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Abstract

Although many strategies have been discussed by world health authorities to control the spread of
COVID-19, the microbial risk to the world population associated to such strategies remains unclear.
Then, we conducted a Quantitative Microbial Risk Assessment (QMRA) to predict relative risks for
future scenarios and evaluate the effectiveness of different management actions from March 17th
2020 to March 16th 2021. We have developed a probabilistic model to quantify the risks of the
novel coronavirus explosion (i.e. more than 25% infections in the world population, a rate similar to
that of the “Spanish Flu”). By means of this model, we carried out a QMRA for a variety of scenarios,
including the social isolation of young and/or elderly people, travel restrictions and using medical
tools, all of which help reduce deaths. We quantified, categorized and ranked the risks for each
scenario. We estimated that, in the absence of interventions, COVID-19 would have: a 100% risk
of explosion; this would most likely occur in nine weeks; would lead to an expected infection rate
of 34% (2.6 billion) of the world population and 67 million deaths until mid-March 2021; and Africa
would be the continent with the largest expected number of infected people. We validated the model
by means of comparison of real against predicted values from March 17th to April 28th 2020 and
showed that the results for this period are consistent with a business as usual scenario in Asia and
moderate mitigation in all the other continents. If everything went on like this, we would have 55%
risk of explosion, expected infection rate of 22% (1.7 billion) of the world population and 22 million
deaths until mid-March 2021. Finally, strong mitigation actions in all continents could reduce these
numbers to: 7% risk of explosion, infection rate of 3% (223 million) of the world population and 1.5
million deaths.
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Introduction

The World Health Organization (WHO) has declared the coronavirus disease (COVID-19), which
is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a pandemic
(WHO, 2020a). Indeed, it has been confirmed that there are infected people in all the six continents,
i.e.. Europe (EU), North America (NA) (Canada, United States and Mexico), South America (SA)
(all other countries in America including Central America), Asia (AS), Africa (AF) and Oceania (OC).
It is a worldwide threat in which all countries and continents must come together as one against a
common enemy.

Quantitative Microbial Risk Assessment (QMRA) is the formal process of estimating the probability
of undesired consequences to humans due to exposure to one or more microbial pathogens
(Duarte et al, 2019; Haas et al., 1999). The main objective of a QMRA is to predict relative risks for
future scenarios and/or to evaluate the effectiveness of different containment measures (Duarte et
al., 2019).

Many strategies have been discussed and implemented in a bid to control the spread of the virus
until a vaccine is developed, licensed and manufactured at a global scale. These actions include
restrictions on travel and business/studies/social activities (hereinafter, the term business will be
used to refer to all three types of activity), social isolation (for the purposes of this work, this is
equivalent to ‘stay at home’ measures), vertical isolation (i.e., when it affects only the elderly and
groups at risk), and using therapeutics and new medical tools to reduce fatality rates (hereinafter,
the term ‘medical tools’ will be adopted and this includes the use of therapeutics).

Most decisions are taken based on the subjective opinions of epidemiologists (Kupferschmidt and
Cohen, 2020; Sohrabi et al., 2020; Toms and Petrie, 2020) or projections of deterministic models
(Altaf and Atangana, 2020; T. M. Chen et al., 2020; Choi and Ki, 2020; Ferguson et al., 2020; Peng
et al.,, 2020; Walker et al., 2020), but neither the risks associated to these decisions, nor the
uncertainties in the opinions and estimates have been quantified. In this sense, a recent study
highlights the importance of acknowledging uncertainty as a main component of risk, in order to
properly characterize and communicate risk (Aven and Bouder, 2020). Globally, policymakers are
demanding tools to guide them on how to prioritize resources for designing control strategies.
Indeed, they require objective answers for questions such as:

. How many people may die in the world and how many may be infected if we decide on
strategy A, B or C for the next one year?

. By what amount and for how long is the social isolation of young and/or elderly people
necessary to reduce risk to a low or negligible level?

. To what extent and for how long are restrictions on intercontinental flights necessary to
reduce risk to a low or negligible level?

. Which continents are at risk in the future? Which one deserves the most effort to control

the disease? What is the order of prioritization?

Generally, to model the dynamics of a disease, such as those involved in the transmission of SARS-
CoV-2, some simplifying assumptions are necessary. For example, traditional approaches for
modeling COVID-19 are based on deterministic models that often rely on average data, and thus
only provide expected results. These neither propagate the variability and uncertainty of data nor
do they consider environmental stochasticity (i.e., the unpredictable natural fluctuation in vital rates
(Fujiwara and Takada, 2017). As deterministic models for SARS-CoV-2 (Altaf and Atangana, 2020;
T. M. Chen et al., 2020; Choi and Ki, 2020; Ferguson et al., 2020; Peng et al., 2020; Walker et al.,
2020) lack stochasticity in parameters and uncertainty in results, potentially misleading conclusions
may lead to imprudent decisions, which in turn, might lead to a much greater number of lives being
threatened and lost.

One probabilistic model for SARS-CoV-2 was used for assessing the risk of outbreaks outside
China (Boldog et al., 2020) when the disease was still not considered a pandemic. This model
made predictions from 23 January until 15" March 2020 and presented suggestions for control
measures (e.g., travel restrictions from China) to countries at risk. However, serious limitations of
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this study include: (i) it was conducted at the beginning of February 2020 when most infected people
were still in China, and thus it could simulate the spread of the disease only from China; (ii) it does
not separate age groups; (iii) it does not quantify the number of deaths, but only cases of infection;
(iv) it does not consider social isolation as a control measure.

Another characteristic of our model is that it represents COVID-19 globally. All the aforementioned
models described COVID-19 dynamics in a single country or city. At the best of authors’ knowledge,
(Walker et al., 2020) provided the only model that predicts the global impact of COVID-19 and
evaluates strategies for mitigation and suppression. Indeed, (Walker et al., 2020) deterministically
predicted the number of infections and deaths in the world in seven different regions for the next
250 days for varying scenarios. However, (Walker et al., 2020) cannot be adopted for QMRA
purposes, because they used only single point estimates for the number of infections and deaths.
Thus, such an approach often leads to unrealistic estimates due to the inherent uncertainty that
typifies these predictions (EPA, 1998).

