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The damage of the novel Coronavirus disease (COVID-19) is reaching unprecedented scales. There
are numerous classical epidemiology models trying to quantify epidemiology metrics, which usually
lead to exponential growth. However, it was recently observed [1] that under a complex systems
perspective the epidemic outbreak in China may obey a fractal or small world kinetics as predicted
by [2]. This would lead to a reliable empirical estimate for the growth of the pandemic that deviates
from the standard exponential growth. In this paper, we join the ideas developed above with a
recent metric developed to infer network fragility and systemic risk, the disrete Ricci curvature
of the network. We assume that the growth of the epidemic in different places around the globe
is also fractal, and we add noise and delays in relation to the starting of the pandemics. Under
these assumptions, we are able to simulate a worldwide dynamic epidemic network. Also, using the
Forman-Ricci curvature, we can estimate the fragility and risk of the network at each stage of the
simulated pandemic. Lastly, we compare our simulated results with real epidemic data available
from the World Health Organization (WHO). This allows to detect early warning signs that might
resemble the emergence of the pandemic. The strategy above, together with other tools for spreading
and modeling network dynamics, can be readily implemented on a daily basis as tools to quickly
estimate the growth, risk and fragility of real COVID-19 fractal epidemic networks at different
scales.

I. INTRODUCTION

Epidemic outbreaks represent a significant concern for
the global health. Currently, the COVID-19 outbreak
has caught the attention of researchers worldwide due
to its rapid spread, high fluctuation in the incubation
time and uncertain health and economic outcomes. One
of the most urgent challenges of this outbreak concerns
the implementation of a coordinated and continuous data
driven feedback system that could quantify the spread
and the risk of the epidemic, even when data is heteroge-
neous and subject to noise. This would allow to develop
adequate responses at different scales (global, national or
local) and allocate limited resources in the most effective
ways.

Recent developments in topological and geometric data
analysis [3–7] offer useful perspectives regarding real data
treatment and has yielded outstanding results over the
past years across many fields [8–11]. As an emerging and
promising approach in network science and complex sys-
tems more generally [12], topological and geometric data
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analysis describes the shape of the data by associating
high dimensional objects [3, 10, 13]. As we will illustrate
with our model here, the Forman-Ricci curvature proves
to be robust against white noise and, therefore, emerges
as a reliable metric for monitoring the COVID-19 epi-
demic based on data sources that might be inaccurate
due to the intrinsic nature of the epidemic spread.

Among the numerous successful interdisciplinary ap-
plications of applied geometry and topology, ranging
from differentiating cancer networks [14] to modeling
phase transitions in brain networks [15], one idea in par-
ticular can be beneficial to measure the systemic risk
and fragility of COVID-19 epidemic networks in a data
driven way: Using network curvature to infer the network
fragility and systemic risk. Recently, [16] showed that it
was possible to relate financial network fragility with the
Oliver-Ricci curvature of a network, which emerged as
a ”crash hallmark” for major changes in stock markets
over the past 15 years.

In this framework, the study of market fragility used
these geometric tools to analyse and characterize the in-
teraction between the economic agents (the nodes of a fi-
nancial network) and its correlation levels (which defines
the edges weights). In addition, these tools also allowed
them to track the curvature of the financial network as a
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function of time, i.e. how the shape of the financial net-
work changed according to a dynamic economic scenario.

As a result, the Oliver-Ricci curvature emerged as a
strong quantitative indicator of the systemic risk in fi-
nancial networks. From a implementation perspective,
proved that an alternative, simpler discretization for
computing the Ricci curvature, known as the Forman-
Ricci curvature [17], is analogous to the Oliver-Ricci
curvature, with the added value that the Forman-Ricci
curvature has a faster computation time in large-scale,
real-world networks. Therefore, this paper will use the
Forman-Ricci curvature as an estimator of fragility in an
epidemic network, defined as follows[18]:

F(e) =#{triangles containing e}+ 2

−#{edges parallel to e}, (1)

where a parallel edges to e are the edges that are sharing
a node or a triangle with e, but not both.

