left(\frac{b_2}{b_1}\right)$$


b)
$$\delta = \frac{PL}{Et(b_1 - b_2)} ln\left(\frac{b_2}{b_1}\right)$$

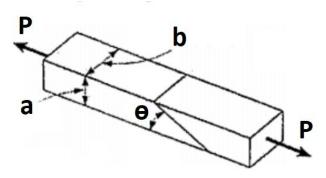
$$c) \quad \delta = \frac{2PL}{Et(b_1 + b_2)}$$

d)
$$\delta = \frac{2PL}{Et(b_2 - b_1)} \sqrt{b_2 + b_1^2}$$

$$e) \quad \delta = \frac{PL}{Et(b_1 - b_2)} \sqrt{b_1 + b_2^2}$$


Uma barra circular maciça ABCD com extremidades engastadas em A e D é solicitada por dois torques T_0 e $2T_0$ nos locais indicados na figura. Os valores das reações de apoio T_A e T_B valem:

- a) $T_A = T_O e T_D = 2 T_O$;
- b) $T_A = 2 T_O e T_D = T_O$;
- c) $T_A = 1.5 T_O e T_D = 1.5 T_O$;
- d) $T_A = 1.1 T_O e T_D = 0.9 T_O$;
- e) $T_A = 0.7 T_O e T_D = 0.3 T_O$;


QUESTÃO 07

A estrutura ABCD é composta por três barras esbeltas, possuindo a mesma rigidez à flexão EI. As juntas B e D são articuladas e os suportes A e C são engastes. O ângulo β =30°. Supondo que o colapso ocorre por flambagem simultânea dos elementos, determine o valor crítico da carga vertical P que age no ponto D.

- a) 36,1 EI/L²;
- b) 9,9 EI/L²;
- c) 7,4 EI/L²;
- d) 15,1 EI/L²;
- e) 29,6 EI/L²;

Duas peças de madeira são coladas num entalhe de inclinação θ = 15° conforme a figura abaixo. Ambas as peças possuem seção retangular uniforme com dimensões a = 100 mm e b = 150mm. Assinale a alternativa que melhor representa as tensões normal e cisalhante ao entalhe quando a peça é submetida a uma carga axial P = 10 kN.

- a) $\sigma_N = 11 \text{ kPa e } \tau = 86 \text{ kPa}$
- b) $\sigma_N = 45 \text{ kPa e } \tau = 167 \text{ kPa}$
- c) $\sigma_N = 622 \text{ kPa e } \tau = 167 \text{ kPa}$
- d) $\sigma_N = 655 \text{ kPa e } \tau = 86 \text{ kPa}$
- e) $\sigma_N = 667 \text{ kPa e } \tau = 167 \text{ kPa}$