On the other hand, probabilistic models are able to consider uncertainty in parameters and to give
risk results in terms of probabilities. Using Monte Carlo simulations, for example, allows us to obtain
a set of results for infections/deaths so that a non-parametric probability distribution can be drawn,
which accommodates uncertainty i.e., there is a probability associated to each estimate of
infections/deaths at a time t. With such an approach, a model can successfully quantify risks as a
measure of the probability of undesired consequences (infections/deaths), thus, supporting
decision makers in understanding the likelihood of the outcomes of an action, and making informed
decisions. Therefore, the aim of this paper is to develop an epidemiological model for COVID-19 at
the world-population-level that overcomes the aforementioned drawbacks and is tailored for a
QMRA. We set out to answer the aforementioned questions. To the best of our knowledge, this
paper conducts the first QVIRA of COVID-19 at population-level worldwide.

The remainder of this paper is organized as follows. First, we present the structure of the model
and assumptions, which is flexible in parameterization and so can be used to simulate varying
scenarios. Next, we discuss the materials and methods used to conduct a QMRA by means of this
model. We then present results for representative scenarios, validate the model and discuss its
advantages and limitations. Finally, some conclusions are drawn and suggestions are made for
future research.

The structure of the model and assumptions

Our proposed model is probabilistic in nature, and thus provide meaningful information to decision
makers because it allows for: (i) the assessment of uncertainty by specifying lower and upper
bounds in the results; (ii) modeling the spatial dynamics of infected people across six continents;
(iii) the quantification of the risk of explosion (i.e., the number of infected people increases to over
25% of the world population after 12 months). The 25% threshold for the risk of explosion was
defined based on the most severe pandemic in the 20" century, namely the Spanish Flu, which
lasted from January 1918 to December 1920, (caused by the A(H1N1) virus). It is estimated to
have infected 500 million people, approximately 25% of the world population at that time, and to
have caused 20-50 million deaths (Spreeuwenberg et al., 2018; WHO, 2019, 2005).

These tasks may be performed for scenarios regarding different containment measures, thus
assessing their effectiveness in terms of risk. By using this approach, it is also possible to identify
the continents, where SARS-CoV-2 might persist, and hence this helps target public control
strategies to reduce human infections in those areas.

To estimate the parameters of the model, data from the literature and public databases have been
gathered to meet the requirements of the approach. Due to the lack of access to private data, some
parameters (e.g., number of flights arriving every day in each country) were estimated for which
simplifications had to be made.

Fig. 1 shows a simplified schematic representation of our model. We separate the world human
population into three states: Susceptible; Infected; and Recovered. Then, we subdivide each state
into two age groups: the Young (< 60 years) and the Elderly ( = 60 years). When a Susceptible
individual gets Infected, whether he or she is young or elderly, he/she stays in this state for a period
of time, and then either becomes Recovered or dies (represented by the “Deaths Counter” box).
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After recovery, a person can get Infected again with a very low probability (it is still unknown if a
Recovered person gains 100% immunity (Lan et al., 2020)). The transition between states is
governed by random variables that follow Probability Density Functions (PDFs) that vary over time,
i.e., the parameters of the PDFs vary with time according to each scenario.
The world (metapopulation) is divided into six continents (subpopulations) with potential for
dispersal among them. The dispersal rates from one continent to another also follow PDFs. We
group countries into continents to keep the model and communication of risk simpler. A global
model that represents dispersal among all countries could become intractable, resulting in
challenging risk communication to authorities as well as to the public.
The structure of the proposed model can be tailored to incorporate many realistic and case-specific
features, such as: (i) the spatial structure of the infected population at the global level over time
with potential for dispersal among continents; (ii) the population structured by age range (young
and elderly) with different probabilities of fatality and/or infection; (iii) control measures such as
business restrictions and social isolation (reducing exposure), medical tools targeted at decreasing
death rates and travel restrictions between continents. Table 1 and Table 2 present, respectively,
descriptions of the variables and parameters.
The model describes a metapopulation consisting of six subpopulations in the continents of EU,
NA, LA, AS, AF and OC, with potential for dispersal from one patch to another. The structure of the
state of each population is [s=1] young susceptible, [s=2] young infected, [s=3] young recovered,
[s=4] elderly susceptible, [s=5] elderly infected, and [s=6] elderly recovered, where s is the state.
Dispersal is state-specific, which means we can simulate distinct dispersal rates for the young and
elderly.
Let I'(t) denote the number of infected people in continent (patch) i at time ¢, and N'(t), the total
population in j at time t. Then, the model forward projects the number of infected people, I'(t) = N3
(t) + NE(B), (i.e. number of young infected N5(t); the number of elderly infected Ni(t)) for all j, for
52 weeks (1 year) from March 17th, 2020 to March 16th, 2021.
In population ecology, the density-dependence (DD) is the modification in the influence of any factor
that affects population growth as the population density changes (Ak¢akaya et al., 1999; Burgman
etal., 1993). In this paper, we did not aim at evaluating the growth in world population, and therefore
population size is held constant (there are no inclusions of new susceptible young) and the DD type
is considered as the ceiling. The basis for accounting for DD was the total subpopulation of each
continent (susceptible+infected+recovered). However, DD was modeled to affect only the number
of infected. Under this type of DD, the infected population exponentially grows until the total
subpopulation (susceptible+infected+recovered) reaches the ceiling (e.g., when the number of
susceptible individuals is so low and of recovered is so high that the number of infections stop
growing). Then, it remains at that level until there is a decline in the total population (e.g., a random
fluctuation or emigration) that takes it below the ceiling (Akgakaya et al., 1999; Ak¢akaya and Root,
2013).
Note that we consider no inclusions of new susceptible individuals (babies being born), but there
are inclusions of the newly infected and, then, of newly recovered individuals, so DD matters
because it limits the number of infected individuals; otherwise, this number would grow
exponentially and infinitely. The ceiling is continent-specific, denoted by K*, and is defined to be the
total current subpopulation in that continent.
Given that, the following algorithm represents one replication for stochastically simulating the
metapopulation model. For each iteration, repeat the following steps for all i

a) Project population-specific state numbers:

Ni(t+ 1)y a0 0 0 0 0, [Ni(® 0
Ni(t+1) 0 ah®) 0 0 ak@® 0| |N2O| |az=Ni(D)
NiGe+1)| [0 azz azz 0 0 0| |NiQ© 0
Ni(t+1D|T|0 0 0 a0 O|X|njo|T| O
Ni(t+ 1) 0 ash(t) 0 0 ass(t) 0 NE(D)| |as* N5(D)
Nie+1)] L0 0 00 ass aes] |Ni(t) 0
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where ag, is the transition rate from state u to state s and a,,, is the permanence rate in state u (??,
7?7€{1,2,3,4,5,6}). For example, a3, is the transition rate from state 2 to 3 and a1 is the permanence
rate in state 1. a, and a5 are the periodic mortality of infected young and elderly individuals
respectively.