Based on a similar reasoning, and given that both epi-
demic and financial networks are built on correlations
between time series, we use analogous geometric tools to
provide a novel application of Forman-Ricci curvature to
infering the fragility and systemic risk of epidemic net-
works, in particular, the COVID-19 network.

In a nutshell, the first step is to create an epidemic net-
work, consisting of edges and links, based on the reported
epidemic time-series. We define each spatial domain of
the epidemic as the node of a network, and the links be-
tween two locations are given by the Pearson correlation
coefficient (or any similarity measure) between their epi-
demic time-series. A simple way to access the number of
cases in an epidemic network is to use the fractal growth
hypothesis, as observed in [1], where the daily number of
cases n(t) in an epidemic follows a power-law distribution
with an exponential cutoff:

n(t) = Ktx exp(−t/t0), (2)

where, K, x and t0 are fitting parameters. In figure 1,
we show that there is a reasonable fit between (2) and
the number of reported COVID-19 cases for six countries,
namely China, Italy, Iran, Spain, South Korea and the
United States. This fit suggests that (2) paves a simple
way for building epidemic time series that capture real-
world data.

Inspired by this equation, we suggest a phenomenolog-
ical model for generating epidemic time-series which can
capture the growth of an epidemic network. We assume
that, in each node i of the network, the daily number
of cases follows a fractal epidemic growth with Gaussian
noise wi(t) and a time delay di in relation to the epicen-
ter:

ni(t)=

{
wi(t) if t ≤ di
Ki(t− di)xi exp

(
− (t−di)

ti0

)
+ wi(t) if t > di

. (3)

Before moving to the analysis of COVID-19 data, we
show that the Forman-Ricci curvature suffices to detect

FIG. 1. COVID-19 per country. Illustration of the number of
cases and fitting through fractal growth, 3, for a representa-
tive number of countries.

fragility and risk of a simulated epidemic network. The
starting point for creating a fractal epidemic network
is based on simulating epidemic time series with delays
from (3). In a second step, we define the weights of the
epidemic network through the Pearson correlation coeffi-
cient between time series ni(t) and nj(t). The temporal
epidemic network is computed for a given time window,
and the process is repeated for the next time window,
thus obtaining an evolving network. This approach is
inspired by network analysis in other fields, such as neu-
roscience [19] or finance [20].

We illustrate the delayed epidemic time series, its Pear-
son correlation matrix and its corresponding network for
a given time point in figure 2, thus resulting in a time
evolving network.

The idea is to infer the fragility of the time evolv-
ing epidemic network by tracking geometric changes in
this network as a function of time. More specifically, we
observe the mean changes in the discrete version of the
Forman-Ricci curvature [21] for a selected moving win-
dow for each location affected by the epidemic and use
the network curvature as a indicator for its fragility and
risk. Thus, we assume that the application to epidemic
time-series follows an analogous behaviour to the one ob-
served for stock markets in [16].

II. FORMAN-RICCI CURVATURE TO
EPIDEMIC

As a proof of concept, we investigate a simulated time
series with delays in (3). We generated 50 time series
with parameters Ki, xi, di, and ti0 randomly chosen in
the interval Ki ∈ (0, 20), xi ∈ (0, 5), di ∈ (10, 21), and
ti0 ∈ (0, 1). We also included a small white noise with zero
mean and variance of σ = 0.01. As illustrated in figure
2, the epidemic curve generated from (3) is compatible



3

FIG. 2. Illustration of the creation of epidemic networks based on the correlations between epidemic time series across spatial
domains for a given time window. This approach allow us to infer network signatures for epidemic outbreaks without relying
on parameter estimation of classic stochastic epidemic approaches.

FIG. 3. (Top) Illustration of simulated epidemic curve, ac-
cording to (3) and its respective Forman-Ricci curvature at
the bottom, with white noise parameter σ = 0.01.

with an outbreak. We contrast the simulated epidemic
curve with its Forman-Ricci curvature in figure 3. We
observe that the curvature is stable before the starting of
the simulated outbreak and grows during the progression
of the epidemic, reaching its maximum during the peak
of the outbreak. After the end of the outbreak, the cur-
vature comes back to its initial level. We emphasize that
the inclusion of white noise wi(t) in our model was very
important to destroy spurious deterministic correlations
that appear at the end of the outbreak.