b) Update projections to account for DD: Ni(t + 1) = max{N'(t + 1);K'} .

c) Update projections of Ni(t + 1) to account for the dispersal of individuals by adding the number
of entries and subtracting the number of exits for each population:

NEU(t 4+ 1)y pN'EU(E+ 1) N'EU(t 4+ 1) N'EU(t + 1)
NN':(t +1) N'Nj(t +1) N'Nj(t +1) N'Nj(t +1)
NHE+ 1) [NHE+1) N+ 1) Nt + 1)
NS+ )| T NS+ | T [M]6x6 N4+ 1)~ [M]sxs N'AS(t + 1)
NAF@E+ 1) |[NAFE+1) N'4F(t 4+ 1) N'4F(t+ 1)
NOC(t+1)] |NOC(t+1) N'OC(t + 1) N'OC(t + 1)

where [M]gys is @ matrix comprising the dispersal rates (m;j) of individuals from continent j to
continent i. Note that some transition rates (i.e., a11, a2z, a32,033,044,065065) are random variables
that follow PDFs with parameters that are constant over time; therefore, a value is randomly
selected from the associated PDF for an iteration and kept constant for the entire 52 time-steps of
this iteration. Other transition rates (i.e., az2(t), a’s5(t), as2(t) and ass(t)) are nonparametrical
stochastic processes because they are both random and dependent on the interaction among
individuals; therefore, their PDFs change over time and a value is randomly selected from the
associated PDF at time £.

RAMAS Metapop v.6.0 software (Akgakaya and Root, 2013) was adopted for running the
simulations with 10,000 replications. This software is not itself a model, but a computational tool for
constructing a metapopulation model and probabilistic simulation via the Monte Carlo method
(Kalos and Whitlock, 2008). We share all the model files in RAMAS format (Duarte et al., 2020) .

Materials and data
QMRA methodology

We used the structure of the model presented to conduct a QMRA for COVID-19 by using the
following steps (Duarte et al., 2019): (i) characterize the problem; (ii) describe the scenarios
(SCNs); (iii) assess exposure; (iv) assess frequency; (v) parameterize the model and initial
conditions; and (vi) quantify and categorize the risks. (Duarte et al., 2014) already applied this
methodology to run QMRA for schistosomiasis disease.

Quantitative Risk Assessment (QRA) is closely linked to risk communication (i.e., the effective
transfer of technical information regarding possible risks to nontechnical audiences) (Teaf and
Kuperberg, 2004). The way risk is conceptualized and described could be very important for how
the authorities judge the magnitude of the risk, communicate the risk to the public and conclude
what to do (Aven and Bouder, 2020). It is almost useless to quantify risks if they cannot be well
understood by the non-technical audience, as is the case of many world policymakers (since they
are not experts on the language of probability). As to risk categories, quantified risk can be
transformed into risk classes that are easier to interpret.

Therefore, risk categories have been used in all fields of QRA to make risk communication easier
(e.g., industrial QRA (CPR18E, 2005), ecological QRA (IUCN, 2001), microbial QRA for water
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safety management (WHO, 2016), microbial QRA of schistosomiasis (Duarte et al., 2014). Yet,
surprisingly, there is still no consensus in the literature on how to categorize the quantified risk of
the explosion of a pandemic at population-level. Thus, we here propose four risk categories and
the correct understanding of these is vital for a correct interpretation of the results:

CRITICAL RISK (CR): >50% probability of explosion within 6 weeks.

HIGH RISK (HI): >20% probability of explosion within 12 weeks.
CONSIDERABLE RISK (CO): >10% probability of explosion within 52 weeks.
NEGLIGIBLE RISK (NE): <10% probability of explosion within 52 weeks.

The method for reaching the above categories is as follows. Quantitative risk has three dimensions:
probability, undesired consequence, and time (Duarte et al., 2019; IUCN, 2001), and then we
established bounds for these three dimensions in order to form a risk category. In our case, the
undesired consequence is the explosion of the disease (more than 25% infected people in the
world at time ¢, similarly to the Spanish Flu); this threshold is the same for all categories. Regarding
the probability dimension, the bounds are the same as in the red list categories of the International
Union for the Conservation of Nature (IUCN) (IUCN, 2001) (i.e., >50%, >20%, >10% and <10%,
respectively for CR, HI, CO and NE). With respect to the time dimension, it is also based on the
IUCN categories (i.e., 10, 20, 100 and 100 years, respectively for CR, HI, CO and NE), but adapted
to the time horizon in which we make the forecast (i.e., 52 weeks). Thus, we have 6, 12, 52 and 52
weeks for CR, HI, CO and NE respectively.

Note that the proposed categories do not consider the probability of massive deaths as is common
in industrial QRA. Our categories seek indicating the risk of overloading the health system, which
is associated not only with deaths, but also with high numbers of sick people and substantial
societal and economic costs. Conversely, risk categories based on deaths could neglect very
infectious disease with low rates of death, although the health system would be overloaded. Thus,
we preferred to consolidate our undesired consequence in terms of infections, as these categories
can serve as a basis for QMRA of future pandemics and these will not neglect infectious diseases
with low rates of death but high rates of infection.

Characterizing the problem

The problem consists of quantitatively assessing the risks of SARS-CoV-2 in order to provide health
managers worldwide with objective answers about the dynamics of the disease under several
control strategies. To ensure that the results of this study would meet managers’ needs, we chose
as assessment endpoints: the number of infected people; and the number of deaths. This
evaluation is based on a probabilistic model that provides risk results as a PDF for those endpoints
over time, with an average value and a confidence interval.

This QMRA is intended to be conservative in the sense that it does not underestimate risks. Then,
whenever different sources provided different parameters estimates for the PDF that governs a
transition rate, ag,, we considered the most conservative ones. The outputs of this QMIRA are as
follows: (i) projection of the infected subpopulation over time for each continent and in the world
(metapopulation) for 52 weeks; (ii) projection of the accumulated number of deaths in the world
over time for 52 weeks; (iii) risk curves of explosion; (iv) time to explosion; (v) risk categorization;
and a (vi) comparison of these results for all scenarios defined in the next section.

Data regarding the number of infected people for each day, from Jan 15t 2020 until Mar 234 2020,
for each country, was gathered from the public database managed by the Johns Hopkins University
Center for Systems Science and Engineering (JHU CSSE) (JH, 2020). The raw data is also
available in the SM Appendix, Table A1. The main sources of information used for a general
qualitative understanding of the SARS-CoV-2 dynamics were (Altaf and Atangana, 2020; P. Chen
et al., 2020; Choi and Ki, 2020; Ferguson et al., 2020; Lin et al., 2020; Pang et al., 2020; Walker et
al., 2020; World Health Organization (WHQO), 2020b). The specific source of information used for
estimating each specific parameter of the model is presented in Table 2.

Description of scenarios
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It is quite intricate to predict/assess all the potential events (e.g., meteorological and environmental
conditions, numerous control strategies, various novel medical tools, changes in hygiene and
cleaning culture, transportation restrictions in all modes, and events like virus mutation) that might
occur in the future and influence SARS-CoV-2 transmission. Thus, our model does not aim to be
precisely predictive, only descriptive.
In this context, we defined three scenarios (SCNs) and compare them against a benchmark (SCN-
0) so that we can evaluate changes in SARS-CoV-2 dynamics (and the reduced/added risk) caused
by each scenario. The benchmark scenario (SCN-0) is defined as follows:

e Do-nothing plan;
Business as usual;
No social isolation neither for the young nor the elderly (100% exposure);
No travel restrictions;
No new medical tools to reduce death rates.

To assess the efficiency of integrated containment strategies without excessive information to
represent the many possible combinations, we evaluated three scenarios, which we believe to be
representative for the next year:

e Moderate mitigation (SCN-1):

o Social isolation of the young (assumed 18% exposure) and the elderly
(assumed 9% exposure) for the next 2 and 6 weeks respectively. Thereafter,
exposures go back to 100%;

o 75% reduction in intercontinental flights in the next 6 weeks, and thereafter
flights are back with a 25% reduction in the usual volume;

o Medical tools targeted at reducing fatality rates by 50%;

o Ceteris paribus SCN-0.

e Strong mitigation (SCN-2):

o Social isolation of the young (assumed 18% exposure) and the elderly
(assumed 9% exposure) for the next 7 and 17 weeks respectively. Thereafter,
exposures go back to 100%;

o 75% reduction in intercontinental flights in the next 12 weeks, and thereafter
flights are back with a 25% reduction in the usual volume;

o Medical tools targeted at reducing fatality rates by 75%;

o Ceteris paribus SCN-0.

The rationale for the exposure levels in each scenario will be further explained in the next section.
Also, there has been much discussion about the so-called vertical isolation, which affects only the
elderly and groups at risk. The strategy is criticized by international health organizations, but is
defended by some politicians (Time24, 2020). To evaluate the effectiveness of this strategy, we
analyzed one more scenario.

e Vertical isolation (SCN-3):

o Business as usual for all the young (100% exposure);

o The elderly completely isolated (0% exposure) during 1 year,;
o 100% travel restriction for the elderly;

o Ceteris paribus SCN-0.

Exposure Assessment

Human exposure to SARS-CoV-2 mostly occurs when people leave home in their day-to-day life.
In a business as usual scenario (SCN-0), we assume the young are out for business 46 hours/week
and the elderly for 23 hours/week. Thus, we set this level of exposure for our benchmark as 100%
for the young and 50% exposure for the elderly. Then, we make changes in the exposure level in
order to represent social isolation in mitigation scenarios. Table 3 shows a summary of the
exposure assessment.
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Frequency assessment

When exposed to infected individuals, a susceptible individual may get infected. We name this
process the frequency of infection. The frequency of infection per week, u', can be estimated by
processing the data on the daily number of confirmed cases in each country provided by (JH, 2020)
(SM Appendix, Table A1). To that end, we grouped countries into continents. Then, we calculated
the weekly frequency of infection in each continent for every day D (i.e., the number of infected
people in t + 7 divided by the number of infected people in t). From this sample of values, we
calculated the mean and standard deviation in each continent and checked if there were outliers
outside a 99.7% Cl (u + 30). If there were outliers, we calculated ¢t and ¢ and checked for outliers
again. We repeated this process for each continent until there were no more outliers. Table 4
presents the frequency of infection per patch, which represents a do-nothing scenario (SCN-0).
After an individual gets infected, (s)he may either die or recover. For the fatality rate (ay,a)) (i.e.,
the frequency of the rate at which infected individuals may die per week), we use as reference a
study that presented the fatality rates in the world per age group deciles, i.e.: 0-9, 10-19, ..., 70-79,
until >80 years old (Vital Surveillances, 2020). We grouped fatality rates into our age classes of
interest (<60 and =60 years old), and then estimated age-specific fatality rates of the infected
young and elderly, i.e., respectively: 0.006216 and 0.067575 per week. This means that on average
0.62% and 6.76% of the total number of infected young and elder population die per week
respectively.

The recovery rates (asp,aes) (i.€., the transition rate per week from infected to recovered) can be
estimated based on the incubation and transmission period of those who develop symptoms. A
study suggested that transmission of SARS-CoV-2 also occurs during the incubation period. Thus,
recovery time can be considered as the sum of incubation and transmission periods. According to
(Lauer et al., 2020), under conservative assumptions, most individuals take 14 days to recover.
Thus, after 2 weeks, it is highly unlikely that an infected individual would still be in the transmission
period. This is also in accordance with, and well supported by, the recommendation of the U.S.
Centers for Disease Control and Prevention for the period of active monitoring of infected people
(14 days = 2 weeks) (WhiteHouse, 2020). Thus, we estimated the mean recovery rate as az; =

1
(5 Weeks) * (1 - ay), for the young individuals (note that the same can be done for the elderly, by
using ass and as).

Parameterizing the model and Initial Conditions

Table 1 and Table 2 summarize the variables, parameters and initial conditions of the model. Some
studies in the literature have already estimated parameters governing the dynamics of SARS-CoV-
2, which we use in the proposed model: the fatality rate per age class (Vital Surveillances, 2020);
the mean incubation and transmission period (Lauer et al., 2020); the time taken to recover (Lauer
etal., 2020); and the proportion of the young and elderly infected (Population Pyramid, 2019). Other
parameters were estimated from data (SM Appendix, Table A1): the frequency of infection per
week for each continent. On the other hand, due to the unprecedented characteristic of this
disease, there is still a lack of scientific information, and then two parameters of the model were
estimated via conservative educated opinions of the authors, i.e.: the permanence rate in state 2
(young susceptible); and the permanence rate in state 4 (elderly susceptible) (see Table 2 for the
rationale and assumptions regarding these parameters). The estimates for these two parameters
may be improved when more information becomes available.