We are now ready to test whether the Forman-Ricci
curvature is a reliable network fragility metric for real
COVID-19 data available from the World Heath Organi-
zation. In figure 4 we illustrate both the epidemic curve
(top) and the Forman-Ricci curvature (bottom) for the
COVID-19 database [22]. As in the simulated data, the

FIG. 4. Comparison between weekly world-wide epidemic
curve of COVID-19 and the Forman-Ricci curvature (bottom)
for the same time period. In red, we indicate the moment in
which WHO declared COVID-19 as a pandemic.

curvature grows with time, signaling the risk and fragility
of the epidemic network. Remarkably, we observe that
the curvature of the epidemic network gives an early
warning sign for the emergence of the pandemics, as the
curvature starts to increase way before the exponential
growth in number of cases is observed.

III. CONCLUSIONS

We conclude that the Forman-Ricci curvature metric
used in this paper might be a strong indicator for the
fragility and systemic risk in the COVID-19 epidemic
and, consequently a data driven approach to epidemic
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FIG. 5. World configuration based on Forman-Ricci curvature
for the last 7 days of the epidemics.

outbreaks more generally. Another added value of this
geometric approach, in contrast to the classical stochas-
tics and modelling simulations, is that the results emerge
intrinsically and empirically independent of parameter
estimations for the pandemic, e. g. contagion rate or
the basic reproduction number. This paves the way for
predicting and tracking the risk of the epidemic in the
absence of reliable parameter estimations. More gener-
ally, geometric and topological methods seem to emerge
as promising support tools for future epidemic control
policies.

IV. ACKNOWLEDGMENTS

This research was partially funded by INES 2.0,
FACEPE grants PRONEX APQ 0388-1.03/14 and APQ-
0399-1.03/17, CAPES grant 88887.136410/2017-00, and
CNPq grant 465614/2014-0

[1] Anna L Ziff and Robert M Ziff. Fractal kinetics of covid-
19 pandemic. medRxiv, 2020.

[2] Alexei Vazquez. Polynomial growth in branching pro-
cesses with diverging reproductive number. Phys. Rev.
Lett., 96:038702, Jan 2006.

[3] Herbert. Edelsbrunner and J. (John) Harer. Computa-
tional topology : an introduction. American Mathemati-
cal Society, 2010.

[4] Valerio Pascucci, Xavier Tricoche, Hans Hagen, and
Julien Tierny. Topological Methods in Data Analysis
and Visualization: Theory, Algorithms, and Applica-
tions. Springer Science & Business Media, 2010.

[5] Dane Taylor, Florian Klimm, Heather A Harrington,
Miroslav Kramár, Konstantin Mischaikow, Mason A
Porter, and Peter J Mucha. Topological data analysis
of contagion maps for examining spreading processes on
networks. Nature communications, 6:7723, 2015.

[6] Larry Wasserman. Topological data analysis. Annual
Review of Statistics and Its Application, 5:501–532, 2018.

[7] Afra Zomorodian. Topological data analysis. Advances
in applied and computational topology, 70:1–39, 2012.

[8] Nina Otter, Mason A Porter, Ulrike Tillmann, Peter
Grindrod, and Heather A Harrington. A roadmap for
the computation of persistent homology. EPJ Data Sci-
ence, 6(1):17, 2017.

[9] Peter Bubenik. Statistical topological data analysis using
persistence landscapes. The Journal of Machine Learning
Research, 16(1):77–102, 2015.

[10] Manish Saggar, Olaf Sporns, Javier Gonzalez-Castillo,
Peter A Bandettini, Gunnar Carlsson, Gary Glover, and
Allan L Reiss. Towards a new approach to reveal dy-
namical organization of the brain using topological data
analysis. Nature communications, 9(1):1–14, 2018.

[11] Joan T Matamalas, Sergio Gómez, and Alex Arenas.
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