Some parameters were estimated using a mean value and others a mean and standard deviation
(mean and o columns in Table 2). To make the latter uncertain, we consider that they have a
Normal distribution. One can make good use of a Gaussian approach in the vital rates of biological
models because there is a reasonable reason for random values not to be too far away from
average, i.e., there are biological limitations preventing very large deviations and natural forces
from equilibrium that bring vital rates back to their average values (Taleb, 2007). For probabilistic
simulation, RAMAS converts the parameters of a Normal distribution into the corresponding
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Lognormal counterpart, which avoids bias resulting from truncation because all parameters are
greater than zero.

We model dispersal in a straightforward way. Indeed, we did not have access to private data of all
flight arrivals and departures per country. Public information available only shows the total number
of arrivals per country and continent in 2017 and 2018 (UNWTO, 2019). From this dataset, we took
the average number of arrivals per year and estimated the average number of arrivals per week by
dividing it by 52 (the number of weeks in a year), for e}v?ch continent. Thus, we model dispersal
rates per week from continent j to continent i as m;; = (ﬁ)Tr , Where M;;is the number of arrivals
in the continent i from the continent j per week, N’ is the total subpopulation of the continent j and
T, is the travel restriction management measure that can vary from 0 to 1. As a result, we had
dispersal rates in the order of 10-3, 104 and 10-5. We built a dispersal matrix [M]¢,¢ for SCN-0 (SM
Appendix, Table A2), where T(t) = 1. T, is dependent on each scenario (see Description of
scenarios section) and varies over time as can be seen in SM Appendix, Fig. A1.

Although the current proportion of infected individuals is very low (less than 0.1%), we estimate the
initial number of susceptible individuals by subtracting the number of infected individuals for each
continent in each age class from the total population. The proportion of age classes was estimated
based on available data regarding the age pyramid in each continent (Population Pyramid,
2019).The initial number of fatalities and recovered people were assumed as zero, because the
proportion of fatalities is still low, and data about individuals recovered are scarce and difficult to
collect.

10
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Results

Here, we present the main risk results of each scenario and make a comparison between them.
SCN-0 works as a baseline for comparing and quantifying the risk reduction caused by mitigation
strategies.

The results for the population were given in the following structure: average, + SD, maximum and
minimum. Then, we also present these results as boxplots (Fig. 2) to show the global infected
population at the final time-step of the SCN-0 simulation, which is useful to identify the most likely
continents, where SARS-CoV-2 might increase. Based on the results, in the absence of
interventions, AF is likely to be the continent with the largest number of infected people in the near
future, followed by EU, SA, NA, OC and AS.

Fig. 3 illustrates the efficiency of integrated strategies (social isolation + flight restrictions + medical
tools) for disease control: (A) a projection of the world infected population; (B) a projection of the
accumulated number of deaths in the world; and (C) time to explosion (i.e., the cumulative
probability distribution for the time taken for the percentage of infected people in the world to exceed
25%) for each scenario.

In Fig. 3A and 3B, results for each scenario are presented as mean values. For example, for SCN-2:
the expected infected population in the world is estimated to be around 223 million; and the
expected cumulative total number of deaths is expected to be around 1.5 million in 52 weeks.
Based on the results in Fig. 3C, it is possible to categorize the risks associated to each scenario
(see Table 5): High (HI) for SCN-0, High (HI) for SCN-3, Considerable (CO) for SCN-1 and
Negligible (NE) for SCN-2. Fig. 3C also shows that, compared to SCN-0, strong mitigation (SCN-
2) greatly increases the time to explosion, whereas for moderate mitigation (SCN-1) and vertical
isolation (SCN-3), although the time to explosion is increased, it is still within one year.

Other important results are as follows: SCN-1 (moderate mitigation) and SCN-2 (strong mitigation)
cause the risk of explosion to be reduced by, respectively, 52.7% and 92.72% compared to SCN-
0; the vertical isolation plan alone (SCN-3) does not significantly reduce this risk, when compared
to SCN-0, and so it is not useful to maintain the prevalence rate below 25%.

In order to suggest a scenario of NE risk, which would have the least impact on the economy, a
sensitivity analysis of gradual decreases in the length of isolation of the young in SCN-2 was carried
out. This showed that the explosion risk is already considerable for 6 weeks or less, suggesting
that 7 weeks is the minimum that the young should be isolated.

To account for continent-focused strategies, we simulated: business as usual in the most populated
continent (AS) and moderate mitigation in the rest; strong mitigation in the continent predicted to
be the most hard-hit (AF) and moderate mitigation in the rest; and strong mitigation in the two
continents predicted to be the most hard-hit (AF and EU) and moderate mitigation in the rest
Results showed that there were significant reductions in the explosion risks, although all of them
were still within the CO risk region (see Table 5).

Validation of the model

Our results are consistent with the outcomes of the business-as-usual scenario of another COVID-
19 global model (Boldog et al., 2020), i.e.: infections in the order of billions and deaths in the order
of millions in the world. Moreover, six weeks elapsed between the date we generated results from
the model and the first review of this paper. This has given us an opportunity to validate the model,
i.e., to compare the predictions for each scenario with real values for this six-week period.

First of all, we compared the real values of infections in the first six weeks with the results for each
scenario applied to all continents in a general manner. We observed that SCN-1 (moderate
mitigation) in all continents is the one closest to what is really happening in the world in general (no
different continent-specific scenarios). Fig. 4 shows, for each continent, the comparison of the
number of infections at week 6 (Apr 28th 2020), where the black dots are real values and the
boxplots on the left of each graph are the predicted results for SCN-1 in all continents. Note that
there is a good approximation for all continents.
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Not by accident, our model has the feature of being able to simulate different SCNs on different
continents so that it can be used in practice as a tool to predict the consequences of continent-
specific decisions. To validate this feature, we simulated a business as usual SCN-0 for AS and a
moderate mitigation SCN-1 for all other continents. This is in accordance with many news from Mar
17th to Apr 28th (Bird et al., 2020; Machado, 2020; The Inquirer, 2020) that say that Asian countries
have been reopening their business. The results are shown in the boxplots on the right of each
continent-specific graph in Fig. 4. Note that now there is an even better approximation for all
continents. This illustrates how the model can be calibrated as new information arises, and then
can be adapted to anything new that happens in reality. Indeed, it allows fast simulation and fast
generation of updated and more accurate results.

Finally, we validated our model at global-level using predictions for SCN-0 in AS and SCN-1 in all
other continents. Fig. 5A and Fig. 5B show, respectively, the comparison of the predicted against
real number of infections and deaths. Note that the predicted number of infections (Fig. 5A) present
a very good approximation, which suggests that the results of the model are consistent with a
business as usual scenario in AS and moderate mitigation in all the other continents. On the other
hand, for the number of deaths (Fig. 5B), the real values are higher than the third quartile of the
predicted boxplot for all the six time-steps, thereby indicating that our assumption of medical tools
that would reduce death rates by 50% may not correspond to reality, at least for these last six
weeks.

Discussion
In this section, we first discuss the advantages and then the limitations of using this model.

Advantages.

Our model proved to have great potential to be truly informative for decision-making, and not just
one more deterministic prediction for managers to follow without understanding all the uncertainty
around the data. Although the data are still very imprecise, our model was able to propagate
uncertainty in the results and give answers in terms of a distribution of consequences associated
to probabilities. For every Monte Carlo run, a “single-point estimate” for the discretized time to
explosion (e.g. in weeks), T, was calculated. After many Monte Carlo runs (e.g. 10,000), we had a
set of “single-point estimates” for the time to explosion and the number of occurrences of a “single-
point estimate”. Thus, we could calculate and present the probability of occurrence of each “single-
point estimate” (e.g. P(T) = number of occurrences of T/10,000). Then, for each time ¢, it was
possible to cumulate the probabilities of all T lower than f, which results in the Cumulative
Distribution Function (CDF) for the time to explosion, i.e.. Fr(t) = P(T <t). In summary, Fr(t)
means the probability that explosion will occur at or before a time t. This function was plotted in a
graph (Fig. 3C). The great advantage of such an approach over deterministic analysis is that results
show not only what could happen, but how likely each outcome is. For example, another study
used Monte Carlo simulations to provide a risk graph that show the cumulative probability over time
(days) of exporting at least a single infected case from mainland China via international travel.
Although the objective and scope of that study was different from ours, it also shows how
probabilistic models and Monte Carlo simulation can provide results that incorporate the indelible
uncertainty in the dynamics of COVID-19 (Wells et al., 2020).

We used the past six weeks (March 17th to April 28st 2020) to validate the model by comparing
real with predicted infections and our results, for SCN-0 in AS and SCN-1 in all the other continents,
do indeed correspond to reality (Fig. 5). The continent-specific predicted vs. real number of
infections (Fig. 4) also corresponds to reality for all continents. Note that we present results for
several scenarios, so that one of them will probably correspond to reality. In fact, our model cannot
make precise predictions of what will exactly happen in the future. Any model that tries to do that,
most likely will miss some information because decisions are taken every day and change the
future. Our model allows for fast simulation, so it can be used as a tool to predict the impact of
decisions before they are taken, so that authorities of the most representative countries in each
continent may be warned of the risks of their decisions to world health.
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Finally, we proposed criteria to categorize the quantified risks of a pandemic at population-level,
which can be useful not only for COVID-19 but also as a reference for categorizing risks of any
pandemic in the future. At the best of authors’ knowledge, there have been no suggestions in the
literature so far on how to categorize such risks. The rationale behind the categorization was
explained in the QMRA methodology section. Readers must ensure that they fully understand it in
order to be confident that they can correctly interpret the results of the risk category.

Limitations.

In the present application of our model, we consider that the probability of a recovered individual
being infected again is 0. Yet, there is evidence that recovered individuals may become infected
again (Lan et al., 2020), although it is still not certain whether such individuals have really become
reinfected or they were not infected before, but the test result was false positive. However, our
model is flexible in parameterization, and this probability can be easily changed to a value greater
than zero when more information becomes available.

There is the potential for bias in the fatality rates of the young and elderly if not everyone who has
been infected are being diagnosed. A recent study showed that it is likely that this is happening
and fatality rates are being underestimated (Baud et al., 2020). Consequently, the projection of the
accumulated number of deaths would also be underestimated (Fig. 3B). Nevertheless, the results
from validating the model showed the contrary: the expected death toll is considerably lower than
reality (Fig. 5). This is because SCN-1 assumes that new medical tools would be developed and
reduce fatality rates by 50%. We acknowledge that this assumption was too optimistic and can be
improved in future applications, as more information regarding new medicines/therapeutics is
available. Nevertheless, this limitation did not make any difference either in the explosion risk
results or in the risk categories, which are based on the number of infections and not on the number
of deaths.

We assumed that it is highly unlikely that an infected individual would still be in the transmission
period after 2 weeks of infection. New evidence indicates that the transmission period has a
considerable chance of being greater than 2 weeks (WHO, 2020c). However, this was a valid
assumption when the paper was submitted. For future applications of the model, this can be
improved by making changes to the standard deviation of the time to recover parameter, a(Ty.c),
which this paper assumed to be zero (Table 2).

There is great uncertainty and lack of clarity regarding how data about the number of confirmed
cases in each country have been collected. This can be seen in the high values of standard
deviations for the frequency of infection rate per week, especially in the poorest continents (AF and
SA). Thus, we acknowledge that the exact order of the hardest-hit continents (Fig. 2) could not be
predicted with sufficient accuracy. This may be improved as more tests are performed and more
data become available. For the time being, this ranking should be treated only as an initial guide
for prioritizing resources among continents. Nevertheless, unlike other models, our approach was
able to propagate uncertainty in the global results by using probabilistic language expressed in
boxplots (Fig. 2). '

DD was modeled in such a way that the frequency of infection, ', per week was assumed to be
constant over time until the number of susceptible+infected+recovered individuals reaches a
ceiling, and then they remain at that level until a decline in the population (e.g., a random fluctuation
or emigration) takes it below the ceiling. This was a simple and conservative way of limiting the
growth in the number of infected people. It would be more realistic (although less conservative, in
the sense that it will decrease risks) if the frequency of infection, R!, gradually decreases as the
number of recovered individuals increases. This can be improved in future studies by modeling DD
as Scramble or Contest-type (Akgakaya et al., 1999), but such DD models have two parameters
(not just one as the Ceiling-type), i.e. the maximum growth rate and carrying capacity, and thus
more information is necessary in order to be able to estimate such parameters without
underestimating risks. Currently, it could be dangerous to model DD as Scramble or Contest as
this may lead to underestimated risks.

This paper did not consider the risks of mitigation strategies to the global economy. We quantify
and categorize microbial risks only as a measure of the probability of massive infections and
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deaths. However, social isolation and business shutdown has caused the income of many people
to plunge. There are studies (Mortensen et al., 2016; Rehnberg and Fritzell, 2016; Wolfson et al.,
1999) that show a relationship between population income and mortality (e.g., the higher a person's
income, the better they can eat and take care of their health and the lower their mortality), and then
it is possible to estimate this link and integrate it into our model.

A proposal for future studies would be to include in our model this increased mortality caused by
social isolation (and consequent reduction in income) as a way to evaluate questions such as:
could economic shutdown kill more people than COVID-19 does? What is the optimum time to
maintain business shutdown in order to minimize the total number of deaths caused by both
COVID-19 and income reduction?

Currently, our model was built and simulated using a paid software called RAMAS (Ak¢akaya and
Root, 2013). Although we share all the model files (Duarte et al., 2020), it is only useful for those
who have the RAMAS license. We acknowledge this impairs the ease of reproducing the model.
There is a strong movement towards reproducibility in science, especially regarding near-term
ecological forecasting (Anderson et al., 2020; Dietze et al., 2018; White et al., 2019). Therefore, a
second proposal for a future line of research is to build and simulate the model in an open scriptable
software so that it can be easily reproduced by others.

Other proposals for future studies include: conducting a sensitivity analysis to identify the most
important control measures; and undertaking a long-term QMRA of COVID-19 to evaluate the
effectiveness of alternative vaccine types and mass vaccination programs.

Conclusions

We have quantified, assessed, categorized and ranked the risks related to varying mitigation
scenarios for the future, and provide the results so that authorities can make informed decisions
regarding the consequences of these risks. Not only global risks were assessed, but also continent-
specific risks, which was useful as an initial guide for prioritizing resources among continents. The
model was validated by comparing the results with real values from the six-week period from March
17 - April 28 2020. This showed that the predicted number of infections for a moderate mitigation
scenario has been consistent with reality. On the other hand, the predicted number of deaths has
been lower than reality, mainly because we were too optimistic by assuming that medical tools
would be developed and these would reduce fatality rates.

The main advantage of using this model in comparison to others is that it is probabilistic by nature,
so it provides results that incorporate the indelible uncertainty in COVID-19 dynamics. The main
limitation is the great uncertainty in the results, which is a consequence of the great uncertainty
around data. This is also a limitation of all other models in the literature that use public data on the
daily number of confirmed cases per country. Nevertheless, unlike other approaches, our model is
able to inform managers about where there is uncertainty in the results, so they can understand
the risks arising from their decisions.

Our model did not attempt to make precise predictions, but rather it is only descriptive. Indeed, it is
a tool for describing the dynamics of COVID-19 under predefined scenarios (different conditions of
social isolation, travel restrictions, medical tools), in order to evaluate the role of such conditions,
and to produce meaningful conclusions that can be used to steer public health decisions. Hence,
the model is meaningful for decisions taken under uncertainty, but it is very important that due care
is taken over how to interpret results.

The main next steps for our model are: to include the effect of varying COVID-19 candidate
vaccines and mass vaccination programs and then to conduct a longer term QMRA (e.g., 10 years)
in order to evaluate the effectiveness of such vaccines and vaccination programs; and to build and
simulate the model in an open scriptable software.

We consider that our model can be used by others and that unusually it could be important to
update results every week as more information become available, given the seriousness of the
pandemic.
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Fig. 1. Simplified schematic representation of Covid-19 dynamics in human population.
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Table 1. Definition of variables of the model.

Variable Symbol Description

Number of susceptible young in Ni(t) Assessment endpoint described as minimum, average and

continent i at time t maximum values, with a 95% confidence interval

Number of infected elderlies in NE(D) Assessment endpoint described as minimum, average and

continent i at time ¢ maximum values, with a 95% confidence interval

Continent-specific frequency of i Number of expected new cases of infection generated by one

infection infected person in each continent per week

Continent-specific standard deviation ok Standard deviation of reproductive number

from frequency of infection

Exposure level for young (s = 2) and EX Accounts for the reduction in the exposure due to an SCN k

elderly (s =5) for each SCN. (Table 4)

Ceiling for each continent i K! Total initial population for continent i

Travel restriction for each SCN T, Proportion of flights reduced as a measure to lower the
spread of the infection (Figure 3)

Fatality rate for [s=2] and [s=5] d; Proportion of individuals that die from the infection each week

Reduction in fatality-rate due to Vi Reduction in the fatality rate for each SCN k

medical tools

Note: [s=1] young susceptible, [s=2] young infected, [s=3] young recovered, [s=4] elderly susceptible, [s=5], elderly

infected and, [s=6] elderly recovered.
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Table 2. Definition of the parameters of the model.

Assumptions (Data Source or

Parameter Symbol Rationale) Mean o
Age-specific The probability of the virus being
exposure transmitted among young is higher -1 _ _

Bou than among elderly (Exposure B2z =1B25 =Fs2

Assessment section and Table 3).

Time to recover Most individuals take two weeks to

Trec recover (37) 2
Permanence rate The susceptible population is
from [s=1] to much larger than the infected
[s=1]; from [s=4] population, so there is a slight

0.999 0.001

to [s=4] s

Infection rate from
[s=2] to [s=2];

from [s=5] to [s=5] ahy (b); ads(6)

Infection rate from
[s=5] to [s=2];

from [s=2] to [s=5] azs(t); asz(t)

Recovery rate

from [s=2] to

[s=3]; from [s=5] a32,d65
to [s=6]

Permanence rate

from [s=3] to .
[s=3]; [s=6] to 33i66
[s=6]

Fatality rate of

[s=2]; [s=5] a,; as

Dispersal rate of

individuals among mj
continents
Threshold for
infected
population
explosion

I exp

decrease in the susceptible
population as more people get
infected (Educated guess).
Directly proportional to the
frequency of infection and
corrected by the age-specific
exposure and recovery rate. Also
corrected by the exposure level in
each SCN.

Same as a22(t); ass(t) .

Assessment of frequency section.

The probability of a recovered
individual being re-infected is zero
(LAN et al., 2020).

Description of SCNs section

Parameterization of the model
and Initial Conditions section

Threshold for an undesired
consequence (25% of the world
population infected)

E5(Baap' - azz);

Eé(ﬁssl/‘i - Qss)

E5(Basp' - asz);

E&(Bsoi' ~ ae5)

1
1-ay);
Tm( 2)

1
TTEC

(1-as)

1,947,531,610

E£(By20k - 032y

EX(Bssok - 065)
E5(B,s0k - 032);

Els((ﬁsza}l:\’ — 065)

Note: [s=1] young susceptible, [s=2] young infected, [s=3] young recovered, [s=4] elderly susceptible, [s=5], elderly

infected and, [s=6] elderly recovered.
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Table 3. Summary of the exposure assessment for each SCN

Estimated time out of home

for any activity (hours/week) Exposure level

Duration of social isolation
(weeks)

Scenarios  Young Elderly Young Elderly Young Elderly
SCN-0 46 23 100% 50% 0 0
SCN-1 8 2 18% 9% 2 7
SCN-2 8 2 18% 9% 7 17
SCN-3 46 0 100% 0% 0 52
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182 Frequency of infection

183 Subpopulation Mean SD

184 Europe 4.3781 2.7887

185 North Ameri_ca 3.5772 2.6315
South America 10.2265 4,9092

186 Asia 1.2812 0.3117

187 Africa 5.3783 3.1823

188 Oceania 2.2280 1.1916
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Table 4. Frequency of infection per week (mean and standard deviation) for each continent.
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Table 5. Summary of the outputs for each SCN.

Qutput
Scenario World Infected Total Death Toll Risk of Time to Risk
Population Explosion Explosion Category
SCN-0 Fluctuates between Fluctuates 100% 8.6 weeks  HI
(benchmark) approximately 3 and between
3.6 billion approximately 84
and 88 million
SCN-1 Fluctuates between Fluctuates 47.30% Tends to CcO
(moderate approximately 1.45 between infinity
mitigation) billion and 3.46 billion  approximately
19.5 and 46.5
million
SCN-2 (strong Fluctuates between Fluctuates 7.28% Tends to NE
mitigation) approximately 223 between infinity
and 910 million approximately 1.5
and 6.3 million
SCN-3 (vertical Fluctuates between Fluctuates 100% 11.5 HI
isolation plan) approximately 2.47 between weeks
and 4.26 billion approximately
15.4 and 26.6
million
SCN-0in AS; Fluctuates between Fluctuates 54.52% 19.8 CcoO
SCN-1 in the approximately 1.67 between weeks
other continents and 2.71 billion approximately
22.5 and 29
million
SCN-2 in AF; Fluctuates between Fluctuates 50.60% 234 CO
SCN-1 in the approximately 1.34 between weeks
other continents  and 2.23 billion approximately
37.2 and 62.1
million
SCN-2 in AF and  Fluctuates between Fluctuates 27.88% Tends to CO
EU; SCN-1inthe approximately 735 between infinity
other continents ~ million and 2.03 approximately
billion 20.5 and 56.6
million

Note: HI = High Risk; CO = Considerable Risk; NE = Negligible Risk
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Table A1. Record of infected per day in each continent of interest. Adapted from: (JH, 2020).
North South

Date Europe America America Africa Asia Oceania

1/22/20 0 1 0 0 554 0
1/23/20 0 1 0 0 652 0
1/24/20 2 2 0 0 937 0
1/25/20 3 2 0 0 1429 0
1/26/20 3 6 0 0 2105 4
1/27/20 4 6 0 0 2912 5
1/28/20 8 7 0 0 5558 5
1/29/20 10 7 0 0 6143 6
1/30/20 10 7 0 0 8208 9
1/31/20 16 11 0 0 9891 9
2/1/20 20 12 0 0 11993 12
2/2/20 22 12 0 0 16740 12
2/3/20 24 15 0 0 19829 12
2/4/20 25 15 0 0 23838 13
2/5/20 25 16 0 0 27580 13
2/6/20 25 16 0 0 30761 14
2/7/20 28 18 0 0 34268 15
2/8/20 33 18 0 0 36992 15
2/9/20 34 18 0 0 40017 15
2/10/20 39 18 0 0 42553 15
2/11/20 41 19 0 0 44590 15
2/12/20 42 19 0 0 44968 15
2/13/20 42 20 0 0 60114 15
2/14/20 42 20 0 1 66587 15
2/15/20 43 20 0 1 68664 15
2/16/20 43 20 0 1 70788 15
2/17/20 43 21 0 1 72722 15
2/18/20 43 21 0 1 74512 15
2/19/20 43 21 0 1 74936 15
2/20/20 43 21 0 1 75481 15
2/21/20 60 24 0 1 76083 19
2/22/20 102 24 0 1 77794 22
2/23/20 195 24 0 1 78030 22
2/24/20 273 61 0 1 78518 22
2/25/20 373 62 0 2 79257 22
2/26/20 527 68 1 2 80057 22
2/27/20 789 71 1 2 81148 23
2/28/20 1061 75 1 4 82219 24
2/29/20 1420 92 2 4 83718 26
3/1/20 2120 103 9 5 85316 28
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3013
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4164

12
21
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94
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528
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1042
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86693
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94858
96071
96939
98138
99903
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103065
104982
106913
108513
110493
112517
114974
117245
119944
123004
123045

31
40
55
58
64
68
81
96
112
133
133
205
256
305
386
464
588
710
832
1125
1383
1383



Table A2. Dispersal matrix between continents. Each element in the dispersal matrix
means that x.xx% of the population of continent j (column) travels to continent i (line) per
week.

AS EU SA NA OC AF
AS 0.00026 0.000365 0.000399 0.000208 0.000256
EU 0.000355 0.000456 0.000996 0.000260 0.000256
SA 0.000025 0.00026 0.000399 0.000104 0.000034
NA 0.000209 0.00091 0.000456 0.000260 0.000342
oC 0.000008 0.00010 0.000046 0.000199 0.000017
AF 0.000021 0.00016 0.000091 0.000266 0.000156
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Figure S1. Flight restriction over time, T(t), for each scenario: SCN-0 (business as usual), SCN-1
(moderate mitigation), SCN-2 (strong mitigation) and SCN-3 (vertical isolation).



